En esta primera etapa del estudio, se realizará un conjunto de cálculos, visualizaciones y análisis exploratorios sobre los datos relacionados con la deserción de empleados en la empresa IBM, los cuales se describen detalladamente en la sección 1.2. El análisis se abordará desde la perspectiva de la estadística descriptiva multivariante, lo que permitirá obtener no solo una visión general del comportamiento del personal dentro de la organización, sino también una comprensión más profunda de las relaciones entre las diversas variables asociadas a la permanencia o renuncia de los empleados.
Este enfoque contribuirá a identificar patrones clave, tendencias relevantes y posibles factores asociados al abandono laboral, tales como el nivel de satisfacción, las condiciones laborales, la experiencia o la edad.Las visualizaciones ocuparán un papel fundamental, pues facilitarán la representación gráfica de estas relaciones y permitirán explorar los datos de forma clara, intuitiva y accesible.
Todo el proceso se desarrollará utilizando las herramientas R y RStudio, que posibilitan una ejecución eficiente de los cálculos, el manejo adecuado del conjunto de datos y la creación de gráficos dinámicos que enriquecen la interpretación de los resultados obtenidos.
El objetivo de este proyecto es aplicar técnicas de análisis de datos para estudiar el conjunto de datos IBM HR Analytics Employee Attrition & Performance, con el fin de identificar patrones relacionados con la deserción y el rendimiento de los empleados. A través de este análisis, se busca fortalecer las habilidades en la gestión y exploración de información, contribuyendo a la comprensión de los factores que influyen en la productividad y la toma de decisiones dentro de una organización. Este trabajo se enmarca dentro del curso de Gestión de Datos durante el periodo academico 2025-2.
El conjunto de datos fue obtenido en su totalidad de Kaggle: (https://www.kaggle.com/uniabhi). Kaggle es una plataforma en línea de ciencia de datos y aprendizaje automático, propiedad de Google LLC. Esta facilita la participación en competencias donde las empresas publican conjuntos de datos y problemas, permitiendo a los usuarios desarrollar modelos predictivos y competir. La plataforma también ofrece notebooks para compartir y colaborar en proyectos utilizando Python y R, así como una amplia colección de conjuntos de datos de acceso público. Además, Kaggle Learn, una sección de la plataforma dedicada a la educación y el aprendizaje en ciencia de datos y aprendizaje automático, proporciona tutoriales y cursos interactivos en temas como Python, SQL, visualización de datos y aprendizaje automático, dirigidos a principiantes y usuarios avanzados.
Este conjunto de datos sobre la desercion y rendimiento de empleados, fue creado por la empresa IBM con el objetivo de analizar las causas por las que los trabajadores dejan una empresa y los factores que influyen en su rendimiento. Es un conjunto muy usado en estudios de recursos humanos y análisis de datos por la cantidad y variedad de información que contiene.
Este conjunto de datos se relaciona con las áreas: 3. Engineering Economic Analysis(Analisis de Ingenieria Economica), 6. Ergonomics & Human Factors(Ergonomia y Factores Humanos), 7. Operations Engineering & Management(Ingenieria de Operaciones y Gestión) y 9. Engineering Management(Gestión de Ingeniria) del IISE Body of Knowledge. Debido a que permite analizar factores económicos, humanos y organizacionales que influyen en la rotación y desempeño de los empleados. Su estudio ayuda a tomar decisiones estratégicas para mejorar la productividad, el bienestar del personal y la eficiencia en la gestión del talento dentro de la empresa.
El conjunto de datos Consta de 1470 registros de empleados y 35 variables relacionadas con aspectos personales, laborales y de satisfacción. Algunas variables describen la edad, el salario, el área de trabajo, los años en la empresa, el nivel educativo y si el empleado ha dejado o no la organización. Algunos campos son de naturaleza cualitativa nominal o ordinal, como Department, EducationField o JobRole, mientras que otros son cuantitativos continuos o discretos, como Age, MonthlyIncome o YearsAtCompany. La variable Attrition (Sí/No) es de tipo dicotómica nominal, utilizada como variable objetivo en la mayoría de los análisis predictivos que se realizan con este conjunto.La lista siguiente describe las variables principales del conjunto de datos en el mismo orden en que aparecen y se establece para cada campo el tipo de variable y su escala de medición con base en la nomenclatura (tipo_de_variable::escala_de_medición[ordenamiento]):
Age (cuantitativa::razón): Indica la edad del empleado en años completos.
Attrition (cualitativa::nominal): Muestra si el empleado dejó la empresa (Yes) o continúa en ella (No).
Department (cualitativa::nominal): Señala el área donde trabaja el empleado, como Sales, Research & Development o Human Resources.
DistanceFromHome (cuantitativa::razón): Indica la distancia, en kilómetros, entre la casa del empleado y la oficina.
Education (cualitativa::ordinal): Representa el nivel educativo alcanzado, codificado en una escala del 1 al 5, donde 1 corresponde a “Below College” y 5 a “Doctor”.
EducationField (cualitativa::nominal): Indica el campo de formación académica del empleado, como Life Sciences, Medical o Marketing.
EmployeeNumber (cuantitativa::nominal): Asigna un código único a cada empleado dentro de la organización, usado como identificador.
Gender (cualitativa::nominal): Registra el género del empleado, clasificado como Male o Female.
EnvironmentSatisfaction (cualitativa::ordinal): Mide el nivel de satisfacción del empleado con su entorno laboral (escala del 1 al 4).
JobLevel (cualitativa::ordinal): Representa el nivel jerárquico dentro de la empresa, con valores del 1 al 5, donde 1 corresponde a puestos más bajos y 5 a cargos directivos.
JobRole (cualitativa::nominal): Describe el cargo o función que desempeña el empleado dentro de la organización.
JobSatisfaction (cualitativa::ordinal): Evalúa el nivel de satisfacción con el trabajo, en una escala del 1 al 4, donde 1 es “Low” y 4 es “Very High”.
MaritalStatus (cualitativa::nominal): Indica el estado civil del empleado (Single, Married o Divorced).
MonthlyIncome (cuantitativa::razón): Representa el salario mensual del empleado en dólares.
OverTime (cualitativa::nominal): Indica si el empleado trabaja horas extra (Yes/No).
PerformanceRating (cualitativa::ordinal): Mide el desempeño del empleado según la empresa, en una escala del 1 al 4 (de “Low” a “Outstanding”).
TotalWorkingYears (cuantitativa::razón): Muestra el total de años de experiencia laboral que tiene el empleado.
YearsAtCompany (cuantitativa::razón): Registra los años que el empleado ha trabajado en la empresa actual.
WorkLifeBalance (cualitativa::ordinal): Evalúa el equilibrio entre la vida personal y laboral del empleado, en una escala de 1 a 4.
YearsSinceLastPromotion (cuantitativa::razón): Indica el número de años desde el último ascenso del empleado.
str(desercion_empleados_IBM_original)
## tibble [1,470 × 35] (S3: tbl_df/tbl/data.frame)
## $ Age : num [1:1470] 41 49 37 33 27 32 59 30 38 36 ...
## $ Attrition : chr [1:1470] "Yes" "No" "Yes" "No" ...
## $ BusinessTravel : chr [1:1470] "Travel_Rarely" "Travel_Frequently" "Travel_Rarely" "Travel_Frequently" ...
## $ DailyRate : num [1:1470] 1102 279 1373 1392 591 ...
## $ Department : chr [1:1470] "Sales" "Research & Development" "Research & Development" "Research & Development" ...
## $ DistanceFromHome : num [1:1470] 1 8 2 3 2 2 3 24 23 27 ...
## $ Education : num [1:1470] 2 1 2 4 1 2 3 1 3 3 ...
## $ EducationField : chr [1:1470] "Life Sciences" "Life Sciences" "Other" "Life Sciences" ...
## $ EmployeeCount : num [1:1470] 1 1 1 1 1 1 1 1 1 1 ...
## $ EmployeeNumber : num [1:1470] 1 2 4 5 7 8 10 11 12 13 ...
## $ EnvironmentSatisfaction : num [1:1470] 2 3 4 4 1 4 3 4 4 3 ...
## $ Gender : chr [1:1470] "Female" "Male" "Male" "Female" ...
## $ HourlyRate : num [1:1470] 94 61 92 56 40 79 81 67 44 94 ...
## $ JobInvolvement : num [1:1470] 3 2 2 3 3 3 4 3 2 3 ...
## $ JobLevel : num [1:1470] 2 2 1 1 1 1 1 1 3 2 ...
## $ JobRole : chr [1:1470] "Sales Executive" "Research Scientist" "Laboratory Technician" "Research Scientist" ...
## $ JobSatisfaction : num [1:1470] 4 2 3 3 2 4 1 3 3 3 ...
## $ MaritalStatus : chr [1:1470] "Single" "Married" "Single" "Married" ...
## $ MonthlyIncome : num [1:1470] 5993 5130 2090 2909 3468 ...
## $ MonthlyRate : num [1:1470] 19479 24907 2396 23159 16632 ...
## $ NumCompaniesWorked : num [1:1470] 8 1 6 1 9 0 4 1 0 6 ...
## $ Over18 : chr [1:1470] "Y" "Y" "Y" "Y" ...
## $ OverTime : chr [1:1470] "Yes" "No" "Yes" "Yes" ...
## $ PercentSalaryHike : num [1:1470] 11 23 15 11 12 13 20 22 21 13 ...
## $ PerformanceRating : num [1:1470] 3 4 3 3 3 3 4 4 4 3 ...
## $ RelationshipSatisfaction: num [1:1470] 1 4 2 3 4 3 1 2 2 2 ...
## $ StandardHours : num [1:1470] 80 80 80 80 80 80 80 80 80 80 ...
## $ StockOptionLevel : num [1:1470] 0 1 0 0 1 0 3 1 0 2 ...
## $ TotalWorkingYears : num [1:1470] 8 10 7 8 6 8 12 1 10 17 ...
## $ TrainingTimesLastYear : num [1:1470] 0 3 3 3 3 2 3 2 2 3 ...
## $ WorkLifeBalance : num [1:1470] 1 3 3 3 3 2 2 3 3 2 ...
## $ YearsAtCompany : num [1:1470] 6 10 0 8 2 7 1 1 9 7 ...
## $ YearsInCurrentRole : num [1:1470] 4 7 0 7 2 7 0 0 7 7 ...
## $ YearsSinceLastPromotion : num [1:1470] 0 1 0 3 2 3 0 0 1 7 ...
## $ YearsWithCurrManager : num [1:1470] 5 7 0 0 2 6 0 0 8 7 ...
str(desercion_empleados_IBM_ETL)
## tibble [1,470 × 33] (S3: tbl_df/tbl/data.frame)
## $ Age : num [1:1470] 41 49 37 33 27 32 59 30 38 36 ...
## $ Attrition : chr [1:1470] "Yes" "No" "Yes" "No" ...
## $ BusinessTravel : chr [1:1470] "Travel_Rarely" "Travel_Frequently" "Travel_Rarely" "Travel_Frequently" ...
## $ DailyRate : num [1:1470] 1102 279 1373 1392 591 ...
## $ Department : chr [1:1470] "Sales" "Research & Development" "Research & Development" "Research & Development" ...
## $ DistanceFromHome : num [1:1470] 1 8 2 3 2 2 3 24 23 27 ...
## $ Education : num [1:1470] 2 1 2 4 1 2 3 1 3 3 ...
## $ EducationField : chr [1:1470] "Life Sciences" "Life Sciences" "Other" "Life Sciences" ...
## $ EmployeeNumber : num [1:1470] 1 2 4 5 7 8 10 11 12 13 ...
## $ Gender : chr [1:1470] "Female" "Male" "Male" "Female" ...
## $ HourlyRate : num [1:1470] 94 61 92 56 40 79 81 67 44 94 ...
## $ JobInvolvement : num [1:1470] 3 2 2 3 3 3 4 3 2 3 ...
## $ JobLevel : num [1:1470] 2 2 1 1 1 1 1 1 3 2 ...
## $ JobRole : chr [1:1470] "Sales Executive" "Research Scientist" "Laboratory Technician" "Research Scientist" ...
## $ JobSatisfaction : num [1:1470] 4 2 3 3 2 4 1 3 3 3 ...
## $ MaritalStatus : chr [1:1470] "Single" "Married" "Single" "Married" ...
## $ MonthlyIncome : num [1:1470] 5993 5130 2090 2909 3468 ...
## $ MonthlyRate : num [1:1470] 19479 24907 2396 23159 16632 ...
## $ NumCompaniesWorked : num [1:1470] 8 1 6 1 9 0 4 1 0 6 ...
## $ Over18 : chr [1:1470] "Yes" "Yes" "Yes" "Yes" ...
## $ OverTime : chr [1:1470] "Yes" "No" "Yes" "Yes" ...
## $ PercentSalaryHike : num [1:1470] 11 23 15 11 12 13 20 22 21 13 ...
## $ PerformanceRating : num [1:1470] 3 4 3 3 3 3 4 4 4 3 ...
## $ RelationshipSatisfaction: num [1:1470] 1 4 2 3 4 3 1 2 2 2 ...
## $ StandardHours : num [1:1470] 80 80 80 80 80 80 80 80 80 80 ...
## $ StockOptionLevel : num [1:1470] 0 1 0 0 1 0 3 1 0 2 ...
## $ TotalWorkingYears : num [1:1470] 8 10 7 8 6 8 12 1 10 17 ...
## $ TrainingTimesLastYear : num [1:1470] 0 3 3 3 3 2 3 2 2 3 ...
## $ WorkLifeBalance : num [1:1470] 1 3 3 3 3 2 2 3 3 2 ...
## $ YearsAtCompany : num [1:1470] 6 10 0 8 2 7 1 1 9 7 ...
## $ YearsInCurrentRole : num [1:1470] 4 7 0 7 2 7 0 0 7 7 ...
## $ YearsSinceLastPromotion : num [1:1470] 0 1 0 3 2 3 0 0 1 7 ...
## $ YearsWithCurrManager : num [1:1470] 5 7 0 0 2 6 0 0 8 7 ...
El vector de medias y la matriz de varianzas-covarianzas conforman un conjunto de herramientas fundamentales para describir el comportamiento posicional, dispersivo y correlacional de las variables aleatorias en un conjunto de datos. Estas medidas son esenciales en el análisis multivariado, porque permiten capturar tanto la tendencia central como las interdependencias entre las variables.
El vector de medias refleja el valor esperado o punto medio de cada variable, sintetizando la información de todos los registros disponibles en el conjunto de datos. Por su parte, la matriz de varianzas-covarianzas describe la variabilidad y las relaciones entre las variables. En su diagonal principal, estima las dispersiones individuales de cada variable respecto a su media, mientras que los elementos por encima o por debajo de esta diagonal representan las covarianzas entre pares de variables, mostrando las relaciones lineales existentes entre ellas.
apply(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33)], 2, mean)
## Age DailyRate DistanceFromHome EmployeeNumber
## 36.923810 802.485714 9.192517 1024.865306
## MonthlyIncome
## 6502.931293
desercion_empleados_IBM_ETL_Reducido = desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33)]
nombres_boxplots <- c("Age", "DailyRate","DistanceFromHome", "EmployeeNumber", "MonthlyIncome")
par(mfrow = c(1, ncol(desercion_empleados_IBM_ETL_Reducido)))
invisible(lapply(1:ncol(desercion_empleados_IBM_ETL_Reducido), function(i) {
boxplot(desercion_empleados_IBM_ETL_Reducido[, i],
main = nombres_boxplots[i])}))
apply(desercion_empleados_IBM_ETL[,-c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], 2, mean)
## MonthlyRate NumCompaniesWorked PercentSalaryHike TotalWorkingYears
## 14313.103401 2.693197 15.209524 11.279592
## YearsAtCompany
## 7.008163
desercion_empleados_IBM_ETL_Reducido = desercion_empleados_IBM_ETL[,-c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)]
nombres_boxplots <- c("MonthlyRate", "NumCompaniesWorked", "PercentSalaryHike", "TotalWorkingYears", "YearsAtCompany")
par(mfrow = c(1, ncol(desercion_empleados_IBM_ETL_Reducido)))
invisible(lapply(1:ncol(desercion_empleados_IBM_ETL_Reducido), function(i) {
boxplot(desercion_empleados_IBM_ETL_Reducido[, i],
main = nombres_boxplots[i])}))
round(cov(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)]),2)
## Age DailyRate DistanceFromHome EmployeeNumber
## Age 83.46 39.30 -0.12 -55.80
## DailyRate 39.30 162819.59 -16.31 -12386.71
## DistanceFromHome -0.12 -16.31 65.72 160.65
## EmployeeNumber -55.80 -12386.71 160.65 362433.30
## MonthlyIncome 21412.20 14641.13 -649.39 -42028.53
## MonthlyRate 1823.99 -92428.50 1585.26 54198.68
## NumCompaniesWorked 6.84 38.46 -0.59 -1.88
## PercentSalaryHike 0.12 33.53 1.19 -28.52
## TotalWorkingYears 48.36 45.57 0.29 -67.29
## YearsAtCompany 17.42 -84.19 0.47 -41.46
## MonthlyIncome MonthlyRate NumCompaniesWorked
## Age 21412.20 1823.99 6.84
## DailyRate 14641.13 -92428.50 38.46
## DistanceFromHome -649.39 1585.26 -0.59
## EmployeeNumber -42028.53 54198.68 -1.88
## MonthlyIncome 22164857.07 1166612.59 1758.38
## MonthlyRate 1166612.59 50662878.17 311.53
## NumCompaniesWorked 1758.38 311.53 6.24
## PercentSalaryHike -469.86 -167.49 -0.09
## TotalWorkingYears 28312.30 1464.44 4.62
## YearsAtCompany 14833.73 -1031.54 -1.81
## PercentSalaryHike TotalWorkingYears YearsAtCompany
## Age 0.12 48.36 17.42
## DailyRate 33.53 45.57 -84.19
## DistanceFromHome 1.19 0.29 0.47
## EmployeeNumber -28.52 -67.29 -41.46
## MonthlyIncome -469.86 28312.30 14833.73
## MonthlyRate -167.49 1464.44 -1031.54
## NumCompaniesWorked -0.09 4.62 -1.81
## PercentSalaryHike 13.40 -0.59 -0.81
## TotalWorkingYears -0.59 60.54 29.94
## YearsAtCompany -0.81 29.94 37.53
round(cor(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)]),3)
## Age DailyRate DistanceFromHome EmployeeNumber
## Age 1.000 0.011 -0.002 -0.010
## DailyRate 0.011 1.000 -0.005 -0.051
## DistanceFromHome -0.002 -0.005 1.000 0.033
## EmployeeNumber -0.010 -0.051 0.033 1.000
## MonthlyIncome 0.498 0.008 -0.017 -0.015
## MonthlyRate 0.028 -0.032 0.027 0.013
## NumCompaniesWorked 0.300 0.038 -0.029 -0.001
## PercentSalaryHike 0.004 0.023 0.040 -0.013
## TotalWorkingYears 0.680 0.015 0.005 -0.014
## YearsAtCompany 0.311 -0.034 0.010 -0.011
## MonthlyIncome MonthlyRate NumCompaniesWorked
## Age 0.498 0.028 0.300
## DailyRate 0.008 -0.032 0.038
## DistanceFromHome -0.017 0.027 -0.029
## EmployeeNumber -0.015 0.013 -0.001
## MonthlyIncome 1.000 0.035 0.150
## MonthlyRate 0.035 1.000 0.018
## NumCompaniesWorked 0.150 0.018 1.000
## PercentSalaryHike -0.027 -0.006 -0.010
## TotalWorkingYears 0.773 0.026 0.238
## YearsAtCompany 0.514 -0.024 -0.118
## PercentSalaryHike TotalWorkingYears YearsAtCompany
## Age 0.004 0.680 0.311
## DailyRate 0.023 0.015 -0.034
## DistanceFromHome 0.040 0.005 0.010
## EmployeeNumber -0.013 -0.014 -0.011
## MonthlyIncome -0.027 0.773 0.514
## MonthlyRate -0.006 0.026 -0.024
## NumCompaniesWorked -0.010 0.238 -0.118
## PercentSalaryHike 1.000 -0.021 -0.036
## TotalWorkingYears -0.021 1.000 0.628
## YearsAtCompany -0.036 0.628 1.000
Con base en los resultados obtenidos, es posible interpretar de manera conjunta la estructura interna del conjunto de datos. El vector de medias ofrece una referencia clara del nivel promedio de cada variable, mientras que la matriz de varianzas-covarianzas evidencia cuáles variables presentan mayor dispersión y cuáles tienden a variar en conjunto. Los boxplots permiten confirmar visualmente estas variaciones e identificar la presencia de asimetrías o valores atípicos que pueden influir en el análisis. Por último, la matriz de correlaciones revela la intensidad de las relaciones entre las variables, destacando aquellas con asociaciones fuertes que podrían tener un impacto significativo en estudios posteriores.
En el análisis multivariado, las representaciones gráficas desempeñan un papel fundamental para comprender simultáneamente la estructura y el comportamiento de varias variables. Estas visualizaciones permiten identificar patrones, relaciones y agrupamientos que no son evidentes mediante tablas numéricas. Entre las herramientas más utilizadas se encuentran los diagramas conjuntos de dispersión, las distribuciones multivariadas, los gráficos de correlación, los diagramas de estrellas y las caras de Chernoff.
ggpairs(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)])
desercion_empleados_IBM_ETL$Gender <- factor(desercion_empleados_IBM_ETL$Gender)
levels= c (0,1)
labels= c ( "Female" , "Male")
ggpairs(desercion_empleados_IBM_ETL, column = c(1, 4, 6, 9), aes(color = Gender, alpha = 0.5), upper = list(continuous = wrap("cor", size = 2.5)))
set.seed(120522)
desercion_empleados_IBM_ETL_Muestreado = desercion_empleados_IBM_ETL[sample(1:nrow(desercion_empleados_IBM_ETL),23),-c(2, 3, 5, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)]
stars(desercion_empleados_IBM_ETL_Muestreado, len = 1, cex = 0.4, key.loc = c(10, 2), draw.segments = TRUE)
set.seed(120522)
desercion_empleados_IBM_ETL_Muestreado = desercion_empleados_IBM_ETL [sample(1:nrow(desercion_empleados_IBM_ETL),23),-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)]
faces(desercion_empleados_IBM_ETL_Muestreado)
## effect of variables:
## modified item Var
## "height of face " "Age"
## "width of face " "DailyRate"
## "structure of face" "DistanceFromHome"
## "height of mouth " "EmployeeNumber"
## "width of mouth " "MonthlyIncome"
## "smiling " "MonthlyRate"
## "height of eyes " "NumCompaniesWorked"
## "width of eyes " "PercentSalaryHike"
## "height of hair " "TotalWorkingYears"
## "width of hair " "YearsAtCompany"
## "style of hair " "Age"
## "height of nose " "DailyRate"
## "width of nose " "DistanceFromHome"
## "width of ear " "EmployeeNumber"
## "height of ear " "MonthlyIncome"
A partir de las gráficas multivariadas generadas, se logra obtener una comprensión más completa de la estructura interna del conjunto de datos. El diagrama conjunto de dispersión permitió identificar relaciones claras entre ciertas variables, así como posibles concentraciones o patrones de agrupamiento. Las gráficas de distribución ayudaron a caracterizar el comportamiento individual de cada variable, mostrando diferencias en su dispersión y posibles desviaciones respecto a una distribución simétrica. Por otro lado, el análisis mediante correlaciones visuales facilitó la detección de asociaciones fuertes que podrían ser relevantes para estudios posteriores. Los diagramas de estrellas y las caras de Chernoff ofrecieron una perspectiva complementaria al permitir comparar observaciones completas de forma simultánea, resaltando similitudes y diferencias generales entre los perfiles analizados.
mardia(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)])
## $mv.test
## Test Statistic p-value Result
## 1 Skewness 3734.3782 0 NO
## 2 Kurtosis 9.9032 0 NO
## 3 MV Normality <NA> <NA> NO
##
## $uv.shapiro
## W p-value UV.Normality
## Age 0.9774 0 No
## DailyRate 0.9544 0 No
## DistanceFromHome 0.8616 0 No
## EmployeeNumber 0.9525 0 No
## MonthlyIncome 0.8279 0 No
## MonthlyRate 0.9545 0 No
## NumCompaniesWorked 0.8488 0 No
## PercentSalaryHike 0.9006 0 No
## TotalWorkingYears 0.9074 0 No
## YearsAtCompany 0.839 0 No
mhz(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)])
## $mv.test
## Statistic p-value Result
## 2.0712 0 NO
##
## $uv.shapiro
## W p-value UV.Normality
## Age 0.9774 0 No
## DailyRate 0.9544 0 No
## DistanceFromHome 0.8616 0 No
## EmployeeNumber 0.9525 0 No
## MonthlyIncome 0.8279 0 No
## MonthlyRate 0.9545 0 No
## NumCompaniesWorked 0.8488 0 No
## PercentSalaryHike 0.9006 0 No
## TotalWorkingYears 0.9074 0 No
## YearsAtCompany 0.839 0 No
faTest((desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)]), 10)
## $mv.test
## Statistic p-value Result
## 0.1786 0 NO
##
## $uv.shapiro
## W p-value UV.Normality
## Age 0.9774 0 No
## DailyRate 0.9544 0 No
## DistanceFromHome 0.8616 0 No
## EmployeeNumber 0.9525 0 No
## MonthlyIncome 0.8279 0 No
## MonthlyRate 0.9545 0 No
## NumCompaniesWorked 0.8488 0 No
## PercentSalaryHike 0.9006 0 No
## TotalWorkingYears 0.9074 0 No
## YearsAtCompany 0.839 0 No
msk((desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)]), 10)
## $mv.test
## Statistic p-value Result
## 3832.4519 0 NO
##
## $uv.shapiro
## W p-value UV.Normality
## Age 0.9774 0 No
## DailyRate 0.9544 0 No
## DistanceFromHome 0.8616 0 No
## EmployeeNumber 0.9525 0 No
## MonthlyIncome 0.8279 0 No
## MonthlyRate 0.9545 0 No
## NumCompaniesWorked 0.8488 0 No
## PercentSalaryHike 0.9006 0 No
## TotalWorkingYears 0.9074 0 No
## YearsAtCompany 0.839 0 No
En esta segunda fase del estudio se presentan los cálculos, visualizaciones e interpretaciones correspondientes al Análisis de Componentes Principales (ACP), aplicados a las variables cuantitativas del conjunto de datos analizado en la fase 1 (#sec1).
El propósito de esta etapa es identificar las combinaciones lineales que mejor resumen la variabilidad de los datos, examinando aspectos como la selección de componentes relevantes, la calidad de representación, las contribuciones de las variables originales y la interpretación de los componentes resultantes dentro del contexto del problema estudiado.
El Análisis de Componentes Principales (ACP) tiene como objetivo transformar un conjunto de variables originales correlacionadas en un nuevo conjunto de variables no correlacionadas denominadas componentes principales, que retienen la mayor parte de la información original. A través de este proceso, se busca reducir la dimensionalidad del espacio de los datos, eliminar redundancias y facilitar la interpretación de las estructuras subyacentes en el conjunto de observaciones.
Para una comprensión más profunda del procedimiento, los detalles del conjunto de datos se encuentran en la Sección 1.2 (#sec1.2), mientras que los fundamentos teóricos del análisis se desarrollan en la Fase 1. La revisión de dichas secciones permitirá una apreciación integral del enfoque metodológico implementado.
En el Análisis de Componentes Principales (ACP), la selección de componentes permite reducir la dimensionalidad del conjunto de datos conservando la mayor parte de la variabilidad original. Para ello se utilizan herramientas como la matriz del ACP, la matriz de correlaciones y los valores y vectores propios. La matriz de correlaciones estandariza las variables y muestra sus relaciones iniciales, mientras que los valores propios indican la cantidad de varianza explicada por cada componente. Por su parte, los vectores propios determinan las combinaciones lineales que generan las nuevas componentes y describen el peso o contribución de cada variable en ellas. Este proceso permite identificar cuáles componentes son relevantes y cuántas deben retenerse para representar adecuadamente la estructura de los datos.
get_eigenvalue(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 6, scale.unit = TRUE, graph = F))
## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 2.7818978 27.818978 27.81898
## Dim.2 1.1697362 11.697362 39.51634
## Dim.3 1.0768477 10.768477 50.28482
## Dim.4 1.0452657 10.452657 60.73747
## Dim.5 0.9845549 9.845549 70.58302
## Dim.6 0.9535769 9.535769 80.11879
## Dim.7 0.9182050 9.182050 89.30084
## Dim.8 0.5078936 5.078936 94.37978
## Dim.9 0.4123738 4.123738 98.50352
## Dim.10 0.1496485 1.496485 100.00000
round(cor(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)]),2)
## Age DailyRate DistanceFromHome EmployeeNumber
## Age 1.00 0.01 0.00 -0.01
## DailyRate 0.01 1.00 0.00 -0.05
## DistanceFromHome 0.00 0.00 1.00 0.03
## EmployeeNumber -0.01 -0.05 0.03 1.00
## MonthlyIncome 0.50 0.01 -0.02 -0.01
## MonthlyRate 0.03 -0.03 0.03 0.01
## NumCompaniesWorked 0.30 0.04 -0.03 0.00
## PercentSalaryHike 0.00 0.02 0.04 -0.01
## TotalWorkingYears 0.68 0.01 0.00 -0.01
## YearsAtCompany 0.31 -0.03 0.01 -0.01
## MonthlyIncome MonthlyRate NumCompaniesWorked
## Age 0.50 0.03 0.30
## DailyRate 0.01 -0.03 0.04
## DistanceFromHome -0.02 0.03 -0.03
## EmployeeNumber -0.01 0.01 0.00
## MonthlyIncome 1.00 0.03 0.15
## MonthlyRate 0.03 1.00 0.02
## NumCompaniesWorked 0.15 0.02 1.00
## PercentSalaryHike -0.03 -0.01 -0.01
## TotalWorkingYears 0.77 0.03 0.24
## YearsAtCompany 0.51 -0.02 -0.12
## PercentSalaryHike TotalWorkingYears YearsAtCompany
## Age 0.00 0.68 0.31
## DailyRate 0.02 0.01 -0.03
## DistanceFromHome 0.04 0.00 0.01
## EmployeeNumber -0.01 -0.01 -0.01
## MonthlyIncome -0.03 0.77 0.51
## MonthlyRate -0.01 0.03 -0.02
## NumCompaniesWorked -0.01 0.24 -0.12
## PercentSalaryHike 1.00 -0.02 -0.04
## TotalWorkingYears -0.02 1.00 0.63
## YearsAtCompany -0.04 0.63 1.00
princomp(desercion_empleados_IBM_ETL_Muestreado[,], cor = TRUE)$sdev^2
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
## 3.51554311 1.68802405 1.28572770 1.01528731 0.86272019 0.72616546 0.45260470
## Comp.8 Comp.9 Comp.10
## 0.28389834 0.14027025 0.02975891
princomp(desercion_empleados_IBM_ETL_Muestreado[,], cor = TRUE)$loadings[ ,1:5]
## Comp.1 Comp.2 Comp.3 Comp.4
## Age 0.39045775 0.30934515 0.11528292 0.20046660
## DailyRate -0.21997801 0.54874398 0.29178636 0.05820373
## DistanceFromHome -0.13195668 -0.46971520 0.32923515 -0.01406989
## EmployeeNumber -0.22141815 0.02528925 -0.33467654 0.34211345
## MonthlyIncome 0.49643148 -0.09959794 0.12573980 -0.01697499
## MonthlyRate -0.16888423 0.13986193 0.71050204 -0.28867045
## NumCompaniesWorked 0.20197397 0.55846567 -0.11491038 -0.04680741
## PercentSalaryHike -0.07628139 -0.05313237 0.33055355 0.85931225
## TotalWorkingYears 0.50054073 -0.05000336 0.03515381 0.11633385
## YearsAtCompany 0.40074232 -0.18768407 0.19192946 -0.03775011
## Comp.5
## Age 0.0007722585
## DailyRate -0.2952365609
## DistanceFromHome -0.1864833882
## EmployeeNumber -0.7845845397
## MonthlyIncome -0.2714636239
## MonthlyRate -0.1501968586
## NumCompaniesWorked 0.0836676009
## PercentSalaryHike 0.2761921502
## TotalWorkingYears -0.0776418706
## YearsAtCompany -0.2773510337
fviz_pca_var(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], scale.unit = T, graph = F),col.var="#3B83BD", repel = T, col.circle = "#CDCDCD", ggtheme = theme_bw())
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## ℹ The deprecated feature was likely used in the ggpubr package.
## Please report the issue at <https://github.com/kassambara/ggpubr/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## ℹ The deprecated feature was likely used in the factoextra package.
## Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
En el análisis de componentes principales, la calidad de representación permite evaluar qué tan bien cada variable y cada individuo queda proyectado en los nuevos ejes principales. El círculo de correlaciones muestra cómo se relacionan las variables originales con los componentes, indicando cuáles están mejor representadas en el plano factorial. La matriz de representación y los índices de calidad de representación (cos²) cuantifican qué porcentaje de la información de cada variable o individuo es capturado por los componentes seleccionados. Finalmente, las coordenadas individuales permiten ubicar cada observación en el espacio reducido, facilitando la identificación de patrones, similitudes o agrupamientos.
fviz_pca_var(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], scale.unit = T, graph = F),col.var="#3B83BD", repel = T, col.circle = "#CDCDCD", ggtheme = theme_bw())
(get_pca_var(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 5, scale.unit = TRUE, graph = F)))$cos2
## Dim.1 Dim.2 Dim.3 Dim.4
## Age 5.918913e-01 0.0674301364 6.238305e-03 5.999882e-04
## DailyRate 6.892638e-05 0.1110007453 2.408200e-01 8.770044e-02
## DistanceFromHome 6.528062e-05 0.0263907467 1.318982e-01 4.053947e-01
## EmployeeNumber 5.544640e-04 0.0125872183 3.474826e-01 7.203470e-03
## MonthlyIncome 7.257092e-01 0.0066595737 5.320516e-04 1.951714e-06
## MonthlyRate 1.299168e-03 0.0060241971 2.910606e-01 1.080539e-03
## NumCompaniesWorked 7.943876e-02 0.6754444783 3.838852e-02 7.273199e-03
## PercentSalaryHike 1.453985e-03 0.0081135290 2.468711e-03 5.351833e-01
## TotalWorkingYears 8.973925e-01 0.0002892877 1.438805e-05 4.969409e-04
## YearsAtCompany 4.840242e-01 0.2557962902 1.794434e-02 3.312545e-04
## Dim.5
## Age 1.930170e-03
## DailyRate 7.566337e-05
## DistanceFromHome 2.144007e-03
## EmployeeNumber 3.880558e-01
## MonthlyIncome 5.865329e-04
## MonthlyRate 5.696113e-01
## NumCompaniesWorked 1.600633e-02
## PercentSalaryHike 5.739645e-03
## TotalWorkingYears 8.434921e-05
## YearsAtCompany 3.210093e-04
fviz_pca_var(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 5, scale.unit = TRUE, graph = F), col.var="cos2", gradient.cols=c("#00AFBB","#E7B800","#FC4E07"), repel = TRUE)
head((PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 5, scale.unit = TRUE, graph = F))$ind$coord, n = 23L)
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## 1 0.27612321 2.3271579 -0.7783981 -1.2517336 -1.45637770
## 2 0.45845914 -0.3187750 0.1854987 1.3387796 -2.08630331
## 3 -1.04069354 2.2427806 -2.3898201 -0.2383880 0.38325206
## 4 -0.78665194 0.1042774 -1.3828867 -0.6541659 -2.21388201
## 5 -1.07777226 2.1975708 -0.2954737 -1.4465856 -1.12456640
## 6 -1.00673417 -0.4984299 -1.8846099 -0.6413899 -1.02954818
## 7 0.42172473 2.2499691 -1.7900208 0.9557929 -0.30592167
## 8 -2.06120392 0.3125982 -1.1653780 2.9935039 -0.80882753
## 9 0.19771002 -1.4423586 -0.4020514 1.9812215 -0.43364100
## 10 0.49678114 1.1874115 -0.3280470 1.3461509 -1.05258655
## 11 -1.20404659 -0.6161622 -0.6362351 0.3103685 -1.41887960
## 12 -0.76363169 -1.6594164 -0.3182923 -0.4438316 -1.09811357
## 13 -1.39550961 -0.6367666 -0.1470738 1.7082763 -1.11086561
## 14 -1.65865074 -0.1806836 -1.6152379 0.4801124 -0.60292697
## 15 -1.36114700 0.1028904 0.6131661 0.4089077 -0.75813375
## 16 0.01041904 -0.7402495 -1.6449348 0.6651293 -0.76839878
## 17 -1.11734626 -0.9846158 -0.6895683 -1.0814285 -1.37449793
## 18 -2.39941072 -0.2001905 -1.6142120 0.4000779 -0.43381887
## 19 4.45035587 -0.6251771 -1.5407962 0.2443245 -1.91827120
## 20 -0.70738693 0.8675555 -1.1431211 -1.6929386 0.02882653
## 21 -1.78402858 -0.8350144 -1.4270230 0.7324009 -0.51196542
## 22 -0.36369066 2.0881616 -1.6991578 1.7569246 0.14867933
## 23 0.79905708 -1.4749011 -0.3809076 -0.9980602 -2.08769964
El círculo de correlaciones muestra que las variables YearsAtCompany, MonthlyIncome, TotalWorkingYears y Age están fuertemente asociadas con el primer componente (Dim1), indicando que este eje captura un patrón relacionado con la experiencia laboral y el crecimiento profesional dentro de la empresa. Estas variables se proyectan cerca de la circunferencia, lo que indica una buena representación y una alta correlación con este componente. Por otro lado, NumCompaniesWorked está más asociada al segundo componente (Dim2), reflejando un comportamiento diferente al de las variables de estabilidad laboral. En contraste, variables como EmployeeNumber, DailyRate, PercentSalaryHike, DistanceFromHome y MonthlyRate aparecen cerca del centro del círculo, lo que indica que no están bien explicadas por los dos primeros componentes y tienen menor aporte a la variabilidad capturada en el plano factorial.
En el análisis de componentes principales, las contribuciones permiten identificar qué variables influyen con mayor peso en la formación de cada componente. La matriz de contribuciones resume el porcentaje de aportación de cada variable a cada dimensión, mientras que los gráficos de contribución muestran visualmente cuáles variables superan el umbral esperado (línea roja) y, por lo tanto, son relevantes en la interpretación de cada componente. Los biplots complementan este análisis al representar simultáneamente las variables y a los individuos en el espacio de los componentes, permitiendo visualizar cómo se relacionan ambos elementos con las nuevas dimensiones generadas. En conjunto, estas herramientas ayudan a comprender la estructura interna de los datos y el papel específico que desempeña cada variable en la reducción dimensional.
(get_pca_var(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 5, scale.unit = TRUE, graph = F)))$contrib
## Dim.1 Dim.2 Dim.3 Dim.4
## Age 21.276529186 5.76455924 0.579311736 5.740055e-02
## DailyRate 0.002477675 9.48938273 22.363421654 8.390253e+00
## DistanceFromHome 0.002346622 2.25612806 12.248546727 3.878389e+01
## EmployeeNumber 0.019931143 1.07607324 32.268499904 6.891520e-01
## MonthlyIncome 26.086837755 0.56932270 0.049408245 1.867194e-04
## MonthlyRate 0.046700775 0.51500476 27.028947990 1.033746e-01
## NumCompaniesWorked 2.855560168 57.74331655 3.564897574 6.958230e-01
## PercentSalaryHike 0.052265921 0.69362041 0.229253518 5.120069e+01
## TotalWorkingYears 32.258286233 0.02473102 0.001336127 4.754206e-02
## YearsAtCompany 17.399064523 21.86786129 1.666376526 3.169093e-02
## Dim.5
## Age 0.196044930
## DailyRate 0.007685034
## DistanceFromHome 0.217764071
## EmployeeNumber 39.414342326
## MonthlyIncome 0.059573406
## MonthlyRate 57.854707090
## NumCompaniesWorked 1.625742862
## PercentSalaryHike 0.582968529
## TotalWorkingYears 0.008567243
## YearsAtCompany 0.032604511
fviz_contrib(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 6, scale.unit = TRUE, graph = F), choice = "var", axes = 1, top = 10)
fviz_contrib(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 6, scale.unit = TRUE, graph = F), choice = "var", axes = 2, top = 10)
fviz_contrib(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 6, scale.unit = TRUE, graph = F), choice = "var", axes = 3, top = 10)
fviz_contrib(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 6, scale.unit = TRUE, graph = F), choice = "var", axes = 4, top = 10)
fviz_contrib(PCA(desercion_empleados_IBM_ETL[,-c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 6, scale.unit = TRUE, graph = F), choice = "var", axes = 5, top = 10)
desercion_empleados_IBM_ETL <- read_excel("E:/Proyecto_GDD_2025-2/desercion_empleados_IBM_ETL.xlsx")
# misma muestra que ya usas
desercion_empleados_IBM_ETL <- desercion_empleados_IBM_ETL[
sample(1:nrow(desercion_empleados_IBM_ETL), 100),
-c(2, 3, 5, 7, 8, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33)
]
# 1) Asegura que JobRole sea factor fuera de la matriz
desercion_empleados_IBM_ETL$JobRole <- factor(
desercion_empleados_IBM_ETL$JobRole,
levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
labels = c("Healthcare Representative", "Human Resources", "Laboratory Technician",
"Manager", "Manufacturing Director", "Research Director",
"Research Scientist", "Sales Executive", "Sales Representative")
)
# 2) Crea un objeto solo con las variables numéricas para la PCA
datos_pca <- desercion_empleados_IBM_ETL[, sapply(desercion_empleados_IBM_ETL, is.numeric)]
# 3) Ejecuta la PCA y el biplot
res_pca <- PCA(datos_pca, ncp = 9, scale.unit = TRUE, graph = FALSE)
fviz_pca_biplot(res_pca, axes = c(1, 2),
repel = TRUE,
habillage = desercion_empleados_IBM_ETL$JobRole)
## Warning: Removed 100 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).
desercion_empleados_IBM_ETL <- read_excel("E:/Proyecto_GDD_2025-2/desercion_empleados_IBM_ETL.xlsx")
set.seed(780729)
desercion_empleados_IBM_ETL_Muestreado = desercion_empleados_IBM_ETL[sample(1:nrow(desercion_empleados_IBM_ETL),200),-c(2, 3, 5, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)]
desercion_empleados_IBM_ETL_Muestreado$Education <- factor(desercion_empleados_IBM_ETL_Muestreado$Education, levels = c(1, 2, 3, 4, 5), labels = c("poco", "masomenos", "aceptable", "mucho", "demasiado"))
desercion_empleados_IBM_ETL_Muestreado$Education <- as.factor(desercion_empleados_IBM_ETL_Muestreado$Education)
fviz_pca_biplot(PCA(desercion_empleados_IBM_ETL[, -c(2, 3, 5, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)], ncp = 5, scale.unit = TRUE, graph = F, quali.sup = "Education"), axes = c(1, 2), repel = TRUE, habillage = "Education")
desercion_empleados_IBM_ETL <- read_excel("E:/Proyecto_GDD_2025-2/desercion_empleados_IBM_ETL.xlsx")
set.seed(780729)
desercion_empleados_IBM_ETL_Muestreado <- desercion_empleados_IBM_ETL[ sample(1:nrow(desercion_empleados_IBM_ETL), 150), -c(2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 24, 25, 26, 28, 29, 31, 32, 33)]
desercion_empleados_IBM_ETL$PerformanceRating <- factor(
desercion_empleados_IBM_ETL$PerformanceRating,
levels = c(3, 4),
labels = c("Insatisfecho", "PocoSatisfecho"))
pca_result <- PCA(
desercion_empleados_IBM_ETL_Muestreado[, -which(names(desercion_empleados_IBM_ETL_Muestreado) == "PerformanceRating")],
ncp = 5,
scale.unit = TRUE,
graph = FALSE,
quali.sup = which(names(desercion_empleados_IBM_ETL_Muestreado) == "PerformanceRating")
)
fviz_pca_biplot(PCA(desercion_empleados_IBM_ETL_Muestreado[,], ncp = 5, scale.unit = TRUE, graph = F, quali.sup = which(names(desercion_empleados_IBM_ETL_Muestreado) == "PerformanceRating")), axes = c(1, 2), repel = TRUE, habillage = "PerformanceRating")
Las contribuciones muestran que cada componente del PCA está determinado por grupos específicos de variables, lo que evidencia que la variabilidad del conjunto de datos se organiza en diferentes dimensiones. El primer componente está fuertemente influido por variables relacionadas con la experiencia laboral, mientras que los componentes posteriores reflejan información más operativa y de movilidad. Los biplots confirman estas relaciones al mostrar cómo las variables más influyentes orientan la posición de los individuos en los planos factoriales, permitiendo distinguir perfiles y patrones generales dentro de los datos. Estos resultados ofrecen una visión clara de qué variables son clave en cada dimensión y cómo estructuran la distribución de las observaciones.
La tercera fase del estudio aborda el Análisis de Correspondencias, una técnica exploratoria destinada a representar gráficamente las relaciones entre categorías de variables cualitativas. A través de esta metodología, se busca identificar patrones de asociación y estructuras de similitud entre filas y columnas de tablas de contingencia, permitiendo una comprensión visual y estadística de las relaciones entre las modalidades observadas.
Esta fase constituye un puente entre los métodos aplicados a variables cuantitativas y aquellos orientados a la interpretación de datos categóricos.
En esta tercera fase, se presentan los cálculos, representaciones gráficas e interpretaciones derivadas del conjunto de datos previamente trabajado en las Fases 1 y 2. El objetivo es aplicar análisis de correspondencias simples y múltiples sobre las variables cualitativas, construyendo tablas de contingencia y tablas disyuntivas completas. Además, se evaluarán las calidades de representación, las contribuciones de las categorías y la interpretación de los ejes factoriales obtenidos, con el fin de comprender las relaciones entre las modalidades de las variables.
En este apartado se desarrolla el análisis de correspondencia simple como una técnica exploratoria que permite estudiar la relación entre dos variables cualitativas a partir de tablas de contingencia. A través del cálculo de probabilidades, frecuencias relativas por filas y columnas, perfiles y pruebas de hipótesis, se busca identificar asociaciones significativas entre las variables analizadas. Además, se emplea la representación gráfica del análisis de correspondencia simple, considerando una dimensión unidimensional, con el fin de facilitar la interpretación de los resultados y comprender mejor la estructura de los datos.
addmargins(table(desercion_empleados_IBM_ETL$Education, desercion_empleados_IBM_ETL$RelationshipSatisfaction))
##
## 1 2 3 4 Sum
## 1 35 31 50 54 170
## 2 57 46 84 95 282
## 3 113 119 187 153 572
## 4 62 95 123 118 398
## 5 9 12 15 12 48
## Sum 276 303 459 432 1470
addmargins(table(desercion_empleados_IBM_ETL$JobLevel, desercion_empleados_IBM_ETL$RelationshipSatisfaction))
##
## 1 2 3 4 Sum
## 1 96 114 178 155 543
## 2 114 107 152 161 534
## 3 42 44 72 60 218
## 4 12 25 38 31 106
## 5 12 13 19 25 69
## Sum 276 303 459 432 1470
addmargins(table(desercion_empleados_IBM_ETL$StockOptionLevel, desercion_empleados_IBM_ETL$WorkLifeBalance))
##
## 1 2 3 4 Sum
## 0 37 134 392 68 631
## 1 37 147 352 60 596
## 2 6 42 92 18 158
## 3 0 21 57 7 85
## Sum 80 344 893 153 1470
addmargins(prop.table(table(desercion_empleados_IBM_ETL$Education, desercion_empleados_IBM_ETL$RelationshipSatisfaction))*100)
##
## 1 2 3 4 Sum
## 1 2.3809524 2.1088435 3.4013605 3.6734694 11.5646259
## 2 3.8775510 3.1292517 5.7142857 6.4625850 19.1836735
## 3 7.6870748 8.0952381 12.7210884 10.4081633 38.9115646
## 4 4.2176871 6.4625850 8.3673469 8.0272109 27.0748299
## 5 0.6122449 0.8163265 1.0204082 0.8163265 3.2653061
## Sum 18.7755102 20.6122449 31.2244898 29.3877551 100.0000000
addmargins(prop.table(table(desercion_empleados_IBM_ETL$JobLevel, desercion_empleados_IBM_ETL$RelationshipSatisfaction))*100)
##
## 1 2 3 4 Sum
## 1 6.5306122 7.7551020 12.1088435 10.5442177 36.9387755
## 2 7.7551020 7.2789116 10.3401361 10.9523810 36.3265306
## 3 2.8571429 2.9931973 4.8979592 4.0816327 14.8299320
## 4 0.8163265 1.7006803 2.5850340 2.1088435 7.2108844
## 5 0.8163265 0.8843537 1.2925170 1.7006803 4.6938776
## Sum 18.7755102 20.6122449 31.2244898 29.3877551 100.0000000
addmargins(prop.table(table(desercion_empleados_IBM_ETL$StockOptionLevel, desercion_empleados_IBM_ETL$WorkLifeBalance))*100)
##
## 1 2 3 4 Sum
## 0 2.5170068 9.1156463 26.6666667 4.6258503 42.9251701
## 1 2.5170068 10.0000000 23.9455782 4.0816327 40.5442177
## 2 0.4081633 2.8571429 6.2585034 1.2244898 10.7482993
## 3 0.0000000 1.4285714 3.8775510 0.4761905 5.7823129
## Sum 5.4421769 23.4013605 60.7482993 10.4081633 100.0000000
round(addmargins(prop.table(table(desercion_empleados_IBM_ETL$Education, desercion_empleados_IBM_ETL$RelationshipSatisfaction), 1)*100, 2), 2)
##
## 1 2 3 4 Sum
## 1 20.59 18.24 29.41 31.76 100.00
## 2 20.21 16.31 29.79 33.69 100.00
## 3 19.76 20.80 32.69 26.75 100.00
## 4 15.58 23.87 30.90 29.65 100.00
## 5 18.75 25.00 31.25 25.00 100.00
round(addmargins(prop.table(table(desercion_empleados_IBM_ETL$Education, desercion_empleados_IBM_ETL$RelationshipSatisfaction), 2)*100, 1), 2)
##
## 1 2 3 4
## 1 12.68 10.23 10.89 12.50
## 2 20.65 15.18 18.30 21.99
## 3 40.94 39.27 40.74 35.42
## 4 22.46 31.35 26.80 27.31
## 5 3.26 3.96 3.27 2.78
## Sum 100.00 100.00 100.00 100.00
round(addmargins(prop.table(table(desercion_empleados_IBM_ETL$JobLevel, desercion_empleados_IBM_ETL$RelationshipSatisfaction), 1)*100, 2), 2)
##
## 1 2 3 4 Sum
## 1 17.68 20.99 32.78 28.55 100.00
## 2 21.35 20.04 28.46 30.15 100.00
## 3 19.27 20.18 33.03 27.52 100.00
## 4 11.32 23.58 35.85 29.25 100.00
## 5 17.39 18.84 27.54 36.23 100.00
round(addmargins(prop.table(table(desercion_empleados_IBM_ETL$JobLevel, desercion_empleados_IBM_ETL$RelationshipSatisfaction), 2)*100, 1), 2)
##
## 1 2 3 4
## 1 34.78 37.62 38.78 35.88
## 2 41.30 35.31 33.12 37.27
## 3 15.22 14.52 15.69 13.89
## 4 4.35 8.25 8.28 7.18
## 5 4.35 4.29 4.14 5.79
## Sum 100.00 100.00 100.00 100.00
round(addmargins(prop.table(table(desercion_empleados_IBM_ETL$StockOptionLevel, desercion_empleados_IBM_ETL$WorkLifeBalance), 1)*100, 2), 2)
##
## 1 2 3 4 Sum
## 0 5.86 21.24 62.12 10.78 100.00
## 1 6.21 24.66 59.06 10.07 100.00
## 2 3.80 26.58 58.23 11.39 100.00
## 3 0.00 24.71 67.06 8.24 100.00
round(addmargins(prop.table(table(desercion_empleados_IBM_ETL$StockOptionLevel, desercion_empleados_IBM_ETL$WorkLifeBalance), 2)*100, 1), 2)
##
## 1 2 3 4
## 0 46.25 38.95 43.90 44.44
## 1 46.25 42.73 39.42 39.22
## 2 7.50 12.21 10.30 11.76
## 3 0.00 6.10 6.38 4.58
## Sum 100.00 100.00 100.00 100.00
plotct(table(desercion_empleados_IBM_ETL$Education, desercion_empleados_IBM_ETL$RelationshipSatisfaction),"row")
plotct(table(desercion_empleados_IBM_ETL$Education, desercion_empleados_IBM_ETL$RelationshipSatisfaction),"col")
plotct(table(desercion_empleados_IBM_ETL$JobLevel, desercion_empleados_IBM_ETL$RelationshipSatisfaction),"row")
plotct(table(desercion_empleados_IBM_ETL$JobLevel, desercion_empleados_IBM_ETL$RelationshipSatisfaction),"col")
plotct(table(desercion_empleados_IBM_ETL$StockOptionLevel, desercion_empleados_IBM_ETL$WorkLifeBalance),"row")
plotct(table(desercion_empleados_IBM_ETL$StockOptionLevel, desercion_empleados_IBM_ETL$WorkLifeBalance),"col")
chisq.test(table(desercion_empleados_IBM_ETL$Education, desercion_empleados_IBM_ETL$RelationshipSatisfaction))
##
## Pearson's Chi-squared test
##
## data: table(desercion_empleados_IBM_ETL$Education, desercion_empleados_IBM_ETL$RelationshipSatisfaction)
## X-squared = 13.125, df = 12, p-value = 0.36
chisq.test(table(desercion_empleados_IBM_ETL$JobLevel, desercion_empleados_IBM_ETL$RelationshipSatisfaction))
##
## Pearson's Chi-squared test
##
## data: table(desercion_empleados_IBM_ETL$JobLevel, desercion_empleados_IBM_ETL$RelationshipSatisfaction)
## X-squared = 10.742, df = 12, p-value = 0.5512
chisq.test(table(desercion_empleados_IBM_ETL$TotalWorkingYears, desercion_empleados_IBM_ETL$WorkLifeBalance))
## Warning in chisq.test(table(desercion_empleados_IBM_ETL$TotalWorkingYears, :
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(desercion_empleados_IBM_ETL$TotalWorkingYears, desercion_empleados_IBM_ETL$WorkLifeBalance)
## X-squared = 103.63, df = 117, p-value = 0.8067
chisq.test(table(desercion_empleados_IBM_ETL$RelationshipSatisfaction,desercion_empleados_IBM_ETL$StockOptionLevel))$observed
##
## 0 1 2 3
## 1 111 114 35 16
## 2 120 134 34 15
## 3 193 191 41 34
## 4 207 157 48 20
chisq.test(table(desercion_empleados_IBM_ETL$RelationshipSatisfaction,desercion_empleados_IBM_ETL$StockOptionLevel))$expected
##
## 0 1 2 3
## 1 118.4735 111.902 29.66531 15.95918
## 2 130.0633 122.849 32.56735 17.52041
## 3 197.0265 186.098 49.33469 26.54082
## 4 185.4367 175.151 46.43265 24.97959
chisq.test(table(desercion_empleados_IBM_ETL$RelationshipSatisfaction,desercion_empleados_IBM_ETL$StockOptionLevel))$residuals
##
## 0 1 2 3
## 1 -0.68661250 0.19832526 0.97945635 0.01021712
## 2 -0.88239207 1.00607147 0.25104400 -0.60214179
## 3 -0.28685911 0.35934046 -1.18662484 1.44788531
## 4 1.58349480 -1.37149652 0.23001353 -0.99632511
chisq.test(table(desercion_empleados_IBM_ETL$RelationshipSatisfaction,desercion_empleados_IBM_ETL$StockOptionLevel))$stdres
##
## 0 1 2 3
## 1 -1.00843033 0.28538917 1.15035886 0.01167936
## 2 -1.31087875 1.46438417 0.29823927 -0.69623490
## 3 -0.45785654 0.56194286 -1.51456625 1.79866810
## 4 2.49433234 -2.11669191 0.28973778 -1.22150387
chisq.test(table(desercion_empleados_IBM_ETL$RelationshipSatisfaction,desercion_empleados_IBM_ETL$StockOptionLevel))$residuals^2/chisq.test(table(desercion_empleados_IBM_ETL$RelationshipSatisfaction,desercion_empleados_IBM_ETL$StockOptionLevel))$statistic*100
##
## 0 1 2 3
## 1 3.672628228 0.306414714 7.473494630 0.000813225
## 2 6.065641614 7.885172932 0.490968058 2.824561858
## 3 0.641048451 1.005925437 10.969338126 16.331342265
## 4 19.533804460 14.653554132 0.412154775 7.733137094
CA(table(desercion_empleados_IBM_ETL$RelationshipSatisfaction,desercion_empleados_IBM_ETL$StockOptionLevel), graph = FALSE)$eig
## eigenvalue percentage of variance cumulative percentage of variance
## dim 1 0.0053437935 61.195651 61.19565
## dim 2 0.0029135402 33.365060 94.56071
## dim 3 0.0004749756 5.439289 100.00000
CA(table(desercion_empleados_IBM_ETL$RelationshipSatisfaction,desercion_empleados_IBM_ETL$StockOptionLevel), graph = FALSE)$col
## $coord
## Dim 1 Dim 2 Dim 3
## 0 -0.07115604 0.03169045 -0.004217638
## 1 0.06625604 -0.02294854 -0.014848700
## 2 -0.04299241 -0.10979225 0.042598975
## 3 0.14357255 0.12973912 0.056241379
##
## $contrib
## Dim 1 Dim 2 Dim 3
## 0 40.671101 14.796124 1.607605
## 1 33.306589 7.328547 18.820647
## 2 3.717695 44.469484 41.064522
## 3 22.304615 33.405846 38.507226
##
## $cos2
## Dim 1 Dim 2 Dim 3
## 0 0.8320410 0.1650358 0.002923209
## 1 0.8545607 0.1025184 0.042920907
## 2 0.1175991 0.7669443 0.115456597
## 3 0.5076061 0.4145013 0.077892554
##
## $inertia
## [1] 0.002612106 0.002082749 0.001689349 0.002348105
CA(table(desercion_empleados_IBM_ETL$RelationshipSatisfaction,desercion_empleados_IBM_ETL$StockOptionLevel), graph = FALSE)$row
## $coord
## Dim 1 Dim 2 Dim 3
## 1 0.02216965 -0.05808914 0.0382230539
## 2 0.04656636 -0.06475649 -0.0308707065
## 3 0.06081529 0.06630472 0.0008655914
## 4 -0.11144132 0.01208323 -0.0036876048
##
## $contrib
## Dim 1 Dim 2 Dim 3
## 1 1.726871 21.74506 57.75255957
## 2 8.364118 29.66682 41.35682154
## 3 21.610820 47.11544 0.04925496
## 4 68.298191 1.47269 0.84136393
##
## $cos2
## Dim 1 Dim 2 Dim 3
## 1 0.0922673 0.63346110 0.2742715997
## 2 0.2964424 0.57327426 0.1302833504
## 3 0.4568550 0.54305241 0.0000925505
## 4 0.9873117 0.01160721 0.0010810620
##
## $inertia
## [1] 0.001000142 0.001507751 0.002527799 0.003696618
El análisis de correspondencia simple permitió identificar patrones de asociación entre las variables cualitativas estudiadas, evidenciando qué categorías presentan mayor relación entre sí. El uso de perfiles, contribuciones y representaciones gráficas facilitó la interpretación de los resultados, permitiendo visualizar de manera clara las distancias y similitudes entre categorías. En general, esta técnica resultó útil para resumir la información contenida en la tabla de contingencia y aportar una visión más clara del comportamiento de las variables analizadas.
En esta sección se aplica el análisis de correspondencia múltiple (ACM), el cual permite estudiar de manera conjunta varias variables cualitativas. Esta técnica facilita la reducción de la dimensionalidad de los datos y la identificación de relaciones entre categorías, utilizando herramientas como el biplot del ACM, la calidad de representación y las contribuciones de cada variable. El objetivo principal es obtener una representación gráfica que sintetice la información y facilite su interpretación.
desercion_empleados_IBM_ETL <- read_excel("E:/Proyecto_GDD_2025-2/desercion_empleados_IBM_ETL.xlsx")
set.seed(780729)
desercion_empleados_IBM_ETL.active <-desercion_empleados_IBM_ETL[sample(1:nrow(desercion_empleados_IBM_ETL), 10), 7:12]
desercion_empleados_IBM_ETL.active[] <-lapply(desercion_empleados_IBM_ETL.active, factor)
res.acm <- tryCatch(
MCA(desercion_empleados_IBM_ETL.active, graph = FALSE, ncp = 5),
error = function(e) {
message("Error en MCA: ", e$message)
return(NULL)})
if (!is.null(res.acm)) {suppressWarnings(round(res.acm$eig, 3))}
## eigenvalue percentage of variance cumulative percentage of variance
## dim 1 0.717 16.542 16.542
## dim 2 0.680 15.698 32.239
## dim 3 0.557 12.843 45.083
## dim 4 0.520 12.007 57.090
## dim 5 0.462 10.671 67.761
## dim 6 0.397 9.162 76.923
## dim 7 0.333 7.692 84.615
## dim 8 0.333 7.692 92.308
## dim 9 0.333 7.692 100.000
desercion_empleados_IBM_ETL <- read_excel("E:/Proyecto_GDD_2025-2/desercion_empleados_IBM_ETL.xlsx")
set.seed(780729)
desercion_empleados_IBM_ETL.active <-desercion_empleados_IBM_ETL[sample(1:nrow(desercion_empleados_IBM_ETL), 30), 7:12]
desercion_empleados_IBM_ETL.active[] <-lapply(desercion_empleados_IBM_ETL.active, factor)
res.mca <- MCA(desercion_empleados_IBM_ETL.active, graph = FALSE)
fviz_mca_biplot(res.mca, repel = TRUE, col.var = "#E7B800", addEllipses = TRUE, ellipse.level = 0.95)
desercion_empleados_IBM_ETL <- read_excel("E:/Proyecto_GDD_2025-2/desercion_empleados_IBM_ETL.xlsx")
set.seed(780729)
desercion_empleados_IBM_ETL.active <-desercion_empleados_IBM_ETL[sample(1:nrow(desercion_empleados_IBM_ETL), 30), 7:12]
desercion_empleados_IBM_ETL.active[] <-lapply(desercion_empleados_IBM_ETL.active, factor)
res.mca <- MCA(desercion_empleados_IBM_ETL.active, graph = FALSE)
fviz_mca_var(res.mca, col.var ="cos2", gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), repel = TRUE)
res.mca$var$cos2
## Dim 1 Dim 2 Dim 3 Dim 4
## Education_1 3.056619e-02 3.345706e-01 1.301190e-01 9.200531e-02
## Education_2 5.634659e-01 2.181960e-02 2.081272e-02 3.422938e-02
## Education_3 9.055220e-02 5.441395e-01 3.127613e-02 2.641544e-02
## Education_4 1.050740e-01 8.714192e-02 1.232561e-01 8.201615e-02
## Education_5 2.686497e-02 1.139284e-01 3.458678e-01 1.923393e-01
## Human Resources 3.238256e-02 2.442415e-01 1.040038e-01 8.564681e-02
## Life Sciences 4.020181e-01 1.612871e-01 7.267344e-02 8.366534e-02
## Marketing 3.447925e-01 1.058153e-03 2.756102e-01 1.777533e-02
## Medical 8.387349e-03 4.043636e-01 1.587977e-04 1.423403e-01
## Other 5.619845e-02 1.479485e-01 2.224343e-01 3.331370e-02
## Technical Degree 1.110167e-01 3.368497e-03 4.362338e-02 3.613819e-02
## 81 1.788638e-03 9.278709e-03 1.141874e-02 7.363410e-04
## 86 1.362755e-02 5.327771e-03 1.363043e-02 1.358476e-02
## 169 6.644651e-03 3.727879e-02 1.750940e-02 5.739341e-02
## 267 1.461588e-02 3.430130e-02 3.311703e-03 5.317104e-03
## 439 2.987325e-03 9.472536e-03 3.848891e-02 1.578281e-01
## 476 1.362755e-02 5.327771e-03 1.363043e-02 1.358476e-02
## 505 2.273761e-05 1.656643e-03 4.166248e-02 4.910555e-03
## 555 4.307242e-01 1.030562e-02 5.710590e-02 8.093453e-06
## 621 1.647860e-02 1.528719e-04 2.864257e-02 5.151332e-02
## 675 4.223658e-04 1.361585e-01 3.233779e-03 2.356491e-03
## 760 3.705641e-03 1.376068e-01 6.319783e-02 1.608828e-01
## 783 1.496229e-01 1.076407e-02 1.481770e-03 6.464339e-02
## 830 7.997377e-03 1.922580e-02 5.286726e-03 5.254504e-03
## 1115 3.352277e-02 9.872649e-05 9.676530e-04 1.261822e-02
## 1260 1.362755e-02 5.327771e-03 1.363043e-02 1.358476e-02
## 1346 1.246868e-02 7.747518e-03 1.114860e-02 1.098294e-02
## 1387 2.521713e-02 1.699140e-02 5.103428e-03 4.178879e-02
## 1446 2.549567e-02 2.152670e-02 2.406499e-01 3.538702e-02
## 1497 2.521713e-02 1.699140e-02 5.103428e-03 4.178879e-02
## 1499 5.373710e-04 6.404970e-03 5.990857e-03 2.349574e-02
## 1544 1.190395e-01 7.137814e-02 1.724514e-01 3.008865e-02
## 1602 2.107996e-02 2.017712e-03 2.562971e-02 2.722852e-02
## 1665 4.636521e-03 1.038912e-01 1.067199e-01 1.775130e-01
## 1722 3.579274e-02 9.973322e-02 3.871230e-02 3.109164e-05
## 1837 1.657496e-02 1.272421e-02 8.704301e-05 2.307406e-03
## 1863 7.836406e-03 3.471695e-02 3.177151e-02 3.101575e-02
## 1865 5.610015e-03 7.082575e-02 6.184841e-03 1.273266e-02
## 1871 2.432191e-04 7.146866e-02 5.765353e-02 6.427647e-03
## 1971 1.362755e-02 5.327771e-03 1.363043e-02 1.358476e-02
## 2027 1.169031e-02 7.045349e-02 4.471744e-04 1.589345e-02
## Female 1.620451e-01 9.411649e-03 1.292089e-03 2.375408e-01
## Male 1.620451e-01 9.411649e-03 1.292089e-03 2.375408e-01
## 30 1.362755e-02 5.327771e-03 1.363043e-02 1.358476e-02
## 33 4.307242e-01 1.030562e-02 5.710590e-02 8.093453e-06
## 36 1.169031e-02 7.045349e-02 4.471744e-04 1.589345e-02
## 39 1.190395e-01 7.137814e-02 1.724514e-01 3.008865e-02
## 40 3.352277e-02 9.872649e-05 9.676530e-04 1.261822e-02
## 41 2.432191e-04 7.146866e-02 5.765353e-02 6.427647e-03
## 44 3.705641e-03 1.376068e-01 6.319783e-02 1.608828e-01
## 45 7.836406e-03 3.471695e-02 3.177151e-02 3.101575e-02
## 46 6.847453e-02 1.749088e-02 7.839033e-04 8.600769e-02
## 48 2.521713e-02 1.699140e-02 5.103428e-03 4.178879e-02
## 56 2.107996e-02 2.017712e-03 2.562971e-02 2.722852e-02
## 57 1.362755e-02 5.327771e-03 1.363043e-02 1.358476e-02
## 59 1.362755e-02 5.327771e-03 1.363043e-02 1.358476e-02
## 60 3.579274e-02 9.973322e-02 3.871230e-02 3.109164e-05
## 65 1.461588e-02 3.430130e-02 3.311703e-03 5.317104e-03
## 69 4.223658e-04 1.361585e-01 3.233779e-03 2.356491e-03
## 74 1.734733e-02 3.738245e-03 6.915306e-02 2.017971e-01
## 77 2.521713e-02 1.699140e-02 5.103428e-03 4.178879e-02
## 82 1.362755e-02 5.327771e-03 1.363043e-02 1.358476e-02
## 87 2.147595e-02 7.435912e-02 4.007866e-03 1.340247e-02
## 91 4.636521e-03 1.038912e-01 1.067199e-01 1.775130e-01
## 97 1.242631e-02 5.820610e-03 2.499038e-01 3.452136e-02
## 98 2.094096e-02 2.660880e-02 1.646255e-02 1.627669e-02
## 99 1.788638e-03 9.278709e-03 1.141874e-02 7.363410e-04
## 100 6.644651e-03 3.727879e-02 1.750940e-02 5.739341e-02
## JobInvolvement_1 6.937499e-01 1.797665e-02 4.722967e-02 5.036193e-02
## JobInvolvement_2 1.026019e-01 3.526613e-03 2.598670e-03 1.158023e-01
## JobInvolvement_3 4.836700e-02 1.502354e-01 2.240392e-01 1.221905e-02
## JobInvolvement_4 1.809040e-02 9.936999e-02 2.065386e-01 4.172435e-01
## Dim 5
## Education_1 0.0952990066
## Education_2 0.2085024891
## Education_3 0.1784357342
## Education_4 0.3675737652
## Education_5 0.0471779533
## Human Resources 0.2092791455
## Life Sciences 0.0260526650
## Marketing 0.0555314286
## Medical 0.0008674927
## Other 0.0314824580
## Technical Degree 0.0100286450
## 81 0.0232057521
## 86 0.0054649230
## 169 0.0119655479
## 267 0.0053163049
## 439 0.0558494242
## 476 0.0054649230
## 505 0.0145710630
## 555 0.1420594179
## 621 0.0880901880
## 675 0.0288153045
## 760 0.0976324245
## 783 0.0663681001
## 830 0.0038461256
## 1115 0.0733183564
## 1260 0.0054649230
## 1346 0.0049371977
## 1387 0.0004020831
## 1446 0.0024446147
## 1497 0.0004020831
## 1499 0.0007826252
## 1544 0.0835616982
## 1602 0.1047393626
## 1665 0.0636999326
## 1722 0.1044883537
## 1837 0.0137871631
## 1863 0.0003660363
## 1865 0.0002688235
## 1871 0.0018068106
## 1971 0.0054649230
## 2027 0.0198982735
## Female 0.0475391164
## Male 0.0475391164
## 30 0.0054649230
## 33 0.1420594179
## 36 0.0198982735
## 39 0.0835616982
## 40 0.0733183564
## 41 0.0018068106
## 44 0.0976324245
## 45 0.0003660363
## 46 0.0422389115
## 48 0.0004020831
## 56 0.1047393626
## 57 0.0054649230
## 59 0.0054649230
## 60 0.1044883537
## 65 0.0053163049
## 69 0.0288153045
## 74 0.1471863869
## 77 0.0004020831
## 82 0.0054649230
## 87 0.0052850579
## 91 0.0636999326
## 97 0.0149931463
## 98 0.0090617833
## 99 0.0232057521
## 100 0.0119655479
## JobInvolvement_1 0.0001375601
## JobInvolvement_2 0.0125372384
## JobInvolvement_3 0.1023265745
## JobInvolvement_4 0.0815487730
desercion_empleados_IBM_ETL <- read_excel("E:/Proyecto_GDD_2025-2/desercion_empleados_IBM_ETL.xlsx")
set.seed(780729)
desercion_empleados_IBM_ETL.active <-desercion_empleados_IBM_ETL[sample(1:nrow(desercion_empleados_IBM_ETL), 30), 7:12]
desercion_empleados_IBM_ETL.active[] <-lapply(desercion_empleados_IBM_ETL.active, factor)
res.mca <- MCA(desercion_empleados_IBM_ETL.active, graph = FALSE)
fviz_contrib(res.mca, choice = "var", axes = 1, top = 15)
fviz_contrib(res.mca, choice = "var", axes = 2, top = 15)
fviz_contrib(res.mca, choice = "var", axes = 3, top = 15)
fviz_contrib(res.mca, choice = "var", axes = 4, top = 15)
fviz_contrib(res.mca, choice = "var", axes = 5, top = 15)
desercion_empleados_IBM_ETL <- read_excel("E:/Proyecto_GDD_2025-2/desercion_empleados_IBM_ETL.xlsx")
set.seed(780729)
desercion_empleados_IBM_ETL.active <-desercion_empleados_IBM_ETL[sample(1:nrow(desercion_empleados_IBM_ETL), 30), 7:12]
desercion_empleados_IBM_ETL.active[] <-lapply(desercion_empleados_IBM_ETL.active, factor)
res.mca <- MCA(desercion_empleados_IBM_ETL.active, graph = FALSE)
fviz_mca_var(res.mca, col.var ="contrib", gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), repel = TRUE)
El análisis de correspondencia múltiple permitió identificar asociaciones relevantes entre las diferentes variables cualitativas consideradas, así como visualizar patrones comunes dentro de los datos. Los biplots y el análisis de las contribuciones facilitaron la interpretación de la influencia de cada variable en la construcción de las dimensiones principales. En conjunto, el ACM resultó una herramienta eficaz para explorar y resumir la información categórica de la base de datos.
En esta cuarta fase del estudio, se presentan los cálculos, visualizaciones e interpretaciones obtenidas a partir del conjunto de datos procesado en las fases 1, 2 y 3. El enfoque principal corresponde al Análisis de Conglomerados, tanto en su versión jerárquica, representada mediante dendrogramas, como en su modalidad no jerárquica, implementada mediante el algoritmo de K-medias. El objetivo general es determinar la existencia de agrupaciones naturales dentro de los datos, analizar su consistencia interna y describir las características de cada grupo identificado.
La cuarta fase del estudio se centra en el Análisis de Conglomerados, una técnica de clasificación cuyo propósito es agrupar individuos u observaciones en función de su similitud respecto a un conjunto de variables. Mediante el uso de algoritmos jerárquicos y no jerárquicos, se busca identificar estructuras naturales en los datos, permitiendo definir grupos homogéneos internamente y heterogéneos entre sí.
Esta etapa complementa las fases anteriores al facilitar la segmentación y caracterización de los individuos o unidades de análisis.
En este apartado se desarrolla la técnica de agrupación jerárquica, la cual permite clasificar a los empleados en grupos homogéneos a partir de medidas de disimilaridad. Se analiza el campo clasificador y se aplican distintos métodos de enlace, como unión simple, completa y promedio, junto con la optimización de Mojena. El proceso se apoya en la construcción e interpretación de dendrogramas optimizados, con el fin de identificar la estructura jerárquica de los datos.
desercion_empleados_IBM_ETL <- read_excel("E:/Proyecto_GDD_2025-2/desercion_empleados_IBM_ETL.xlsx")
head(as.data.frame(desercion_empleados_IBM_ETL))
## Age Attrition BusinessTravel DailyRate Department
## 1 41 Yes Travel_Rarely 1102 Sales
## 2 49 No Travel_Frequently 279 Research & Development
## 3 37 Yes Travel_Rarely 1373 Research & Development
## 4 33 No Travel_Frequently 1392 Research & Development
## 5 27 No Travel_Rarely 591 Research & Development
## 6 32 No Travel_Frequently 1005 Research & Development
## DistanceFromHome Education EducationField EmployeeNumber Gender HourlyRate
## 1 1 2 Life Sciences 1 Female 94
## 2 8 1 Life Sciences 2 Male 61
## 3 2 2 Other 4 Male 92
## 4 3 4 Life Sciences 5 Female 56
## 5 2 1 Medical 7 Male 40
## 6 2 2 Life Sciences 8 Male 79
## JobInvolvement JobLevel JobRole JobSatisfaction MaritalStatus
## 1 3 2 Sales Executive 4 Single
## 2 2 2 Research Scientist 2 Married
## 3 2 1 Laboratory Technician 3 Single
## 4 3 1 Research Scientist 3 Married
## 5 3 1 Laboratory Technician 2 Married
## 6 3 1 Laboratory Technician 4 Single
## MonthlyIncome MonthlyRate NumCompaniesWorked Over18 OverTime
## 1 5993 19479 8 Yes Yes
## 2 5130 24907 1 Yes No
## 3 2090 2396 6 Yes Yes
## 4 2909 23159 1 Yes Yes
## 5 3468 16632 9 Yes No
## 6 3068 11864 0 Yes No
## PercentSalaryHike PerformanceRating RelationshipSatisfaction StandardHours
## 1 11 3 1 80
## 2 23 4 4 80
## 3 15 3 2 80
## 4 11 3 3 80
## 5 12 3 4 80
## 6 13 3 3 80
## StockOptionLevel TotalWorkingYears TrainingTimesLastYear WorkLifeBalance
## 1 0 8 0 1
## 2 1 10 3 3
## 3 0 7 3 3
## 4 0 8 3 3
## 5 1 6 3 3
## 6 0 8 2 2
## YearsAtCompany YearsInCurrentRole YearsSinceLastPromotion
## 1 6 4 0
## 2 10 7 1
## 3 0 0 0
## 4 8 7 3
## 5 2 2 2
## 6 7 7 3
## YearsWithCurrManager
## 1 5
## 2 7
## 3 0
## 4 0
## 5 2
## 6 6
data_ = as.data.frame(desercion_empleados_IBM_ETL_Muestreado)[, -c(2, 3, 5, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33)]
rownames(data_) = unclass(desercion_empleados_IBM_ETL_Muestreado$Gender)
## Warning: Unknown or uninitialised column: `Gender`.
fviz_dist(get_dist(data_, stand = T, method = "euclidean"), gradient = list(low = "#00AFBB", mid = "white", high = "#FC4E07"))
hc_single = hclust(get_dist(data_, stand = T, method = "euclidean"), method = "single")
mojena = function(hc){
n_hd = length(hc$height)
alp_g = 0 ; alpha = hc$height[n_hd:1]
for(i in 1:(n_hd-1)){
alp_g[i] = mean(alpha[(n_hd-i+1):1])+1.25*sd(alpha[(n_hd-i+1):1])
}
nog = sum(alp_g<= alpha[-n_hd]) + 1
plot(alpha[-n_hd], pch=20, col=(alp_g>alpha[-n_hd])+1, main = paste("Optimal number of groups =",nog),
ylab = expression(alpha[g]), xlab="Nodes")}
mojena(hc_single)
hc_complete = hclust(get_dist(data_, stand = T, method = "euclidean"), method = "complete")
mojena = function(hc){
n_hd = length(hc$height)
alp_g = 0 ; alpha = hc$height[n_hd:1]
for(i in 1:(n_hd-1)){
alp_g[i] = mean(alpha[(n_hd-i+1):1])+1.25*sd(alpha[(n_hd-i+1):1])
}
nog = sum(alp_g<= alpha[-n_hd]) + 1
plot(alpha[-n_hd], pch=20, col=(alp_g>alpha[-n_hd])+1, main = paste("Optimal number of groups =",nog),
ylab = expression(alpha[g]), xlab="Nodes")}
mojena(hc_complete)
hc_average = hclust(get_dist(data_, stand = T, method = "euclidean"), method = "average")
mojena = function(hc){
n_hd = length(hc$height)
alp_g = 0 ; alpha = hc$height[n_hd:1]
for(i in 1:(n_hd-1)){
alp_g[i] = mean(alpha[(n_hd-i+1):1])+1.25*sd(alpha[(n_hd-i+1):1])
}
nog = sum(alp_g<= alpha[-n_hd]) + 1
plot(alpha[-n_hd], pch=20, col=(alp_g>alpha[-n_hd])+1, main = paste("Optimal number of groups =",nog),
ylab = expression(alpha[g]), xlab="Nodes")}
mojena(hc_average)
suppressWarnings(fviz_dend(hc_single, k = 3, cex = 0.5, k_colors = "npg", color_labels_by_k = T, rect = T))
fviz_dend(hc_complete, k = 3, cex = 0.5, k_colors = "npg", color_labels_by_k = T, rect = T)
fviz_dend(hc_average, k = 3, cex = 0.5, k_colors = "npg", color_labels_by_k = T, rect = T)
La agrupación jerárquica permitió identificar grupos de empleados con características similares, facilitando la comprensión de la estructura interna de los datos. Los diferentes métodos de enlace y la optimización de Mojena contribuyeron a seleccionar una partición adecuada, mientras que los dendrogramas facilitaron la visualización de los resultados. En general, esta técnica resultó útil para el análisis exploratorio y la clasificación de los individuos según su nivel de similitud.
En esta sección se aplica la técnica de agrupación no jerárquica, específicamente el método K-means, con el objetivo de segmentar a los empleados en un número determinado de grupos. Para la selección del número óptimo de clústeres se utilizan criterios como el método del codo (elbow), silhouette, gap statistic y majority rule. Posteriormente, se analizan los resultados obtenidos y se representan gráficamente los grupos formados.
fviz_nbclust(data_, kmeans, method = "wss") + geom_vline(xintercept = 3, linetype = 2)
fviz_nbclust(data_, kmeans, method = "silhouette")
fviz_nbclust(data_, kmeans, method = "gap_stat")
suppressWarnings(NbClust(data_, diss = NULL, distance = "euclidean", min.nc = 2, max.nc = 10, method = "kmeans")$Best.nc)
## *** : The Hubert index is a graphical method of determining the number of clusters.
## In the plot of Hubert index, we seek a significant knee that corresponds to a
## significant increase of the value of the measure i.e the significant peak in Hubert
## index second differences plot.
##
## *** : The D index is a graphical method of determining the number of clusters.
## In the plot of D index, we seek a significant knee (the significant peak in Dindex
## second differences plot) that corresponds to a significant increase of the value of
## the measure.
##
## *******************************************************************
## * Among all indices:
## * 5 proposed 2 as the best number of clusters
## * 9 proposed 3 as the best number of clusters
## * 1 proposed 4 as the best number of clusters
## * 1 proposed 5 as the best number of clusters
## * 1 proposed 6 as the best number of clusters
## * 2 proposed 8 as the best number of clusters
## * 5 proposed 9 as the best number of clusters
##
## ***** Conclusion *****
##
## * According to the majority rule, the best number of clusters is 3
##
##
## *******************************************************************
## KL CH Hartigan CCC Scott Marriot
## Number_clusters 9.0000 9.0000 3.0000 2.0000 3.0000 8.0000e+00
## Value_Index 8.9584 920.0315 78.1444 20.7476 127.8523 8.6761e+24
## TrCovW TraceW Friedman Rubin Cindex DB
## Number_clusters 3.000000e+00 3 8.0000 9.0000 5.0000 2.0000
## Value_Index 5.067763e+17 653557647 124.0682 -28.4654 0.3306 0.5771
## Silhouette Duda PseudoT2 Beale Ratkowsky Ball
## Number_clusters 2.0000 3.0000 3.0000 3.0000 4.0000 3
## Value_Index 0.6174 1.3167 -17.8008 -0.7345 0.1564 630999172
## PtBiserial Frey McClain Dunn Hubert SDindex Dindex SDbw
## Number_clusters 2.0000 6.000 2.0000 9.000 0 3e+00 0 9.0000
## Value_Index 0.7122 1.432 0.3472 0.097 0 5e-04 0 0.0692
set.seed(121124)
print(kmeans(data_, 3, nstart = 25))
## K-means clustering with 3 clusters of sizes 56, 42, 52
##
## Cluster means:
## Age EmployeeNumber MonthlyRate NumCompaniesWorked PerformanceRating
## 1 38.44643 1080.7321 22455.161 2.803571 3.125000
## 2 38.50000 986.7857 6277.024 2.761905 3.166667
## 3 36.78846 1033.6346 13452.769 2.019231 3.115385
##
## Clustering vector:
## [1] 3 1 2 1 1 1 2 1 1 3 1 3 1 1 1 1 1 1 3 1 2 2 3 2 2 3 1 3 1 1 2 1 3 1 2 2 3
## [38] 2 3 2 1 2 1 3 3 2 2 2 3 2 3 2 3 3 3 3 1 3 2 2 1 3 3 3 3 2 2 2 1 1 3 1 1 2
## [75] 2 2 3 2 2 3 3 3 3 3 3 1 3 3 2 2 1 1 3 2 3 1 1 2 1 2 1 3 1 1 3 1 1 1 2 3 2
## [112] 1 1 3 3 2 2 3 1 3 1 1 2 1 1 3 1 2 3 1 3 1 3 1 2 1 3 1 2 1 3 1 1 2 1 3 3 2
## [149] 3 3
##
## Within cluster sum of squares by cluster:
## [1] 352711939 198106902 283049366
## (between_SS / total_SS = 88.5 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
set.seed(121124)
print(kmeans(data_, 4, nstart = 25))
## K-means clustering with 4 clusters of sizes 41, 41, 33, 35
##
## Cluster means:
## Age EmployeeNumber MonthlyRate NumCompaniesWorked PerformanceRating
## 1 39.53659 1132.9268 23600.293 2.926829 3.097561
## 2 36.63415 883.8537 11580.390 2.536585 3.195122
## 3 35.78788 1130.8788 17551.000 2.121212 3.151515
## 4 39.40000 1020.2286 5687.914 2.400000 3.085714
##
## Clustering vector:
## [1] 3 3 4 1 3 3 4 3 1 2 3 2 1 1 1 3 1 1 3 1 4 4 2 4 4 2 3 3 1 1 4 1 2 1 4 4 2
## [38] 4 3 4 1 4 3 2 2 4 2 4 2 4 2 2 2 2 2 3 3 2 4 4 1 2 2 3 2 4 2 4 3 1 3 1 1 4
## [75] 4 2 3 4 2 2 2 3 3 3 2 1 3 3 4 2 1 1 2 4 2 1 1 4 1 4 1 3 1 3 2 1 3 1 4 2 4
## [112] 1 3 2 3 4 4 2 1 2 1 1 4 1 1 2 1 4 2 1 2 1 2 1 2 3 3 1 4 1 2 1 3 4 1 2 3 4
## [149] 2 3
##
## Within cluster sum of squares by cluster:
## [1] 139321484 122118909 120408315 121534872
## (between_SS / total_SS = 93.1 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
fviz_cluster(kmeans(data_, 3, nstart = 25), data = data_, palette = c("#2E9FDF", "#00AFBB", "#E7B800", "#E7B801"), ellipse.type = "euclid", star.plot = TRUE, repel = TRUE, ggtheme = theme_minimal()
)
La agrupación no jerárquica permitió clasificar a los empleados en clústeres bien definidos, facilitando la identificación de patrones y similitudes dentro de la base de datos. Los distintos criterios de selección del número óptimo de grupos aportaron mayor confiabilidad a los resultados obtenidos. Los gráficos de K-means permitieron una interpretación visual clara de la segmentación realizada, confirmando la utilidad de esta técnica en el análisis de datos.
La regresión multiple se centra sobre la dependencia de una variable respuesta respecto a un conjunto de variables regresoras o predictoras. Mediante un modelo de regresión se mide el efecto de cada una de las variables regresoras sobre la respuesta. Uno de los objetivos es la estimación para la predicción del valor medio de la variable dependiente, con base en el conocimiento de las variables independientes o predictoras.
El propósito de esta fase es establecer relaciones estadísticas entre dos o más variables mediante el uso de modelos de regresión que describen cómo una variable dependiente puede explicarse a partir de una o varias variables independientes. Dichas relaciones son de tipo probabilístico, lo que permite realizar conclusiones y predicciones sobre los fenómenos analizados.
Se calcularán medidas que expresen la intensidad y dirección de las asociaciones, aplicando modelos derivados del modelo lineal generalizado, entre ellos la Regresión Lineal Simple, la Regresión Lineal Múltiple y la Regresión Logística. Cada modelo será descrito teóricamente en su respectiva subsección y aplicado al conjunto de datos.
En este apartado se desarrolla el modelo de regresión lineal simple con el objetivo de analizar la relación entre el ingreso mensual (MonthlyIncome) y el total de años trabajados (TotalWorkingYears). Para ello, se realizan análisis descriptivos, diagramas de dispersión y la formulación del modelo estadístico. Además, se evalúan los coeficientes, el resumen estadístico, la tabla ANOVA, los intervalos de confianza y las predicciones, con el fin de interpretar adecuadamente el comportamiento de las variables.
boxplot_MonthlyIncome <- function(data, variable, main_title = "Diagrama de caja MonthlyIncome", color = "orange", ylim = NULL) {
if (is.vector(data)) {
boxplot(data,
main = main_title,
col = color,
ylim = ylim)
} else {
boxplot(data[[variable]],
main = main_title,
col = color,
ylim = ylim)
}
}
summary(desercion_empleados_IBM_ETL$MonthlyIncome)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1009 2911 4919 6503 8379 19999
boxplot_MonthlyIncome(
data = desercion_empleados_IBM_ETL,
variable = "MonthlyIncome",
main_title = "Diagrama de caja MonthlyIncome",
color = "orange",
ylim = c(1000,20000) )
boxplot_TotalWorkingYears <- function(data, variable, main_title = "Diagrama de caja TotalWorkingYears", color = "blue", ylim = NULL) {
if (is.vector(data)) {
boxplot(data,
main = main_title,
col = color,
ylim = ylim)
} else {
boxplot(data[[variable]],
main = main_title,
col = color,
ylim = ylim)
}
}
summary(desercion_empleados_IBM_ETL$TotalWorkingYears)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 6.00 10.00 11.28 15.00 40.00
boxplot_TotalWorkingYears(
data = desercion_empleados_IBM_ETL,
variable = "TotalWorkingYears",
main_title = "Diagrama de caja TotalWorkingYears",
color = "blue",
ylim = c(0, 42) )
plot(desercion_empleados_IBM_ETL$TotalWorkingYears, desercion_empleados_IBM_ETL$MonthlyIncome, main = "Diagrama de Dispersión")
pairs(~MonthlyIncome + TotalWorkingYears + DistanceFromHome + YearsAtCompany + Age, data = desercion_empleados_IBM_ETL)
modelo_RL_Simple = lm(desercion_empleados_IBM_ETL$MonthlyIncome~desercion_empleados_IBM_ETL$TotalWorkingYears)
coef(modelo_RL_Simple)
## (Intercept)
## 1227.9353
## desercion_empleados_IBM_ETL$TotalWorkingYears
## 467.6584
summary(modelo_RL_Simple)
##
## Call:
## lm(formula = desercion_empleados_IBM_ETL$MonthlyIncome ~ desercion_empleados_IBM_ETL$TotalWorkingYears)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11271.3 -1750.8 -87.5 1398.6 11539.5
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 1227.94 137.30 8.944
## desercion_empleados_IBM_ETL$TotalWorkingYears 467.66 10.02 46.669
## Pr(>|t|)
## (Intercept) <2e-16 ***
## desercion_empleados_IBM_ETL$TotalWorkingYears <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2988 on 1468 degrees of freedom
## Multiple R-squared: 0.5974, Adjusted R-squared: 0.5971
## F-statistic: 2178 on 1 and 1468 DF, p-value: < 2.2e-16
anova(modelo_RL_Simple)
## Analysis of Variance Table
##
## Response: desercion_empleados_IBM_ETL$MonthlyIncome
## Df Sum Sq Mean Sq F value
## desercion_empleados_IBM_ETL$TotalWorkingYears 1 1.945e+10 1.9450e+10 2178
## Residuals 1468 1.311e+10 8.9304e+06
## Pr(>F)
## desercion_empleados_IBM_ETL$TotalWorkingYears < 2.2e-16 ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(modelo_RL_Simple, level = 0.95)
## 2.5 % 97.5 %
## (Intercept) 958.6119 1497.259
## desercion_empleados_IBM_ETL$TotalWorkingYears 448.0018 487.315
predict(modelo_RL_Simple, data.frame(seq(1,1470)), interval='prediction', level = 0.95)
## fit lwr upr
## 1 4969.203 -895.1068 10833.512
## 2 5904.519 40.5104 11768.528
## 3 4501.544 -1363.0143 10366.103
## 4 4969.203 -895.1068 10833.512
## 5 4033.886 -1830.9876 9898.759
## 6 4969.203 -895.1068 10833.512
## 7 6839.836 975.8641 12703.808
## 8 1695.594 -4171.8417 7563.029
## 9 5904.519 40.5104 11768.528
## 10 9178.128 3313.0952 15043.161
## 11 4033.886 -1830.9876 9898.759
## 12 5904.519 40.5104 11768.528
## 13 3566.227 -2299.0267 9431.481
## 14 2630.911 -3235.3026 8497.124
## 15 4033.886 -1830.9876 9898.759
## 16 5904.519 40.5104 11768.528
## 17 4501.544 -1363.0143 10366.103
## 18 1695.594 -4171.8417 7563.029
## 19 15725.346 9848.5926 21602.099
## 20 4033.886 -1830.9876 9898.759
## 21 3566.227 -2299.0267 9431.481
## 22 5904.519 40.5104 11768.528
## 23 7307.495 1443.4421 13171.547
## 24 1227.935 -4640.2099 7096.080
## 25 4969.203 -895.1068 10833.512
## 26 13387.054 7515.9643 19258.144
## 27 5904.519 40.5104 11768.528
## 28 5904.519 40.5104 11768.528
## 29 12451.737 6582.4537 18321.021
## 30 11516.420 5648.6802 17384.161
## 31 4501.544 -1363.0143 10366.103
## 32 5436.861 -427.2653 11300.987
## 33 5904.519 40.5104 11768.528
## 34 10113.445 4247.5267 15979.364
## 35 4033.886 -1830.9876 9898.759
## 36 4033.886 -1830.9876 9898.759
## 37 2630.911 -3235.3026 8497.124
## 38 2163.252 -3703.5392 8030.043
## 39 4033.886 -1830.9876 9898.759
## 40 5904.519 40.5104 11768.528
## 41 1695.594 -4171.8417 7563.029
## 42 1695.594 -4171.8417 7563.029
## 43 1695.594 -4171.8417 7563.029
## 44 5436.861 -427.2653 11300.987
## 45 6839.836 975.8641 12703.808
## 46 11984.079 6115.5998 17852.558
## 47 5904.519 40.5104 11768.528
## 48 4969.203 -895.1068 10833.512
## 49 7775.153 1910.9542 13639.352
## 50 1695.594 -4171.8417 7563.029
## 51 11984.079 6115.5998 17852.558
## 52 2163.252 -3703.5392 8030.043
## 53 5436.861 -427.2653 11300.987
## 54 5904.519 40.5104 11768.528
## 55 3566.227 -2299.0267 9431.481
## 56 8242.811 2378.4004 14107.223
## 57 5436.861 -427.2653 11300.987
## 58 3098.569 -2767.1317 8964.270
## 59 5904.519 40.5104 11768.528
## 60 4501.544 -1363.0143 10366.103
## 61 5436.861 -427.2653 11300.987
## 62 5904.519 40.5104 11768.528
## 63 14790.029 8915.7379 20664.321
## 64 14322.371 8449.2123 20195.529
## 65 9178.128 3313.0952 15043.161
## 66 11048.762 5181.6948 16915.829
## 67 4033.886 -1830.9876 9898.759
## 68 12919.396 7049.2418 18789.549
## 69 3566.227 -2299.0267 9431.481
## 70 2163.252 -3703.5392 8030.043
## 71 10581.104 4714.6436 16447.563
## 72 4033.886 -1830.9876 9898.759
## 73 1695.594 -4171.8417 7563.029
## 74 5904.519 40.5104 11768.528
## 75 3566.227 -2299.0267 9431.481
## 76 6372.178 508.2202 12236.135
## 77 8710.470 2845.7808 14575.159
## 78 9178.128 3313.0952 15043.161
## 79 8710.470 2845.7808 14575.159
## 80 8710.470 2845.7808 14575.159
## 81 5904.519 40.5104 11768.528
## 82 4033.886 -1830.9876 9898.759
## 83 12451.737 6582.4537 18321.021
## 84 9178.128 3313.0952 15043.161
## 85 3566.227 -2299.0267 9431.481
## 86 18531.297 12645.5870 24417.006
## 87 2630.911 -3235.3026 8497.124
## 88 5904.519 40.5104 11768.528
## 89 6372.178 508.2202 12236.135
## 90 5436.861 -427.2653 11300.987
## 91 11516.420 5648.6802 17384.161
## 92 6372.178 508.2202 12236.135
## 93 6372.178 508.2202 12236.135
## 94 11048.762 5181.6948 16915.829
## 95 6839.836 975.8641 12703.808
## 96 8710.470 2845.7808 14575.159
## 97 3098.569 -2767.1317 8964.270
## 98 3566.227 -2299.0267 9431.481
## 99 18998.955 13111.5244 24886.385
## 100 9178.128 3313.0952 15043.161
## 101 4501.544 -1363.0143 10366.103
## 102 1695.594 -4171.8417 7563.029
## 103 1695.594 -4171.8417 7563.029
## 104 8710.470 2845.7808 14575.159
## 105 9178.128 3313.0952 15043.161
## 106 15257.688 9382.1980 21133.177
## 107 14322.371 8449.2123 20195.529
## 108 4033.886 -1830.9876 9898.759
## 109 2163.252 -3703.5392 8030.043
## 110 1695.594 -4171.8417 7563.029
## 111 11984.079 6115.5998 17852.558
## 112 5436.861 -427.2653 11300.987
## 113 11984.079 6115.5998 17852.558
## 114 4033.886 -1830.9876 9898.759
## 115 6839.836 975.8641 12703.808
## 116 6839.836 975.8641 12703.808
## 117 7775.153 1910.9542 13639.352
## 118 5904.519 40.5104 11768.528
## 119 4501.544 -1363.0143 10366.103
## 120 12919.396 7049.2418 18789.549
## 121 5904.519 40.5104 11768.528
## 122 4969.203 -895.1068 10833.512
## 123 4501.544 -1363.0143 10366.103
## 124 11984.079 6115.5998 17852.558
## 125 6839.836 975.8641 12703.808
## 126 3566.227 -2299.0267 9431.481
## 127 19934.272 14043.2038 25825.340
## 128 1227.935 -4640.2099 7096.080
## 129 2630.911 -3235.3026 8497.124
## 130 8710.470 2845.7808 14575.159
## 131 9645.787 3780.3439 15511.230
## 132 8710.470 2845.7808 14575.159
## 133 3098.569 -2767.1317 8964.270
## 134 6839.836 975.8641 12703.808
## 135 4969.203 -895.1068 10833.512
## 136 4501.544 -1363.0143 10366.103
## 137 9645.787 3780.3439 15511.230
## 138 9178.128 3313.0952 15043.161
## 139 4033.886 -1830.9876 9898.759
## 140 6839.836 975.8641 12703.808
## 141 5904.519 40.5104 11768.528
## 142 5436.861 -427.2653 11300.987
## 143 10113.445 4247.5267 15979.364
## 144 3566.227 -2299.0267 9431.481
## 145 5436.861 -427.2653 11300.987
## 146 4969.203 -895.1068 10833.512
## 147 4033.886 -1830.9876 9898.759
## 148 11048.762 5181.6948 16915.829
## 149 4501.544 -1363.0143 10366.103
## 150 1695.594 -4171.8417 7563.029
## 151 10581.104 4714.6436 16447.563
## 152 5904.519 40.5104 11768.528
## 153 7307.495 1443.4421 13171.547
## 154 10581.104 4714.6436 16447.563
## 155 5436.861 -427.2653 11300.987
## 156 5904.519 40.5104 11768.528
## 157 5904.519 40.5104 11768.528
## 158 5436.861 -427.2653 11300.987
## 159 8242.811 2378.4004 14107.223
## 160 4033.886 -1830.9876 9898.759
## 161 2163.252 -3703.5392 8030.043
## 162 4033.886 -1830.9876 9898.759
## 163 3566.227 -2299.0267 9431.481
## 164 6839.836 975.8641 12703.808
## 165 1695.594 -4171.8417 7563.029
## 166 11048.762 5181.6948 16915.829
## 167 7307.495 1443.4421 13171.547
## 168 6839.836 975.8641 12703.808
## 169 6839.836 975.8641 12703.808
## 170 4969.203 -895.1068 10833.512
## 171 4033.886 -1830.9876 9898.759
## 172 1695.594 -4171.8417 7563.029
## 173 7307.495 1443.4421 13171.547
## 174 6839.836 975.8641 12703.808
## 175 5436.861 -427.2653 11300.987
## 176 10113.445 4247.5267 15979.364
## 177 3098.569 -2767.1317 8964.270
## 178 1695.594 -4171.8417 7563.029
## 179 12451.737 6582.4537 18321.021
## 180 2163.252 -3703.5392 8030.043
## 181 4501.544 -1363.0143 10366.103
## 182 5436.861 -427.2653 11300.987
## 183 3098.569 -2767.1317 8964.270
## 184 3566.227 -2299.0267 9431.481
## 185 3566.227 -2299.0267 9431.481
## 186 4969.203 -895.1068 10833.512
## 187 11048.762 5181.6948 16915.829
## 188 18063.638 12179.5845 23947.692
## 189 5904.519 40.5104 11768.528
## 190 11048.762 5181.6948 16915.829
## 191 17128.321 11247.3838 23009.259
## 192 4501.544 -1363.0143 10366.103
## 193 4969.203 -895.1068 10833.512
## 194 4501.544 -1363.0143 10366.103
## 195 11516.420 5648.6802 17384.161
## 196 4969.203 -895.1068 10833.512
## 197 5904.519 40.5104 11768.528
## 198 6372.178 508.2202 12236.135
## 199 7775.153 1910.9542 13639.352
## 200 5436.861 -427.2653 11300.987
## 201 4033.886 -1830.9876 9898.759
## 202 4501.544 -1363.0143 10366.103
## 203 3566.227 -2299.0267 9431.481
## 204 8242.811 2378.4004 14107.223
## 205 9178.128 3313.0952 15043.161
## 206 5904.519 40.5104 11768.528
## 207 3098.569 -2767.1317 8964.270
## 208 4969.203 -895.1068 10833.512
## 209 3566.227 -2299.0267 9431.481
## 210 9178.128 3313.0952 15043.161
## 211 7775.153 1910.9542 13639.352
## 212 6839.836 975.8641 12703.808
## 213 4501.544 -1363.0143 10366.103
## 214 8710.470 2845.7808 14575.159
## 215 4969.203 -895.1068 10833.512
## 216 8710.470 2845.7808 14575.159
## 217 5436.861 -427.2653 11300.987
## 218 4501.544 -1363.0143 10366.103
## 219 11984.079 6115.5998 17852.558
## 220 8710.470 2845.7808 14575.159
## 221 8710.470 2845.7808 14575.159
## 222 4501.544 -1363.0143 10366.103
## 223 5904.519 40.5104 11768.528
## 224 9178.128 3313.0952 15043.161
## 225 4033.886 -1830.9876 9898.759
## 226 4501.544 -1363.0143 10366.103
## 227 7307.495 1443.4421 13171.547
## 228 6372.178 508.2202 12236.135
## 229 5904.519 40.5104 11768.528
## 230 3098.569 -2767.1317 8964.270
## 231 4033.886 -1830.9876 9898.759
## 232 11516.420 5648.6802 17384.161
## 233 4501.544 -1363.0143 10366.103
## 234 16193.004 10314.9217 22071.087
## 235 4969.203 -895.1068 10833.512
## 236 11516.420 5648.6802 17384.161
## 237 7307.495 1443.4421 13171.547
## 238 16660.663 10781.1854 22540.140
## 239 4033.886 -1830.9876 9898.759
## 240 3098.569 -2767.1317 8964.270
## 241 4501.544 -1363.0143 10366.103
## 242 3098.569 -2767.1317 8964.270
## 243 9178.128 3313.0952 15043.161
## 244 5436.861 -427.2653 11300.987
## 245 12919.396 7049.2418 18789.549
## 246 5436.861 -427.2653 11300.987
## 247 2163.252 -3703.5392 8030.043
## 248 7307.495 1443.4421 13171.547
## 249 9178.128 3313.0952 15043.161
## 250 5436.861 -427.2653 11300.987
## 251 9178.128 3313.0952 15043.161
## 252 10581.104 4714.6436 16447.563
## 253 4033.886 -1830.9876 9898.759
## 254 5904.519 40.5104 11768.528
## 255 5904.519 40.5104 11768.528
## 256 3566.227 -2299.0267 9431.481
## 257 5904.519 40.5104 11768.528
## 258 11516.420 5648.6802 17384.161
## 259 1695.594 -4171.8417 7563.029
## 260 4033.886 -1830.9876 9898.759
## 261 3566.227 -2299.0267 9431.481
## 262 7307.495 1443.4421 13171.547
## 263 5436.861 -427.2653 11300.987
## 264 14322.371 8449.2123 20195.529
## 265 3566.227 -2299.0267 9431.481
## 266 5904.519 40.5104 11768.528
## 267 5904.519 40.5104 11768.528
## 268 4033.886 -1830.9876 9898.759
## 269 11048.762 5181.6948 16915.829
## 270 8710.470 2845.7808 14575.159
## 271 18531.297 12645.5870 24417.006
## 272 5904.519 40.5104 11768.528
## 273 3566.227 -2299.0267 9431.481
## 274 4501.544 -1363.0143 10366.103
## 275 2630.911 -3235.3026 8497.124
## 276 8242.811 2378.4004 14107.223
## 277 5904.519 40.5104 11768.528
## 278 4969.203 -895.1068 10833.512
## 279 4033.886 -1830.9876 9898.759
## 280 14322.371 8449.2123 20195.529
## 281 11048.762 5181.6948 16915.829
## 282 10581.104 4714.6436 16447.563
## 283 5904.519 40.5104 11768.528
## 284 6839.836 975.8641 12703.808
## 285 3566.227 -2299.0267 9431.481
## 286 9178.128 3313.0952 15043.161
## 287 10113.445 4247.5267 15979.364
## 288 5904.519 40.5104 11768.528
## 289 3566.227 -2299.0267 9431.481
## 290 3566.227 -2299.0267 9431.481
## 291 11516.420 5648.6802 17384.161
## 292 5904.519 40.5104 11768.528
## 293 2163.252 -3703.5392 8030.043
## 294 4969.203 -895.1068 10833.512
## 295 3098.569 -2767.1317 8964.270
## 296 11984.079 6115.5998 17852.558
## 297 1227.935 -4640.2099 7096.080
## 298 6839.836 975.8641 12703.808
## 299 3098.569 -2767.1317 8964.270
## 300 7307.495 1443.4421 13171.547
## 301 11516.420 5648.6802 17384.161
## 302 1227.935 -4640.2099 7096.080
## 303 5436.861 -427.2653 11300.987
## 304 5904.519 40.5104 11768.528
## 305 10113.445 4247.5267 15979.364
## 306 6372.178 508.2202 12236.135
## 307 7307.495 1443.4421 13171.547
## 308 10113.445 4247.5267 15979.364
## 309 6839.836 975.8641 12703.808
## 310 4033.886 -1830.9876 9898.759
## 311 5436.861 -427.2653 11300.987
## 312 12451.737 6582.4537 18321.021
## 313 2630.911 -3235.3026 8497.124
## 314 6839.836 975.8641 12703.808
## 315 11048.762 5181.6948 16915.829
## 316 5436.861 -427.2653 11300.987
## 317 12919.396 7049.2418 18789.549
## 318 6372.178 508.2202 12236.135
## 319 3098.569 -2767.1317 8964.270
## 320 7307.495 1443.4421 13171.547
## 321 3566.227 -2299.0267 9431.481
## 322 7307.495 1443.4421 13171.547
## 323 5904.519 40.5104 11768.528
## 324 3566.227 -2299.0267 9431.481
## 325 6372.178 508.2202 12236.135
## 326 5904.519 40.5104 11768.528
## 327 11048.762 5181.6948 16915.829
## 328 6839.836 975.8641 12703.808
## 329 5436.861 -427.2653 11300.987
## 330 11048.762 5181.6948 16915.829
## 331 5436.861 -427.2653 11300.987
## 332 4033.886 -1830.9876 9898.759
## 333 10581.104 4714.6436 16447.563
## 334 5904.519 40.5104 11768.528
## 335 6839.836 975.8641 12703.808
## 336 4033.886 -1830.9876 9898.759
## 337 4501.544 -1363.0143 10366.103
## 338 3098.569 -2767.1317 8964.270
## 339 5904.519 40.5104 11768.528
## 340 4969.203 -895.1068 10833.512
## 341 4969.203 -895.1068 10833.512
## 342 6839.836 975.8641 12703.808
## 343 6372.178 508.2202 12236.135
## 344 4501.544 -1363.0143 10366.103
## 345 9178.128 3313.0952 15043.161
## 346 3098.569 -2767.1317 8964.270
## 347 4969.203 -895.1068 10833.512
## 348 3566.227 -2299.0267 9431.481
## 349 8710.470 2845.7808 14575.159
## 350 3098.569 -2767.1317 8964.270
## 351 3098.569 -2767.1317 8964.270
## 352 4969.203 -895.1068 10833.512
## 353 8242.811 2378.4004 14107.223
## 354 7307.495 1443.4421 13171.547
## 355 3098.569 -2767.1317 8964.270
## 356 4969.203 -895.1068 10833.512
## 357 7775.153 1910.9542 13639.352
## 358 2630.911 -3235.3026 8497.124
## 359 4501.544 -1363.0143 10366.103
## 360 8710.470 2845.7808 14575.159
## 361 8242.811 2378.4004 14107.223
## 362 5904.519 40.5104 11768.528
## 363 2630.911 -3235.3026 8497.124
## 364 1695.594 -4171.8417 7563.029
## 365 9178.128 3313.0952 15043.161
## 366 4501.544 -1363.0143 10366.103
## 367 4969.203 -895.1068 10833.512
## 368 10581.104 4714.6436 16447.563
## 369 4969.203 -895.1068 10833.512
## 370 2630.911 -3235.3026 8497.124
## 371 1695.594 -4171.8417 7563.029
## 372 4033.886 -1830.9876 9898.759
## 373 5904.519 40.5104 11768.528
## 374 3566.227 -2299.0267 9431.481
## 375 4501.544 -1363.0143 10366.103
## 376 13387.054 7515.9643 19258.144
## 377 9645.787 3780.3439 15511.230
## 378 4033.886 -1830.9876 9898.759
## 379 5436.861 -427.2653 11300.987
## 380 15257.688 9382.1980 21133.177
## 381 3566.227 -2299.0267 9431.481
## 382 1695.594 -4171.8417 7563.029
## 383 4501.544 -1363.0143 10366.103
## 384 2163.252 -3703.5392 8030.043
## 385 5904.519 40.5104 11768.528
## 386 2630.911 -3235.3026 8497.124
## 387 9645.787 3780.3439 15511.230
## 388 4969.203 -895.1068 10833.512
## 389 4969.203 -895.1068 10833.512
## 390 9645.787 3780.3439 15511.230
## 391 12919.396 7049.2418 18789.549
## 392 10581.104 4714.6436 16447.563
## 393 12451.737 6582.4537 18321.021
## 394 4033.886 -1830.9876 9898.759
## 395 7307.495 1443.4421 13171.547
## 396 4969.203 -895.1068 10833.512
## 397 4969.203 -895.1068 10833.512
## 398 3566.227 -2299.0267 9431.481
## 399 8242.811 2378.4004 14107.223
## 400 3098.569 -2767.1317 8964.270
## 401 11048.762 5181.6948 16915.829
## 402 18063.638 12179.5845 23947.692
## 403 4033.886 -1830.9876 9898.759
## 404 5904.519 40.5104 11768.528
## 405 5904.519 40.5104 11768.528
## 406 4033.886 -1830.9876 9898.759
## 407 14322.371 8449.2123 20195.529
## 408 4969.203 -895.1068 10833.512
## 409 15725.346 9848.5926 21602.099
## 410 10113.445 4247.5267 15979.364
## 411 6372.178 508.2202 12236.135
## 412 16660.663 10781.1854 22540.140
## 413 10113.445 4247.5267 15979.364
## 414 4501.544 -1363.0143 10366.103
## 415 4033.886 -1830.9876 9898.759
## 416 2630.911 -3235.3026 8497.124
## 417 1695.594 -4171.8417 7563.029
## 418 11048.762 5181.6948 16915.829
## 419 2630.911 -3235.3026 8497.124
## 420 5436.861 -427.2653 11300.987
## 421 5904.519 40.5104 11768.528
## 422 4033.886 -1830.9876 9898.759
## 423 1695.594 -4171.8417 7563.029
## 424 5904.519 40.5104 11768.528
## 425 16193.004 10314.9217 22071.087
## 426 14322.371 8449.2123 20195.529
## 427 6839.836 975.8641 12703.808
## 428 11516.420 5648.6802 17384.161
## 429 10581.104 4714.6436 16447.563
## 430 13387.054 7515.9643 19258.144
## 431 4033.886 -1830.9876 9898.759
## 432 10113.445 4247.5267 15979.364
## 433 7775.153 1910.9542 13639.352
## 434 8242.811 2378.4004 14107.223
## 435 7307.495 1443.4421 13171.547
## 436 8242.811 2378.4004 14107.223
## 437 4969.203 -895.1068 10833.512
## 438 3098.569 -2767.1317 8964.270
## 439 5904.519 40.5104 11768.528
## 440 6839.836 975.8641 12703.808
## 441 6372.178 508.2202 12236.135
## 442 4969.203 -895.1068 10833.512
## 443 5904.519 40.5104 11768.528
## 444 3098.569 -2767.1317 8964.270
## 445 7775.153 1910.9542 13639.352
## 446 18531.297 12645.5870 24417.006
## 447 8710.470 2845.7808 14575.159
## 448 8242.811 2378.4004 14107.223
## 449 11516.420 5648.6802 17384.161
## 450 4969.203 -895.1068 10833.512
## 451 5904.519 40.5104 11768.528
## 452 5904.519 40.5104 11768.528
## 453 5436.861 -427.2653 11300.987
## 454 4969.203 -895.1068 10833.512
## 455 4969.203 -895.1068 10833.512
## 456 5904.519 40.5104 11768.528
## 457 5904.519 40.5104 11768.528
## 458 1227.935 -4640.2099 7096.080
## 459 10581.104 4714.6436 16447.563
## 460 5904.519 40.5104 11768.528
## 461 4969.203 -895.1068 10833.512
## 462 3566.227 -2299.0267 9431.481
## 463 5904.519 40.5104 11768.528
## 464 1695.594 -4171.8417 7563.029
## 465 6839.836 975.8641 12703.808
## 466 14322.371 8449.2123 20195.529
## 467 11516.420 5648.6802 17384.161
## 468 5436.861 -427.2653 11300.987
## 469 9645.787 3780.3439 15511.230
## 470 4033.886 -1830.9876 9898.759
## 471 2630.911 -3235.3026 8497.124
## 472 9645.787 3780.3439 15511.230
## 473 4969.203 -895.1068 10833.512
## 474 15725.346 9848.5926 21602.099
## 475 4033.886 -1830.9876 9898.759
## 476 4033.886 -1830.9876 9898.759
## 477 1695.594 -4171.8417 7563.029
## 478 16193.004 10314.9217 22071.087
## 479 4501.544 -1363.0143 10366.103
## 480 4033.886 -1830.9876 9898.759
## 481 1695.594 -4171.8417 7563.029
## 482 4033.886 -1830.9876 9898.759
## 483 5436.861 -427.2653 11300.987
## 484 5436.861 -427.2653 11300.987
## 485 7307.495 1443.4421 13171.547
## 486 4033.886 -1830.9876 9898.759
## 487 9178.128 3313.0952 15043.161
## 488 1695.594 -4171.8417 7563.029
## 489 5904.519 40.5104 11768.528
## 490 11048.762 5181.6948 16915.829
## 491 4969.203 -895.1068 10833.512
## 492 5904.519 40.5104 11768.528
## 493 11048.762 5181.6948 16915.829
## 494 5904.519 40.5104 11768.528
## 495 4969.203 -895.1068 10833.512
## 496 3566.227 -2299.0267 9431.481
## 497 2630.911 -3235.3026 8497.124
## 498 13387.054 7515.9643 19258.144
## 499 2630.911 -3235.3026 8497.124
## 500 4033.886 -1830.9876 9898.759
## 501 4033.886 -1830.9876 9898.759
## 502 1695.594 -4171.8417 7563.029
## 503 9645.787 3780.3439 15511.230
## 504 5904.519 40.5104 11768.528
## 505 3566.227 -2299.0267 9431.481
## 506 2630.911 -3235.3026 8497.124
## 507 5904.519 40.5104 11768.528
## 508 4033.886 -1830.9876 9898.759
## 509 9178.128 3313.0952 15043.161
## 510 8242.811 2378.4004 14107.223
## 511 8710.470 2845.7808 14575.159
## 512 7307.495 1443.4421 13171.547
## 513 3566.227 -2299.0267 9431.481
## 514 1695.594 -4171.8417 7563.029
## 515 5904.519 40.5104 11768.528
## 516 1695.594 -4171.8417 7563.029
## 517 3566.227 -2299.0267 9431.481
## 518 3098.569 -2767.1317 8964.270
## 519 4969.203 -895.1068 10833.512
## 520 5904.519 40.5104 11768.528
## 521 6839.836 975.8641 12703.808
## 522 4033.886 -1830.9876 9898.759
## 523 3098.569 -2767.1317 8964.270
## 524 10581.104 4714.6436 16447.563
## 525 5436.861 -427.2653 11300.987
## 526 3098.569 -2767.1317 8964.270
## 527 10581.104 4714.6436 16447.563
## 528 5904.519 40.5104 11768.528
## 529 9645.787 3780.3439 15511.230
## 530 5904.519 40.5104 11768.528
## 531 5436.861 -427.2653 11300.987
## 532 5904.519 40.5104 11768.528
## 533 10581.104 4714.6436 16447.563
## 534 10581.104 4714.6436 16447.563
## 535 16193.004 10314.9217 22071.087
## 536 11984.079 6115.5998 17852.558
## 537 5904.519 40.5104 11768.528
## 538 5436.861 -427.2653 11300.987
## 539 11516.420 5648.6802 17384.161
## 540 3098.569 -2767.1317 8964.270
## 541 5904.519 40.5104 11768.528
## 542 5904.519 40.5104 11768.528
## 543 5904.519 40.5104 11768.528
## 544 5436.861 -427.2653 11300.987
## 545 14322.371 8449.2123 20195.529
## 546 5904.519 40.5104 11768.528
## 547 1695.594 -4171.8417 7563.029
## 548 4501.544 -1363.0143 10366.103
## 549 4501.544 -1363.0143 10366.103
## 550 5904.519 40.5104 11768.528
## 551 3566.227 -2299.0267 9431.481
## 552 6839.836 975.8641 12703.808
## 553 15257.688 9382.1980 21133.177
## 554 3566.227 -2299.0267 9431.481
## 555 5436.861 -427.2653 11300.987
## 556 2163.252 -3703.5392 8030.043
## 557 10113.445 4247.5267 15979.364
## 558 8710.470 2845.7808 14575.159
## 559 5904.519 40.5104 11768.528
## 560 4033.886 -1830.9876 9898.759
## 561 4501.544 -1363.0143 10366.103
## 562 17128.321 11247.3838 23009.259
## 563 5904.519 40.5104 11768.528
## 564 4033.886 -1830.9876 9898.759
## 565 5436.861 -427.2653 11300.987
## 566 2163.252 -3703.5392 8030.043
## 567 4969.203 -895.1068 10833.512
## 568 4033.886 -1830.9876 9898.759
## 569 12451.737 6582.4537 18321.021
## 570 5904.519 40.5104 11768.528
## 571 3566.227 -2299.0267 9431.481
## 572 3566.227 -2299.0267 9431.481
## 573 6372.178 508.2202 12236.135
## 574 4033.886 -1830.9876 9898.759
## 575 5904.519 40.5104 11768.528
## 576 5436.861 -427.2653 11300.987
## 577 3566.227 -2299.0267 9431.481
## 578 4033.886 -1830.9876 9898.759
## 579 9178.128 3313.0952 15043.161
## 580 4033.886 -1830.9876 9898.759
## 581 2630.911 -3235.3026 8497.124
## 582 4501.544 -1363.0143 10366.103
## 583 4969.203 -895.1068 10833.512
## 584 4033.886 -1830.9876 9898.759
## 585 12451.737 6582.4537 18321.021
## 586 1695.594 -4171.8417 7563.029
## 587 1695.594 -4171.8417 7563.029
## 588 5436.861 -427.2653 11300.987
## 589 15257.688 9382.1980 21133.177
## 590 1695.594 -4171.8417 7563.029
## 591 7775.153 1910.9542 13639.352
## 592 4033.886 -1830.9876 9898.759
## 593 13387.054 7515.9643 19258.144
## 594 5904.519 40.5104 11768.528
## 595 5904.519 40.5104 11768.528
## 596 19934.272 14043.2038 25825.340
## 597 4501.544 -1363.0143 10366.103
## 598 4969.203 -895.1068 10833.512
## 599 3566.227 -2299.0267 9431.481
## 600 4969.203 -895.1068 10833.512
## 601 7775.153 1910.9542 13639.352
## 602 5904.519 40.5104 11768.528
## 603 6839.836 975.8641 12703.808
## 604 1695.594 -4171.8417 7563.029
## 605 5904.519 40.5104 11768.528
## 606 7307.495 1443.4421 13171.547
## 607 4033.886 -1830.9876 9898.759
## 608 5436.861 -427.2653 11300.987
## 609 6839.836 975.8641 12703.808
## 610 11516.420 5648.6802 17384.161
## 611 5436.861 -427.2653 11300.987
## 612 9178.128 3313.0952 15043.161
## 613 4969.203 -895.1068 10833.512
## 614 3098.569 -2767.1317 8964.270
## 615 4969.203 -895.1068 10833.512
## 616 1227.935 -4640.2099 7096.080
## 617 14790.029 8915.7379 20664.321
## 618 5904.519 40.5104 11768.528
## 619 4033.886 -1830.9876 9898.759
## 620 5436.861 -427.2653 11300.987
## 621 4033.886 -1830.9876 9898.759
## 622 9645.787 3780.3439 15511.230
## 623 4969.203 -895.1068 10833.512
## 624 5904.519 40.5104 11768.528
## 625 17595.980 11713.5168 23478.443
## 626 9645.787 3780.3439 15511.230
## 627 5436.861 -427.2653 11300.987
## 628 15725.346 9848.5926 21602.099
## 629 5436.861 -427.2653 11300.987
## 630 4033.886 -1830.9876 9898.759
## 631 3098.569 -2767.1317 8964.270
## 632 5904.519 40.5104 11768.528
## 633 4969.203 -895.1068 10833.512
## 634 4033.886 -1830.9876 9898.759
## 635 3566.227 -2299.0267 9431.481
## 636 9178.128 3313.0952 15043.161
## 637 5904.519 40.5104 11768.528
## 638 3098.569 -2767.1317 8964.270
## 639 3566.227 -2299.0267 9431.481
## 640 4501.544 -1363.0143 10366.103
## 641 4033.886 -1830.9876 9898.759
## 642 5904.519 40.5104 11768.528
## 643 2630.911 -3235.3026 8497.124
## 644 9178.128 3313.0952 15043.161
## 645 4969.203 -895.1068 10833.512
## 646 3566.227 -2299.0267 9431.481
## 647 14322.371 8449.2123 20195.529
## 648 8710.470 2845.7808 14575.159
## 649 5904.519 40.5104 11768.528
## 650 16660.663 10781.1854 22540.140
## 651 6839.836 975.8641 12703.808
## 652 4969.203 -895.1068 10833.512
## 653 5904.519 40.5104 11768.528
## 654 15725.346 9848.5926 21602.099
## 655 7307.495 1443.4421 13171.547
## 656 4501.544 -1363.0143 10366.103
## 657 1695.594 -4171.8417 7563.029
## 658 4969.203 -895.1068 10833.512
## 659 4969.203 -895.1068 10833.512
## 660 3098.569 -2767.1317 8964.270
## 661 2630.911 -3235.3026 8497.124
## 662 3098.569 -2767.1317 8964.270
## 663 2163.252 -3703.5392 8030.043
## 664 1695.594 -4171.8417 7563.029
## 665 9178.128 3313.0952 15043.161
## 666 2630.911 -3235.3026 8497.124
## 667 3098.569 -2767.1317 8964.270
## 668 5904.519 40.5104 11768.528
## 669 4033.886 -1830.9876 9898.759
## 670 4969.203 -895.1068 10833.512
## 671 1695.594 -4171.8417 7563.029
## 672 1695.594 -4171.8417 7563.029
## 673 5904.519 40.5104 11768.528
## 674 4033.886 -1830.9876 9898.759
## 675 12451.737 6582.4537 18321.021
## 676 7307.495 1443.4421 13171.547
## 677 5904.519 40.5104 11768.528
## 678 14790.029 8915.7379 20664.321
## 679 7307.495 1443.4421 13171.547
## 680 5436.861 -427.2653 11300.987
## 681 4969.203 -895.1068 10833.512
## 682 8242.811 2378.4004 14107.223
## 683 3566.227 -2299.0267 9431.481
## 684 1695.594 -4171.8417 7563.029
## 685 6372.178 508.2202 12236.135
## 686 4501.544 -1363.0143 10366.103
## 687 10581.104 4714.6436 16447.563
## 688 8710.470 2845.7808 14575.159
## 689 1695.594 -4171.8417 7563.029
## 690 1695.594 -4171.8417 7563.029
## 691 5904.519 40.5104 11768.528
## 692 2630.911 -3235.3026 8497.124
## 693 4969.203 -895.1068 10833.512
## 694 8710.470 2845.7808 14575.159
## 695 4033.886 -1830.9876 9898.759
## 696 9178.128 3313.0952 15043.161
## 697 5436.861 -427.2653 11300.987
## 698 2630.911 -3235.3026 8497.124
## 699 3566.227 -2299.0267 9431.481
## 700 13387.054 7515.9643 19258.144
## 701 4501.544 -1363.0143 10366.103
## 702 11516.420 5648.6802 17384.161
## 703 5904.519 40.5104 11768.528
## 704 4033.886 -1830.9876 9898.759
## 705 6839.836 975.8641 12703.808
## 706 5436.861 -427.2653 11300.987
## 707 11516.420 5648.6802 17384.161
## 708 10581.104 4714.6436 16447.563
## 709 6839.836 975.8641 12703.808
## 710 3098.569 -2767.1317 8964.270
## 711 5904.519 40.5104 11768.528
## 712 2630.911 -3235.3026 8497.124
## 713 3566.227 -2299.0267 9431.481
## 714 4969.203 -895.1068 10833.512
## 715 16193.004 10314.9217 22071.087
## 716 4033.886 -1830.9876 9898.759
## 717 11048.762 5181.6948 16915.829
## 718 3098.569 -2767.1317 8964.270
## 719 5436.861 -427.2653 11300.987
## 720 5436.861 -427.2653 11300.987
## 721 4501.544 -1363.0143 10366.103
## 722 11516.420 5648.6802 17384.161
## 723 2630.911 -3235.3026 8497.124
## 724 7307.495 1443.4421 13171.547
## 725 3566.227 -2299.0267 9431.481
## 726 3566.227 -2299.0267 9431.481
## 727 3098.569 -2767.1317 8964.270
## 728 1227.935 -4640.2099 7096.080
## 729 11516.420 5648.6802 17384.161
## 730 8710.470 2845.7808 14575.159
## 731 5436.861 -427.2653 11300.987
## 732 1695.594 -4171.8417 7563.029
## 733 3098.569 -2767.1317 8964.270
## 734 4969.203 -895.1068 10833.512
## 735 3098.569 -2767.1317 8964.270
## 736 10113.445 4247.5267 15979.364
## 737 13854.712 7982.6211 19726.804
## 738 4969.203 -895.1068 10833.512
## 739 11048.762 5181.6948 16915.829
## 740 3098.569 -2767.1317 8964.270
## 741 2630.911 -3235.3026 8497.124
## 742 11048.762 5181.6948 16915.829
## 743 4969.203 -895.1068 10833.512
## 744 15257.688 9382.1980 21133.177
## 745 8242.811 2378.4004 14107.223
## 746 9178.128 3313.0952 15043.161
## 747 11048.762 5181.6948 16915.829
## 748 10113.445 4247.5267 15979.364
## 749 4501.544 -1363.0143 10366.103
## 750 16660.663 10781.1854 22540.140
## 751 11984.079 6115.5998 17852.558
## 752 10113.445 4247.5267 15979.364
## 753 9645.787 3780.3439 15511.230
## 754 11048.762 5181.6948 16915.829
## 755 2630.911 -3235.3026 8497.124
## 756 13387.054 7515.9643 19258.144
## 757 5904.519 40.5104 11768.528
## 758 8710.470 2845.7808 14575.159
## 759 7775.153 1910.9542 13639.352
## 760 4033.886 -1830.9876 9898.759
## 761 15257.688 9382.1980 21133.177
## 762 5436.861 -427.2653 11300.987
## 763 4033.886 -1830.9876 9898.759
## 764 1695.594 -4171.8417 7563.029
## 765 1695.594 -4171.8417 7563.029
## 766 4969.203 -895.1068 10833.512
## 767 14790.029 8915.7379 20664.321
## 768 4969.203 -895.1068 10833.512
## 769 4969.203 -895.1068 10833.512
## 770 3566.227 -2299.0267 9431.481
## 771 11984.079 6115.5998 17852.558
## 772 7307.495 1443.4421 13171.547
## 773 9645.787 3780.3439 15511.230
## 774 8242.811 2378.4004 14107.223
## 775 15725.346 9848.5926 21602.099
## 776 9645.787 3780.3439 15511.230
## 777 2163.252 -3703.5392 8030.043
## 778 1695.594 -4171.8417 7563.029
## 779 10113.445 4247.5267 15979.364
## 780 9645.787 3780.3439 15511.230
## 781 5904.519 40.5104 11768.528
## 782 4033.886 -1830.9876 9898.759
## 783 4501.544 -1363.0143 10366.103
## 784 5904.519 40.5104 11768.528
## 785 10581.104 4714.6436 16447.563
## 786 7775.153 1910.9542 13639.352
## 787 2630.911 -3235.3026 8497.124
## 788 11984.079 6115.5998 17852.558
## 789 5904.519 40.5104 11768.528
## 790 12451.737 6582.4537 18321.021
## 791 5436.861 -427.2653 11300.987
## 792 5436.861 -427.2653 11300.987
## 793 7775.153 1910.9542 13639.352
## 794 3098.569 -2767.1317 8964.270
## 795 4501.544 -1363.0143 10366.103
## 796 4969.203 -895.1068 10833.512
## 797 4501.544 -1363.0143 10366.103
## 798 1695.594 -4171.8417 7563.029
## 799 3566.227 -2299.0267 9431.481
## 800 11984.079 6115.5998 17852.558
## 801 1695.594 -4171.8417 7563.029
## 802 3566.227 -2299.0267 9431.481
## 803 3098.569 -2767.1317 8964.270
## 804 4033.886 -1830.9876 9898.759
## 805 13854.712 7982.6211 19726.804
## 806 8242.811 2378.4004 14107.223
## 807 9645.787 3780.3439 15511.230
## 808 5436.861 -427.2653 11300.987
## 809 6372.178 508.2202 12236.135
## 810 5904.519 40.5104 11768.528
## 811 11984.079 6115.5998 17852.558
## 812 5904.519 40.5104 11768.528
## 813 9645.787 3780.3439 15511.230
## 814 11048.762 5181.6948 16915.829
## 815 11048.762 5181.6948 16915.829
## 816 2163.252 -3703.5392 8030.043
## 817 5436.861 -427.2653 11300.987
## 818 9645.787 3780.3439 15511.230
## 819 2630.911 -3235.3026 8497.124
## 820 4033.886 -1830.9876 9898.759
## 821 3566.227 -2299.0267 9431.481
## 822 11516.420 5648.6802 17384.161
## 823 3566.227 -2299.0267 9431.481
## 824 4969.203 -895.1068 10833.512
## 825 8710.470 2845.7808 14575.159
## 826 5904.519 40.5104 11768.528
## 827 4501.544 -1363.0143 10366.103
## 828 2630.911 -3235.3026 8497.124
## 829 1227.935 -4640.2099 7096.080
## 830 4033.886 -1830.9876 9898.759
## 831 4033.886 -1830.9876 9898.759
## 832 2163.252 -3703.5392 8030.043
## 833 5436.861 -427.2653 11300.987
## 834 3098.569 -2767.1317 8964.270
## 835 4033.886 -1830.9876 9898.759
## 836 4033.886 -1830.9876 9898.759
## 837 6372.178 508.2202 12236.135
## 838 10581.104 4714.6436 16447.563
## 839 11516.420 5648.6802 17384.161
## 840 5436.861 -427.2653 11300.987
## 841 5904.519 40.5104 11768.528
## 842 4033.886 -1830.9876 9898.759
## 843 1695.594 -4171.8417 7563.029
## 844 4969.203 -895.1068 10833.512
## 845 5904.519 40.5104 11768.528
## 846 8710.470 2845.7808 14575.159
## 847 8242.811 2378.4004 14107.223
## 848 7775.153 1910.9542 13639.352
## 849 2163.252 -3703.5392 8030.043
## 850 4501.544 -1363.0143 10366.103
## 851 1695.594 -4171.8417 7563.029
## 852 14322.371 8449.2123 20195.529
## 853 5904.519 40.5104 11768.528
## 854 1695.594 -4171.8417 7563.029
## 855 4501.544 -1363.0143 10366.103
## 856 7775.153 1910.9542 13639.352
## 857 2163.252 -3703.5392 8030.043
## 858 4033.886 -1830.9876 9898.759
## 859 13387.054 7515.9643 19258.144
## 860 4033.886 -1830.9876 9898.759
## 861 1695.594 -4171.8417 7563.029
## 862 14322.371 8449.2123 20195.529
## 863 4033.886 -1830.9876 9898.759
## 864 3566.227 -2299.0267 9431.481
## 865 3566.227 -2299.0267 9431.481
## 866 4969.203 -895.1068 10833.512
## 867 3566.227 -2299.0267 9431.481
## 868 16193.004 10314.9217 22071.087
## 869 4033.886 -1830.9876 9898.759
## 870 12919.396 7049.2418 18789.549
## 871 8242.811 2378.4004 14107.223
## 872 1695.594 -4171.8417 7563.029
## 873 5904.519 40.5104 11768.528
## 874 4501.544 -1363.0143 10366.103
## 875 5904.519 40.5104 11768.528
## 876 10581.104 4714.6436 16447.563
## 877 2163.252 -3703.5392 8030.043
## 878 6839.836 975.8641 12703.808
## 879 5904.519 40.5104 11768.528
## 880 6839.836 975.8641 12703.808
## 881 2163.252 -3703.5392 8030.043
## 882 5904.519 40.5104 11768.528
## 883 9178.128 3313.0952 15043.161
## 884 8242.811 2378.4004 14107.223
## 885 4501.544 -1363.0143 10366.103
## 886 3566.227 -2299.0267 9431.481
## 887 6839.836 975.8641 12703.808
## 888 10581.104 4714.6436 16447.563
## 889 8710.470 2845.7808 14575.159
## 890 5436.861 -427.2653 11300.987
## 891 16660.663 10781.1854 22540.140
## 892 5904.519 40.5104 11768.528
## 893 1695.594 -4171.8417 7563.029
## 894 2630.911 -3235.3026 8497.124
## 895 18063.638 12179.5845 23947.692
## 896 4033.886 -1830.9876 9898.759
## 897 5904.519 40.5104 11768.528
## 898 7307.495 1443.4421 13171.547
## 899 12919.396 7049.2418 18789.549
## 900 11984.079 6115.5998 17852.558
## 901 6839.836 975.8641 12703.808
## 902 4501.544 -1363.0143 10366.103
## 903 3566.227 -2299.0267 9431.481
## 904 4033.886 -1830.9876 9898.759
## 905 12919.396 7049.2418 18789.549
## 906 5436.861 -427.2653 11300.987
## 907 2163.252 -3703.5392 8030.043
## 908 13387.054 7515.9643 19258.144
## 909 5904.519 40.5104 11768.528
## 910 1695.594 -4171.8417 7563.029
## 911 1695.594 -4171.8417 7563.029
## 912 1695.594 -4171.8417 7563.029
## 913 4969.203 -895.1068 10833.512
## 914 13387.054 7515.9643 19258.144
## 915 17128.321 11247.3838 23009.259
## 916 2163.252 -3703.5392 8030.043
## 917 13387.054 7515.9643 19258.144
## 918 3098.569 -2767.1317 8964.270
## 919 15725.346 9848.5926 21602.099
## 920 12919.396 7049.2418 18789.549
## 921 8242.811 2378.4004 14107.223
## 922 3566.227 -2299.0267 9431.481
## 923 13387.054 7515.9643 19258.144
## 924 7775.153 1910.9542 13639.352
## 925 3098.569 -2767.1317 8964.270
## 926 9645.787 3780.3439 15511.230
## 927 11984.079 6115.5998 17852.558
## 928 9645.787 3780.3439 15511.230
## 929 5904.519 40.5104 11768.528
## 930 2163.252 -3703.5392 8030.043
## 931 4969.203 -895.1068 10833.512
## 932 5904.519 40.5104 11768.528
## 933 5904.519 40.5104 11768.528
## 934 3566.227 -2299.0267 9431.481
## 935 2163.252 -3703.5392 8030.043
## 936 5904.519 40.5104 11768.528
## 937 11516.420 5648.6802 17384.161
## 938 11048.762 5181.6948 16915.829
## 939 2163.252 -3703.5392 8030.043
## 940 5904.519 40.5104 11768.528
## 941 4033.886 -1830.9876 9898.759
## 942 5904.519 40.5104 11768.528
## 943 5904.519 40.5104 11768.528
## 944 5904.519 40.5104 11768.528
## 945 5904.519 40.5104 11768.528
## 946 12919.396 7049.2418 18789.549
## 947 5436.861 -427.2653 11300.987
## 948 5904.519 40.5104 11768.528
## 949 5436.861 -427.2653 11300.987
## 950 5436.861 -427.2653 11300.987
## 951 5904.519 40.5104 11768.528
## 952 10113.445 4247.5267 15979.364
## 953 2630.911 -3235.3026 8497.124
## 954 5904.519 40.5104 11768.528
## 955 11048.762 5181.6948 16915.829
## 956 11984.079 6115.5998 17852.558
## 957 18063.638 12179.5845 23947.692
## 958 4033.886 -1830.9876 9898.759
## 959 5904.519 40.5104 11768.528
## 960 5436.861 -427.2653 11300.987
## 961 5904.519 40.5104 11768.528
## 962 5436.861 -427.2653 11300.987
## 963 16660.663 10781.1854 22540.140
## 964 6372.178 508.2202 12236.135
## 965 5904.519 40.5104 11768.528
## 966 4501.544 -1363.0143 10366.103
## 967 15725.346 9848.5926 21602.099
## 968 4501.544 -1363.0143 10366.103
## 969 9178.128 3313.0952 15043.161
## 970 6372.178 508.2202 12236.135
## 971 3566.227 -2299.0267 9431.481
## 972 14790.029 8915.7379 20664.321
## 973 1227.935 -4640.2099 7096.080
## 974 5904.519 40.5104 11768.528
## 975 4969.203 -895.1068 10833.512
## 976 12451.737 6582.4537 18321.021
## 977 16660.663 10781.1854 22540.140
## 978 3566.227 -2299.0267 9431.481
## 979 8242.811 2378.4004 14107.223
## 980 5904.519 40.5104 11768.528
## 981 2630.911 -3235.3026 8497.124
## 982 3566.227 -2299.0267 9431.481
## 983 3098.569 -2767.1317 8964.270
## 984 7775.153 1910.9542 13639.352
## 985 3566.227 -2299.0267 9431.481
## 986 5904.519 40.5104 11768.528
## 987 4969.203 -895.1068 10833.512
## 988 7775.153 1910.9542 13639.352
## 989 6839.836 975.8641 12703.808
## 990 4969.203 -895.1068 10833.512
## 991 4969.203 -895.1068 10833.512
## 992 3098.569 -2767.1317 8964.270
## 993 7307.495 1443.4421 13171.547
## 994 4033.886 -1830.9876 9898.759
## 995 12451.737 6582.4537 18321.021
## 996 10581.104 4714.6436 16447.563
## 997 4033.886 -1830.9876 9898.759
## 998 4969.203 -895.1068 10833.512
## 999 3566.227 -2299.0267 9431.481
## 1000 11048.762 5181.6948 16915.829
## 1001 6839.836 975.8641 12703.808
## 1002 4969.203 -895.1068 10833.512
## 1003 5904.519 40.5104 11768.528
## 1004 4501.544 -1363.0143 10366.103
## 1005 4969.203 -895.1068 10833.512
## 1006 5904.519 40.5104 11768.528
## 1007 10581.104 4714.6436 16447.563
## 1008 5436.861 -427.2653 11300.987
## 1009 14790.029 8915.7379 20664.321
## 1010 16193.004 10314.9217 22071.087
## 1011 15725.346 9848.5926 21602.099
## 1012 8242.811 2378.4004 14107.223
## 1013 1695.594 -4171.8417 7563.029
## 1014 4969.203 -895.1068 10833.512
## 1015 5436.861 -427.2653 11300.987
## 1016 5904.519 40.5104 11768.528
## 1017 1695.594 -4171.8417 7563.029
## 1018 4033.886 -1830.9876 9898.759
## 1019 5904.519 40.5104 11768.528
## 1020 6372.178 508.2202 12236.135
## 1021 9178.128 3313.0952 15043.161
## 1022 4033.886 -1830.9876 9898.759
## 1023 4501.544 -1363.0143 10366.103
## 1024 3566.227 -2299.0267 9431.481
## 1025 13387.054 7515.9643 19258.144
## 1026 3566.227 -2299.0267 9431.481
## 1027 4501.544 -1363.0143 10366.103
## 1028 4501.544 -1363.0143 10366.103
## 1029 4501.544 -1363.0143 10366.103
## 1030 6372.178 508.2202 12236.135
## 1031 7307.495 1443.4421 13171.547
## 1032 14322.371 8449.2123 20195.529
## 1033 6372.178 508.2202 12236.135
## 1034 5904.519 40.5104 11768.528
## 1035 12451.737 6582.4537 18321.021
## 1036 4969.203 -895.1068 10833.512
## 1037 4501.544 -1363.0143 10366.103
## 1038 5904.519 40.5104 11768.528
## 1039 8242.811 2378.4004 14107.223
## 1040 2163.252 -3703.5392 8030.043
## 1041 8710.470 2845.7808 14575.159
## 1042 4033.886 -1830.9876 9898.759
## 1043 4501.544 -1363.0143 10366.103
## 1044 17595.980 11713.5168 23478.443
## 1045 10581.104 4714.6436 16447.563
## 1046 4969.203 -895.1068 10833.512
## 1047 4033.886 -1830.9876 9898.759
## 1048 3566.227 -2299.0267 9431.481
## 1049 8242.811 2378.4004 14107.223
## 1050 3098.569 -2767.1317 8964.270
## 1051 6839.836 975.8641 12703.808
## 1052 6372.178 508.2202 12236.135
## 1053 1695.594 -4171.8417 7563.029
## 1054 7307.495 1443.4421 13171.547
## 1055 14790.029 8915.7379 20664.321
## 1056 8710.470 2845.7808 14575.159
## 1057 3566.227 -2299.0267 9431.481
## 1058 4501.544 -1363.0143 10366.103
## 1059 8710.470 2845.7808 14575.159
## 1060 1695.594 -4171.8417 7563.029
## 1061 3098.569 -2767.1317 8964.270
## 1062 1695.594 -4171.8417 7563.029
## 1063 8710.470 2845.7808 14575.159
## 1064 5904.519 40.5104 11768.528
## 1065 4033.886 -1830.9876 9898.759
## 1066 3098.569 -2767.1317 8964.270
## 1067 4969.203 -895.1068 10833.512
## 1068 6372.178 508.2202 12236.135
## 1069 4969.203 -895.1068 10833.512
## 1070 1695.594 -4171.8417 7563.029
## 1071 3566.227 -2299.0267 9431.481
## 1072 5904.519 40.5104 11768.528
## 1073 3098.569 -2767.1317 8964.270
## 1074 4969.203 -895.1068 10833.512
## 1075 7775.153 1910.9542 13639.352
## 1076 5904.519 40.5104 11768.528
## 1077 13387.054 7515.9643 19258.144
## 1078 6372.178 508.2202 12236.135
## 1079 12451.737 6582.4537 18321.021
## 1080 5436.861 -427.2653 11300.987
## 1081 11984.079 6115.5998 17852.558
## 1082 6372.178 508.2202 12236.135
## 1083 3566.227 -2299.0267 9431.481
## 1084 8242.811 2378.4004 14107.223
## 1085 5904.519 40.5104 11768.528
## 1086 4501.544 -1363.0143 10366.103
## 1087 16193.004 10314.9217 22071.087
## 1088 6839.836 975.8641 12703.808
## 1089 3098.569 -2767.1317 8964.270
## 1090 5904.519 40.5104 11768.528
## 1091 5436.861 -427.2653 11300.987
## 1092 3566.227 -2299.0267 9431.481
## 1093 4969.203 -895.1068 10833.512
## 1094 12451.737 6582.4537 18321.021
## 1095 5436.861 -427.2653 11300.987
## 1096 8242.811 2378.4004 14107.223
## 1097 11048.762 5181.6948 16915.829
## 1098 2163.252 -3703.5392 8030.043
## 1099 4969.203 -895.1068 10833.512
## 1100 5904.519 40.5104 11768.528
## 1101 4033.886 -1830.9876 9898.759
## 1102 6839.836 975.8641 12703.808
## 1103 4501.544 -1363.0143 10366.103
## 1104 9645.787 3780.3439 15511.230
## 1105 3566.227 -2299.0267 9431.481
## 1106 4969.203 -895.1068 10833.512
## 1107 5904.519 40.5104 11768.528
## 1108 5904.519 40.5104 11768.528
## 1109 2630.911 -3235.3026 8497.124
## 1110 5436.861 -427.2653 11300.987
## 1111 1695.594 -4171.8417 7563.029
## 1112 17128.321 11247.3838 23009.259
## 1113 4501.544 -1363.0143 10366.103
## 1114 5436.861 -427.2653 11300.987
## 1115 5904.519 40.5104 11768.528
## 1116 1695.594 -4171.8417 7563.029
## 1117 18063.638 12179.5845 23947.692
## 1118 5436.861 -427.2653 11300.987
## 1119 1695.594 -4171.8417 7563.029
## 1120 5904.519 40.5104 11768.528
## 1121 4969.203 -895.1068 10833.512
## 1122 8242.811 2378.4004 14107.223
## 1123 5904.519 40.5104 11768.528
## 1124 5904.519 40.5104 11768.528
## 1125 6372.178 508.2202 12236.135
## 1126 4033.886 -1830.9876 9898.759
## 1127 13854.712 7982.6211 19726.804
## 1128 3098.569 -2767.1317 8964.270
## 1129 5436.861 -427.2653 11300.987
## 1130 12451.737 6582.4537 18321.021
## 1131 5904.519 40.5104 11768.528
## 1132 4969.203 -895.1068 10833.512
## 1133 3566.227 -2299.0267 9431.481
## 1134 4969.203 -895.1068 10833.512
## 1135 1695.594 -4171.8417 7563.029
## 1136 13854.712 7982.6211 19726.804
## 1137 1695.594 -4171.8417 7563.029
## 1138 3098.569 -2767.1317 8964.270
## 1139 16193.004 10314.9217 22071.087
## 1140 4033.886 -1830.9876 9898.759
## 1141 11984.079 6115.5998 17852.558
## 1142 4033.886 -1830.9876 9898.759
## 1143 5904.519 40.5104 11768.528
## 1144 5904.519 40.5104 11768.528
## 1145 5904.519 40.5104 11768.528
## 1146 4501.544 -1363.0143 10366.103
## 1147 5436.861 -427.2653 11300.987
## 1148 5904.519 40.5104 11768.528
## 1149 5904.519 40.5104 11768.528
## 1150 4501.544 -1363.0143 10366.103
## 1151 8710.470 2845.7808 14575.159
## 1152 4033.886 -1830.9876 9898.759
## 1153 2630.911 -3235.3026 8497.124
## 1154 1227.935 -4640.2099 7096.080
## 1155 13854.712 7982.6211 19726.804
## 1156 6372.178 508.2202 12236.135
## 1157 9645.787 3780.3439 15511.230
## 1158 8242.811 2378.4004 14107.223
## 1159 5436.861 -427.2653 11300.987
## 1160 5904.519 40.5104 11768.528
## 1161 5904.519 40.5104 11768.528
## 1162 5904.519 40.5104 11768.528
## 1163 8242.811 2378.4004 14107.223
## 1164 4969.203 -895.1068 10833.512
## 1165 9645.787 3780.3439 15511.230
## 1166 7775.153 1910.9542 13639.352
## 1167 11984.079 6115.5998 17852.558
## 1168 4501.544 -1363.0143 10366.103
## 1169 4033.886 -1830.9876 9898.759
## 1170 3566.227 -2299.0267 9431.481
## 1171 4033.886 -1830.9876 9898.759
## 1172 5904.519 40.5104 11768.528
## 1173 4969.203 -895.1068 10833.512
## 1174 5436.861 -427.2653 11300.987
## 1175 4501.544 -1363.0143 10366.103
## 1176 4501.544 -1363.0143 10366.103
## 1177 13854.712 7982.6211 19726.804
## 1178 10113.445 4247.5267 15979.364
## 1179 2163.252 -3703.5392 8030.043
## 1180 6372.178 508.2202 12236.135
## 1181 8242.811 2378.4004 14107.223
## 1182 15257.688 9382.1980 21133.177
## 1183 3098.569 -2767.1317 8964.270
## 1184 7307.495 1443.4421 13171.547
## 1185 18063.638 12179.5845 23947.692
## 1186 7775.153 1910.9542 13639.352
## 1187 7307.495 1443.4421 13171.547
## 1188 10113.445 4247.5267 15979.364
## 1189 5904.519 40.5104 11768.528
## 1190 4033.886 -1830.9876 9898.759
## 1191 5904.519 40.5104 11768.528
## 1192 5904.519 40.5104 11768.528
## 1193 9178.128 3313.0952 15043.161
## 1194 3098.569 -2767.1317 8964.270
## 1195 14790.029 8915.7379 20664.321
## 1196 11984.079 6115.5998 17852.558
## 1197 11048.762 5181.6948 16915.829
## 1198 2163.252 -3703.5392 8030.043
## 1199 4501.544 -1363.0143 10366.103
## 1200 5904.519 40.5104 11768.528
## 1201 4969.203 -895.1068 10833.512
## 1202 3566.227 -2299.0267 9431.481
## 1203 4501.544 -1363.0143 10366.103
## 1204 6372.178 508.2202 12236.135
## 1205 10113.445 4247.5267 15979.364
## 1206 1695.594 -4171.8417 7563.029
## 1207 4501.544 -1363.0143 10366.103
## 1208 4969.203 -895.1068 10833.512
## 1209 8242.811 2378.4004 14107.223
## 1210 10113.445 4247.5267 15979.364
## 1211 7775.153 1910.9542 13639.352
## 1212 4033.886 -1830.9876 9898.759
## 1213 5904.519 40.5104 11768.528
## 1214 2630.911 -3235.3026 8497.124
## 1215 5436.861 -427.2653 11300.987
## 1216 4033.886 -1830.9876 9898.759
## 1217 5904.519 40.5104 11768.528
## 1218 3566.227 -2299.0267 9431.481
## 1219 5904.519 40.5104 11768.528
## 1220 5436.861 -427.2653 11300.987
## 1221 9178.128 3313.0952 15043.161
## 1222 12919.396 7049.2418 18789.549
## 1223 1695.594 -4171.8417 7563.029
## 1224 12919.396 7049.2418 18789.549
## 1225 2630.911 -3235.3026 8497.124
## 1226 11048.762 5181.6948 16915.829
## 1227 5904.519 40.5104 11768.528
## 1228 4033.886 -1830.9876 9898.759
## 1229 5904.519 40.5104 11768.528
## 1230 9645.787 3780.3439 15511.230
## 1231 4033.886 -1830.9876 9898.759
## 1232 10113.445 4247.5267 15979.364
## 1233 9178.128 3313.0952 15043.161
## 1234 5904.519 40.5104 11768.528
## 1235 3098.569 -2767.1317 8964.270
## 1236 7307.495 1443.4421 13171.547
## 1237 8710.470 2845.7808 14575.159
## 1238 5904.519 40.5104 11768.528
## 1239 2630.911 -3235.3026 8497.124
## 1240 5436.861 -427.2653 11300.987
## 1241 5436.861 -427.2653 11300.987
## 1242 5904.519 40.5104 11768.528
## 1243 11048.762 5181.6948 16915.829
## 1244 5436.861 -427.2653 11300.987
## 1245 5904.519 40.5104 11768.528
## 1246 2630.911 -3235.3026 8497.124
## 1247 4033.886 -1830.9876 9898.759
## 1248 4033.886 -1830.9876 9898.759
## 1249 4033.886 -1830.9876 9898.759
## 1250 2163.252 -3703.5392 8030.043
## 1251 5904.519 40.5104 11768.528
## 1252 6839.836 975.8641 12703.808
## 1253 4033.886 -1830.9876 9898.759
## 1254 7307.495 1443.4421 13171.547
## 1255 4969.203 -895.1068 10833.512
## 1256 6372.178 508.2202 12236.135
## 1257 5436.861 -427.2653 11300.987
## 1258 5904.519 40.5104 11768.528
## 1259 1695.594 -4171.8417 7563.029
## 1260 5904.519 40.5104 11768.528
## 1261 6839.836 975.8641 12703.808
## 1262 8242.811 2378.4004 14107.223
## 1263 4033.886 -1830.9876 9898.759
## 1264 4501.544 -1363.0143 10366.103
## 1265 17128.321 11247.3838 23009.259
## 1266 6372.178 508.2202 12236.135
## 1267 3566.227 -2299.0267 9431.481
## 1268 8242.811 2378.4004 14107.223
## 1269 13854.712 7982.6211 19726.804
## 1270 5904.519 40.5104 11768.528
## 1271 4033.886 -1830.9876 9898.759
## 1272 1695.594 -4171.8417 7563.029
## 1273 3566.227 -2299.0267 9431.481
## 1274 1695.594 -4171.8417 7563.029
## 1275 7307.495 1443.4421 13171.547
## 1276 8242.811 2378.4004 14107.223
## 1277 3566.227 -2299.0267 9431.481
## 1278 12451.737 6582.4537 18321.021
## 1279 8242.811 2378.4004 14107.223
## 1280 4033.886 -1830.9876 9898.759
## 1281 10113.445 4247.5267 15979.364
## 1282 5904.519 40.5104 11768.528
## 1283 7775.153 1910.9542 13639.352
## 1284 3566.227 -2299.0267 9431.481
## 1285 5436.861 -427.2653 11300.987
## 1286 4033.886 -1830.9876 9898.759
## 1287 4501.544 -1363.0143 10366.103
## 1288 5904.519 40.5104 11768.528
## 1289 8242.811 2378.4004 14107.223
## 1290 7307.495 1443.4421 13171.547
## 1291 6372.178 508.2202 12236.135
## 1292 5904.519 40.5104 11768.528
## 1293 4501.544 -1363.0143 10366.103
## 1294 4501.544 -1363.0143 10366.103
## 1295 6372.178 508.2202 12236.135
## 1296 11984.079 6115.5998 17852.558
## 1297 5436.861 -427.2653 11300.987
## 1298 4033.886 -1830.9876 9898.759
## 1299 7307.495 1443.4421 13171.547
## 1300 6839.836 975.8641 12703.808
## 1301 5904.519 40.5104 11768.528
## 1302 18531.297 12645.5870 24417.006
## 1303 4033.886 -1830.9876 9898.759
## 1304 14322.371 8449.2123 20195.529
## 1305 8242.811 2378.4004 14107.223
## 1306 7775.153 1910.9542 13639.352
## 1307 5436.861 -427.2653 11300.987
## 1308 2630.911 -3235.3026 8497.124
## 1309 10581.104 4714.6436 16447.563
## 1310 3566.227 -2299.0267 9431.481
## 1311 11984.079 6115.5998 17852.558
## 1312 1227.935 -4640.2099 7096.080
## 1313 2163.252 -3703.5392 8030.043
## 1314 3098.569 -2767.1317 8964.270
## 1315 5904.519 40.5104 11768.528
## 1316 8242.811 2378.4004 14107.223
## 1317 4501.544 -1363.0143 10366.103
## 1318 4033.886 -1830.9876 9898.759
## 1319 6372.178 508.2202 12236.135
## 1320 3098.569 -2767.1317 8964.270
## 1321 5904.519 40.5104 11768.528
## 1322 4501.544 -1363.0143 10366.103
## 1323 6839.836 975.8641 12703.808
## 1324 2630.911 -3235.3026 8497.124
## 1325 6372.178 508.2202 12236.135
## 1326 4969.203 -895.1068 10833.512
## 1327 4501.544 -1363.0143 10366.103
## 1328 12919.396 7049.2418 18789.549
## 1329 5436.861 -427.2653 11300.987
## 1330 1695.594 -4171.8417 7563.029
## 1331 11048.762 5181.6948 16915.829
## 1332 14790.029 8915.7379 20664.321
## 1333 1695.594 -4171.8417 7563.029
## 1334 7775.153 1910.9542 13639.352
## 1335 4969.203 -895.1068 10833.512
## 1336 4501.544 -1363.0143 10366.103
## 1337 10113.445 4247.5267 15979.364
## 1338 1695.594 -4171.8417 7563.029
## 1339 1695.594 -4171.8417 7563.029
## 1340 1695.594 -4171.8417 7563.029
## 1341 5904.519 40.5104 11768.528
## 1342 5904.519 40.5104 11768.528
## 1343 5436.861 -427.2653 11300.987
## 1344 6372.178 508.2202 12236.135
## 1345 8710.470 2845.7808 14575.159
## 1346 3098.569 -2767.1317 8964.270
## 1347 5904.519 40.5104 11768.528
## 1348 5904.519 40.5104 11768.528
## 1349 11516.420 5648.6802 17384.161
## 1350 1695.594 -4171.8417 7563.029
## 1351 5436.861 -427.2653 11300.987
## 1352 12451.737 6582.4537 18321.021
## 1353 5904.519 40.5104 11768.528
## 1354 3566.227 -2299.0267 9431.481
## 1355 3566.227 -2299.0267 9431.481
## 1356 6839.836 975.8641 12703.808
## 1357 7775.153 1910.9542 13639.352
## 1358 9645.787 3780.3439 15511.230
## 1359 4969.203 -895.1068 10833.512
## 1360 5436.861 -427.2653 11300.987
## 1361 3098.569 -2767.1317 8964.270
## 1362 4969.203 -895.1068 10833.512
## 1363 6839.836 975.8641 12703.808
## 1364 5904.519 40.5104 11768.528
## 1365 4501.544 -1363.0143 10366.103
## 1366 1695.594 -4171.8417 7563.029
## 1367 5904.519 40.5104 11768.528
## 1368 4033.886 -1830.9876 9898.759
## 1369 8710.470 2845.7808 14575.159
## 1370 4033.886 -1830.9876 9898.759
## 1371 8710.470 2845.7808 14575.159
## 1372 4033.886 -1830.9876 9898.759
## 1373 5904.519 40.5104 11768.528
## 1374 10581.104 4714.6436 16447.563
## 1375 14790.029 8915.7379 20664.321
## 1376 4969.203 -895.1068 10833.512
## 1377 5904.519 40.5104 11768.528
## 1378 14322.371 8449.2123 20195.529
## 1379 7775.153 1910.9542 13639.352
## 1380 1695.594 -4171.8417 7563.029
## 1381 4033.886 -1830.9876 9898.759
## 1382 3566.227 -2299.0267 9431.481
## 1383 3098.569 -2767.1317 8964.270
## 1384 3566.227 -2299.0267 9431.481
## 1385 7775.153 1910.9542 13639.352
## 1386 5436.861 -427.2653 11300.987
## 1387 4969.203 -895.1068 10833.512
## 1388 4033.886 -1830.9876 9898.759
## 1389 5436.861 -427.2653 11300.987
## 1390 5904.519 40.5104 11768.528
## 1391 4033.886 -1830.9876 9898.759
## 1392 10581.104 4714.6436 16447.563
## 1393 5904.519 40.5104 11768.528
## 1394 4501.544 -1363.0143 10366.103
## 1395 4969.203 -895.1068 10833.512
## 1396 5904.519 40.5104 11768.528
## 1397 8242.811 2378.4004 14107.223
## 1398 5436.861 -427.2653 11300.987
## 1399 5436.861 -427.2653 11300.987
## 1400 5904.519 40.5104 11768.528
## 1401 4501.544 -1363.0143 10366.103
## 1402 17595.980 11713.5168 23478.443
## 1403 1695.594 -4171.8417 7563.029
## 1404 11048.762 5181.6948 16915.829
## 1405 10581.104 4714.6436 16447.563
## 1406 7307.495 1443.4421 13171.547
## 1407 5436.861 -427.2653 11300.987
## 1408 3098.569 -2767.1317 8964.270
## 1409 3566.227 -2299.0267 9431.481
## 1410 5904.519 40.5104 11768.528
## 1411 8242.811 2378.4004 14107.223
## 1412 4033.886 -1830.9876 9898.759
## 1413 6839.836 975.8641 12703.808
## 1414 4501.544 -1363.0143 10366.103
## 1415 12919.396 7049.2418 18789.549
## 1416 1695.594 -4171.8417 7563.029
## 1417 8710.470 2845.7808 14575.159
## 1418 2630.911 -3235.3026 8497.124
## 1419 5904.519 40.5104 11768.528
## 1420 5436.861 -427.2653 11300.987
## 1421 6839.836 975.8641 12703.808
## 1422 7775.153 1910.9542 13639.352
## 1423 3566.227 -2299.0267 9431.481
## 1424 3098.569 -2767.1317 8964.270
## 1425 5904.519 40.5104 11768.528
## 1426 5904.519 40.5104 11768.528
## 1427 4033.886 -1830.9876 9898.759
## 1428 4969.203 -895.1068 10833.512
## 1429 2630.911 -3235.3026 8497.124
## 1430 9645.787 3780.3439 15511.230
## 1431 10581.104 4714.6436 16447.563
## 1432 7775.153 1910.9542 13639.352
## 1433 8710.470 2845.7808 14575.159
## 1434 4033.886 -1830.9876 9898.759
## 1435 8710.470 2845.7808 14575.159
## 1436 4033.886 -1830.9876 9898.759
## 1437 2163.252 -3703.5392 8030.043
## 1438 11048.762 5181.6948 16915.829
## 1439 1695.594 -4171.8417 7563.029
## 1440 5904.519 40.5104 11768.528
## 1441 9645.787 3780.3439 15511.230
## 1442 7307.495 1443.4421 13171.547
## 1443 3098.569 -2767.1317 8964.270
## 1444 12451.737 6582.4537 18321.021
## 1445 7775.153 1910.9542 13639.352
## 1446 11048.762 5181.6948 16915.829
## 1447 4969.203 -895.1068 10833.512
## 1448 8242.811 2378.4004 14107.223
## 1449 7775.153 1910.9542 13639.352
## 1450 3098.569 -2767.1317 8964.270
## 1451 5436.861 -427.2653 11300.987
## 1452 5904.519 40.5104 11768.528
## 1453 6839.836 975.8641 12703.808
## 1454 4969.203 -895.1068 10833.512
## 1455 4969.203 -895.1068 10833.512
## 1456 4969.203 -895.1068 10833.512
## 1457 5904.519 40.5104 11768.528
## 1458 10581.104 4714.6436 16447.563
## 1459 3098.569 -2767.1317 8964.270
## 1460 5904.519 40.5104 11768.528
## 1461 3566.227 -2299.0267 9431.481
## 1462 10581.104 4714.6436 16447.563
## 1463 11048.762 5181.6948 16915.829
## 1464 5904.519 40.5104 11768.528
## 1465 3566.227 -2299.0267 9431.481
## 1466 9178.128 3313.0952 15043.161
## 1467 5436.861 -427.2653 11300.987
## 1468 4033.886 -1830.9876 9898.759
## 1469 9178.128 3313.0952 15043.161
## 1470 4033.886 -1830.9876 9898.759
predict(modelo_RL_Simple, data.frame(seq(1,1470)), interval='confidence', level = 0.95)
## fit lwr upr
## 1 4969.203 4803.2757 5135.129
## 2 5904.519 5749.5724 6059.466
## 3 4501.544 4327.0378 4676.051
## 4 4969.203 4803.2757 5135.129
## 5 4033.886 3849.0995 4218.672
## 6 4969.203 4803.2757 5135.129
## 7 6839.836 6686.2900 6993.382
## 8 1695.594 1442.2067 1948.981
## 9 5904.519 5749.5724 6059.466
## 10 9178.128 8988.3401 9367.916
## 11 4033.886 3849.0995 4218.672
## 12 5904.519 5749.5724 6059.466
## 13 3566.227 3369.7274 3762.727
## 14 2630.911 2407.6101 2854.211
## 15 4033.886 3849.0995 4218.672
## 16 5904.519 5749.5724 6059.466
## 17 4501.544 4327.0378 4676.051
## 18 1695.594 1442.2067 1948.981
## 19 15725.346 15308.6471 16142.045
## 20 4033.886 3849.0995 4218.672
## 21 3566.227 3369.7274 3762.727
## 22 5904.519 5749.5724 6059.466
## 23 7307.495 7150.9075 7464.082
## 24 1227.935 958.6119 1497.259
## 25 4969.203 4803.2757 5135.129
## 26 13387.054 13059.7906 13714.317
## 27 5904.519 5749.5724 6059.466
## 28 5904.519 5749.5724 6059.466
## 29 12451.737 12158.6569 12744.817
## 30 11516.420 11256.0710 11776.770
## 31 4501.544 4327.0378 4676.051
## 32 5436.861 5277.5382 5596.184
## 33 5904.519 5749.5724 6059.466
## 34 10113.445 9898.0243 10328.866
## 35 4033.886 3849.0995 4218.672
## 36 4033.886 3849.0995 4218.672
## 37 2630.911 2407.6101 2854.211
## 38 2163.252 1925.2445 2401.260
## 39 4033.886 3849.0995 4218.672
## 40 5904.519 5749.5724 6059.466
## 41 1695.594 1442.2067 1948.981
## 42 1695.594 1442.2067 1948.981
## 43 1695.594 1442.2067 1948.981
## 44 5436.861 5277.5382 5596.184
## 45 6839.836 6686.2900 6993.382
## 46 11984.079 11707.5783 12260.579
## 47 5904.519 5749.5724 6059.466
## 48 4969.203 4803.2757 5135.129
## 49 7775.153 7613.1796 7937.126
## 50 1695.594 1442.2067 1948.981
## 51 11984.079 11707.5783 12260.579
## 52 2163.252 1925.2445 2401.260
## 53 5436.861 5277.5382 5596.184
## 54 5904.519 5749.5724 6059.466
## 55 3566.227 3369.7274 3762.727
## 56 8242.811 8073.3299 8412.293
## 57 5436.861 5277.5382 5596.184
## 58 3098.569 2889.1620 3307.976
## 59 5904.519 5749.5724 6059.466
## 60 4501.544 4327.0378 4676.051
## 61 5436.861 5277.5382 5596.184
## 62 5904.519 5749.5724 6059.466
## 63 14790.029 14409.6281 15170.430
## 64 14322.371 13959.8826 14684.859
## 65 9178.128 8988.3401 9367.916
## 66 11048.762 10804.0503 11293.474
## 67 4033.886 3849.0995 4218.672
## 68 12919.396 12609.3757 13229.415
## 69 3566.227 3369.7274 3762.727
## 70 2163.252 1925.2445 2401.260
## 71 10581.104 10351.4112 10810.796
## 72 4033.886 3849.0995 4218.672
## 73 1695.594 1442.2067 1948.981
## 74 5904.519 5749.5724 6059.466
## 75 3566.227 3369.7274 3762.727
## 76 6372.178 6219.1872 6525.168
## 77 8710.470 8531.6253 8889.314
## 78 9178.128 8988.3401 9367.916
## 79 8710.470 8531.6253 8889.314
## 80 8710.470 8531.6253 8889.314
## 81 5904.519 5749.5724 6059.466
## 82 4033.886 3849.0995 4218.672
## 83 12451.737 12158.6569 12744.817
## 84 9178.128 8988.3401 9367.916
## 85 3566.227 3369.7274 3762.727
## 86 18531.297 18003.1078 19059.485
## 87 2630.911 2407.6101 2854.211
## 88 5904.519 5749.5724 6059.466
## 89 6372.178 6219.1872 6525.168
## 90 5436.861 5277.5382 5596.184
## 91 11516.420 11256.0710 11776.770
## 92 6372.178 6219.1872 6525.168
## 93 6372.178 6219.1872 6525.168
## 94 11048.762 10804.0503 11293.474
## 95 6839.836 6686.2900 6993.382
## 96 8710.470 8531.6253 8889.314
## 97 3098.569 2889.1620 3307.976
## 98 3566.227 3369.7274 3762.727
## 99 18998.955 18451.9216 19545.988
## 100 9178.128 8988.3401 9367.916
## 101 4501.544 4327.0378 4676.051
## 102 1695.594 1442.2067 1948.981
## 103 1695.594 1442.2067 1948.981
## 104 8710.470 8531.6253 8889.314
## 105 9178.128 8988.3401 9367.916
## 106 15257.688 14859.2091 15656.166
## 107 14322.371 13959.8826 14684.859
## 108 4033.886 3849.0995 4218.672
## 109 2163.252 1925.2445 2401.260
## 110 1695.594 1442.2067 1948.981
## 111 11984.079 11707.5783 12260.579
## 112 5436.861 5277.5382 5596.184
## 113 11984.079 11707.5783 12260.579
## 114 4033.886 3849.0995 4218.672
## 115 6839.836 6686.2900 6993.382
## 116 6839.836 6686.2900 6993.382
## 117 7775.153 7613.1796 7937.126
## 118 5904.519 5749.5724 6059.466
## 119 4501.544 4327.0378 4676.051
## 120 12919.396 12609.3757 13229.415
## 121 5904.519 5749.5724 6059.466
## 122 4969.203 4803.2757 5135.129
## 123 4501.544 4327.0378 4676.051
## 124 11984.079 11707.5783 12260.579
## 125 6839.836 6686.2900 6993.382
## 126 3566.227 3369.7274 3762.727
## 127 19934.272 19349.3886 20519.155
## 128 1227.935 958.6119 1497.259
## 129 2630.911 2407.6101 2854.211
## 130 8710.470 8531.6253 8889.314
## 131 9645.787 9443.7311 9847.842
## 132 8710.470 8531.6253 8889.314
## 133 3098.569 2889.1620 3307.976
## 134 6839.836 6686.2900 6993.382
## 135 4969.203 4803.2757 5135.129
## 136 4501.544 4327.0378 4676.051
## 137 9645.787 9443.7311 9847.842
## 138 9178.128 8988.3401 9367.916
## 139 4033.886 3849.0995 4218.672
## 140 6839.836 6686.2900 6993.382
## 141 5904.519 5749.5724 6059.466
## 142 5436.861 5277.5382 5596.184
## 143 10113.445 9898.0243 10328.866
## 144 3566.227 3369.7274 3762.727
## 145 5436.861 5277.5382 5596.184
## 146 4969.203 4803.2757 5135.129
## 147 4033.886 3849.0995 4218.672
## 148 11048.762 10804.0503 11293.474
## 149 4501.544 4327.0378 4676.051
## 150 1695.594 1442.2067 1948.981
## 151 10581.104 10351.4112 10810.796
## 152 5904.519 5749.5724 6059.466
## 153 7307.495 7150.9075 7464.082
## 154 10581.104 10351.4112 10810.796
## 155 5436.861 5277.5382 5596.184
## 156 5904.519 5749.5724 6059.466
## 157 5904.519 5749.5724 6059.466
## 158 5436.861 5277.5382 5596.184
## 159 8242.811 8073.3299 8412.293
## 160 4033.886 3849.0995 4218.672
## 161 2163.252 1925.2445 2401.260
## 162 4033.886 3849.0995 4218.672
## 163 3566.227 3369.7274 3762.727
## 164 6839.836 6686.2900 6993.382
## 165 1695.594 1442.2067 1948.981
## 166 11048.762 10804.0503 11293.474
## 167 7307.495 7150.9075 7464.082
## 168 6839.836 6686.2900 6993.382
## 169 6839.836 6686.2900 6993.382
## 170 4969.203 4803.2757 5135.129
## 171 4033.886 3849.0995 4218.672
## 172 1695.594 1442.2067 1948.981
## 173 7307.495 7150.9075 7464.082
## 174 6839.836 6686.2900 6993.382
## 175 5436.861 5277.5382 5596.184
## 176 10113.445 9898.0243 10328.866
## 177 3098.569 2889.1620 3307.976
## 178 1695.594 1442.2067 1948.981
## 179 12451.737 12158.6569 12744.817
## 180 2163.252 1925.2445 2401.260
## 181 4501.544 4327.0378 4676.051
## 182 5436.861 5277.5382 5596.184
## 183 3098.569 2889.1620 3307.976
## 184 3566.227 3369.7274 3762.727
## 185 3566.227 3369.7274 3762.727
## 186 4969.203 4803.2757 5135.129
## 187 11048.762 10804.0503 11293.474
## 188 18063.638 17554.2327 18573.043
## 189 5904.519 5749.5724 6059.466
## 190 11048.762 10804.0503 11293.474
## 191 17128.321 16656.2692 17600.373
## 192 4501.544 4327.0378 4676.051
## 193 4969.203 4803.2757 5135.129
## 194 4501.544 4327.0378 4676.051
## 195 11516.420 11256.0710 11776.770
## 196 4969.203 4803.2757 5135.129
## 197 5904.519 5749.5724 6059.466
## 198 6372.178 6219.1872 6525.168
## 199 7775.153 7613.1796 7937.126
## 200 5436.861 5277.5382 5596.184
## 201 4033.886 3849.0995 4218.672
## 202 4501.544 4327.0378 4676.051
## 203 3566.227 3369.7274 3762.727
## 204 8242.811 8073.3299 8412.293
## 205 9178.128 8988.3401 9367.916
## 206 5904.519 5749.5724 6059.466
## 207 3098.569 2889.1620 3307.976
## 208 4969.203 4803.2757 5135.129
## 209 3566.227 3369.7274 3762.727
## 210 9178.128 8988.3401 9367.916
## 211 7775.153 7613.1796 7937.126
## 212 6839.836 6686.2900 6993.382
## 213 4501.544 4327.0378 4676.051
## 214 8710.470 8531.6253 8889.314
## 215 4969.203 4803.2757 5135.129
## 216 8710.470 8531.6253 8889.314
## 217 5436.861 5277.5382 5596.184
## 218 4501.544 4327.0378 4676.051
## 219 11984.079 11707.5783 12260.579
## 220 8710.470 8531.6253 8889.314
## 221 8710.470 8531.6253 8889.314
## 222 4501.544 4327.0378 4676.051
## 223 5904.519 5749.5724 6059.466
## 224 9178.128 8988.3401 9367.916
## 225 4033.886 3849.0995 4218.672
## 226 4501.544 4327.0378 4676.051
## 227 7307.495 7150.9075 7464.082
## 228 6372.178 6219.1872 6525.168
## 229 5904.519 5749.5724 6059.466
## 230 3098.569 2889.1620 3307.976
## 231 4033.886 3849.0995 4218.672
## 232 11516.420 11256.0710 11776.770
## 233 4501.544 4327.0378 4676.051
## 234 16193.004 15757.9600 16628.049
## 235 4969.203 4803.2757 5135.129
## 236 11516.420 11256.0710 11776.770
## 237 7307.495 7150.9075 7464.082
## 238 16660.663 16207.1631 17114.163
## 239 4033.886 3849.0995 4218.672
## 240 3098.569 2889.1620 3307.976
## 241 4501.544 4327.0378 4676.051
## 242 3098.569 2889.1620 3307.976
## 243 9178.128 8988.3401 9367.916
## 244 5436.861 5277.5382 5596.184
## 245 12919.396 12609.3757 13229.415
## 246 5436.861 5277.5382 5596.184
## 247 2163.252 1925.2445 2401.260
## 248 7307.495 7150.9075 7464.082
## 249 9178.128 8988.3401 9367.916
## 250 5436.861 5277.5382 5596.184
## 251 9178.128 8988.3401 9367.916
## 252 10581.104 10351.4112 10810.796
## 253 4033.886 3849.0995 4218.672
## 254 5904.519 5749.5724 6059.466
## 255 5904.519 5749.5724 6059.466
## 256 3566.227 3369.7274 3762.727
## 257 5904.519 5749.5724 6059.466
## 258 11516.420 11256.0710 11776.770
## 259 1695.594 1442.2067 1948.981
## 260 4033.886 3849.0995 4218.672
## 261 3566.227 3369.7274 3762.727
## 262 7307.495 7150.9075 7464.082
## 263 5436.861 5277.5382 5596.184
## 264 14322.371 13959.8826 14684.859
## 265 3566.227 3369.7274 3762.727
## 266 5904.519 5749.5724 6059.466
## 267 5904.519 5749.5724 6059.466
## 268 4033.886 3849.0995 4218.672
## 269 11048.762 10804.0503 11293.474
## 270 8710.470 8531.6253 8889.314
## 271 18531.297 18003.1078 19059.485
## 272 5904.519 5749.5724 6059.466
## 273 3566.227 3369.7274 3762.727
## 274 4501.544 4327.0378 4676.051
## 275 2630.911 2407.6101 2854.211
## 276 8242.811 8073.3299 8412.293
## 277 5904.519 5749.5724 6059.466
## 278 4969.203 4803.2757 5135.129
## 279 4033.886 3849.0995 4218.672
## 280 14322.371 13959.8826 14684.859
## 281 11048.762 10804.0503 11293.474
## 282 10581.104 10351.4112 10810.796
## 283 5904.519 5749.5724 6059.466
## 284 6839.836 6686.2900 6993.382
## 285 3566.227 3369.7274 3762.727
## 286 9178.128 8988.3401 9367.916
## 287 10113.445 9898.0243 10328.866
## 288 5904.519 5749.5724 6059.466
## 289 3566.227 3369.7274 3762.727
## 290 3566.227 3369.7274 3762.727
## 291 11516.420 11256.0710 11776.770
## 292 5904.519 5749.5724 6059.466
## 293 2163.252 1925.2445 2401.260
## 294 4969.203 4803.2757 5135.129
## 295 3098.569 2889.1620 3307.976
## 296 11984.079 11707.5783 12260.579
## 297 1227.935 958.6119 1497.259
## 298 6839.836 6686.2900 6993.382
## 299 3098.569 2889.1620 3307.976
## 300 7307.495 7150.9075 7464.082
## 301 11516.420 11256.0710 11776.770
## 302 1227.935 958.6119 1497.259
## 303 5436.861 5277.5382 5596.184
## 304 5904.519 5749.5724 6059.466
## 305 10113.445 9898.0243 10328.866
## 306 6372.178 6219.1872 6525.168
## 307 7307.495 7150.9075 7464.082
## 308 10113.445 9898.0243 10328.866
## 309 6839.836 6686.2900 6993.382
## 310 4033.886 3849.0995 4218.672
## 311 5436.861 5277.5382 5596.184
## 312 12451.737 12158.6569 12744.817
## 313 2630.911 2407.6101 2854.211
## 314 6839.836 6686.2900 6993.382
## 315 11048.762 10804.0503 11293.474
## 316 5436.861 5277.5382 5596.184
## 317 12919.396 12609.3757 13229.415
## 318 6372.178 6219.1872 6525.168
## 319 3098.569 2889.1620 3307.976
## 320 7307.495 7150.9075 7464.082
## 321 3566.227 3369.7274 3762.727
## 322 7307.495 7150.9075 7464.082
## 323 5904.519 5749.5724 6059.466
## 324 3566.227 3369.7274 3762.727
## 325 6372.178 6219.1872 6525.168
## 326 5904.519 5749.5724 6059.466
## 327 11048.762 10804.0503 11293.474
## 328 6839.836 6686.2900 6993.382
## 329 5436.861 5277.5382 5596.184
## 330 11048.762 10804.0503 11293.474
## 331 5436.861 5277.5382 5596.184
## 332 4033.886 3849.0995 4218.672
## 333 10581.104 10351.4112 10810.796
## 334 5904.519 5749.5724 6059.466
## 335 6839.836 6686.2900 6993.382
## 336 4033.886 3849.0995 4218.672
## 337 4501.544 4327.0378 4676.051
## 338 3098.569 2889.1620 3307.976
## 339 5904.519 5749.5724 6059.466
## 340 4969.203 4803.2757 5135.129
## 341 4969.203 4803.2757 5135.129
## 342 6839.836 6686.2900 6993.382
## 343 6372.178 6219.1872 6525.168
## 344 4501.544 4327.0378 4676.051
## 345 9178.128 8988.3401 9367.916
## 346 3098.569 2889.1620 3307.976
## 347 4969.203 4803.2757 5135.129
## 348 3566.227 3369.7274 3762.727
## 349 8710.470 8531.6253 8889.314
## 350 3098.569 2889.1620 3307.976
## 351 3098.569 2889.1620 3307.976
## 352 4969.203 4803.2757 5135.129
## 353 8242.811 8073.3299 8412.293
## 354 7307.495 7150.9075 7464.082
## 355 3098.569 2889.1620 3307.976
## 356 4969.203 4803.2757 5135.129
## 357 7775.153 7613.1796 7937.126
## 358 2630.911 2407.6101 2854.211
## 359 4501.544 4327.0378 4676.051
## 360 8710.470 8531.6253 8889.314
## 361 8242.811 8073.3299 8412.293
## 362 5904.519 5749.5724 6059.466
## 363 2630.911 2407.6101 2854.211
## 364 1695.594 1442.2067 1948.981
## 365 9178.128 8988.3401 9367.916
## 366 4501.544 4327.0378 4676.051
## 367 4969.203 4803.2757 5135.129
## 368 10581.104 10351.4112 10810.796
## 369 4969.203 4803.2757 5135.129
## 370 2630.911 2407.6101 2854.211
## 371 1695.594 1442.2067 1948.981
## 372 4033.886 3849.0995 4218.672
## 373 5904.519 5749.5724 6059.466
## 374 3566.227 3369.7274 3762.727
## 375 4501.544 4327.0378 4676.051
## 376 13387.054 13059.7906 13714.317
## 377 9645.787 9443.7311 9847.842
## 378 4033.886 3849.0995 4218.672
## 379 5436.861 5277.5382 5596.184
## 380 15257.688 14859.2091 15656.166
## 381 3566.227 3369.7274 3762.727
## 382 1695.594 1442.2067 1948.981
## 383 4501.544 4327.0378 4676.051
## 384 2163.252 1925.2445 2401.260
## 385 5904.519 5749.5724 6059.466
## 386 2630.911 2407.6101 2854.211
## 387 9645.787 9443.7311 9847.842
## 388 4969.203 4803.2757 5135.129
## 389 4969.203 4803.2757 5135.129
## 390 9645.787 9443.7311 9847.842
## 391 12919.396 12609.3757 13229.415
## 392 10581.104 10351.4112 10810.796
## 393 12451.737 12158.6569 12744.817
## 394 4033.886 3849.0995 4218.672
## 395 7307.495 7150.9075 7464.082
## 396 4969.203 4803.2757 5135.129
## 397 4969.203 4803.2757 5135.129
## 398 3566.227 3369.7274 3762.727
## 399 8242.811 8073.3299 8412.293
## 400 3098.569 2889.1620 3307.976
## 401 11048.762 10804.0503 11293.474
## 402 18063.638 17554.2327 18573.043
## 403 4033.886 3849.0995 4218.672
## 404 5904.519 5749.5724 6059.466
## 405 5904.519 5749.5724 6059.466
## 406 4033.886 3849.0995 4218.672
## 407 14322.371 13959.8826 14684.859
## 408 4969.203 4803.2757 5135.129
## 409 15725.346 15308.6471 16142.045
## 410 10113.445 9898.0243 10328.866
## 411 6372.178 6219.1872 6525.168
## 412 16660.663 16207.1631 17114.163
## 413 10113.445 9898.0243 10328.866
## 414 4501.544 4327.0378 4676.051
## 415 4033.886 3849.0995 4218.672
## 416 2630.911 2407.6101 2854.211
## 417 1695.594 1442.2067 1948.981
## 418 11048.762 10804.0503 11293.474
## 419 2630.911 2407.6101 2854.211
## 420 5436.861 5277.5382 5596.184
## 421 5904.519 5749.5724 6059.466
## 422 4033.886 3849.0995 4218.672
## 423 1695.594 1442.2067 1948.981
## 424 5904.519 5749.5724 6059.466
## 425 16193.004 15757.9600 16628.049
## 426 14322.371 13959.8826 14684.859
## 427 6839.836 6686.2900 6993.382
## 428 11516.420 11256.0710 11776.770
## 429 10581.104 10351.4112 10810.796
## 430 13387.054 13059.7906 13714.317
## 431 4033.886 3849.0995 4218.672
## 432 10113.445 9898.0243 10328.866
## 433 7775.153 7613.1796 7937.126
## 434 8242.811 8073.3299 8412.293
## 435 7307.495 7150.9075 7464.082
## 436 8242.811 8073.3299 8412.293
## 437 4969.203 4803.2757 5135.129
## 438 3098.569 2889.1620 3307.976
## 439 5904.519 5749.5724 6059.466
## 440 6839.836 6686.2900 6993.382
## 441 6372.178 6219.1872 6525.168
## 442 4969.203 4803.2757 5135.129
## 443 5904.519 5749.5724 6059.466
## 444 3098.569 2889.1620 3307.976
## 445 7775.153 7613.1796 7937.126
## 446 18531.297 18003.1078 19059.485
## 447 8710.470 8531.6253 8889.314
## 448 8242.811 8073.3299 8412.293
## 449 11516.420 11256.0710 11776.770
## 450 4969.203 4803.2757 5135.129
## 451 5904.519 5749.5724 6059.466
## 452 5904.519 5749.5724 6059.466
## 453 5436.861 5277.5382 5596.184
## 454 4969.203 4803.2757 5135.129
## 455 4969.203 4803.2757 5135.129
## 456 5904.519 5749.5724 6059.466
## 457 5904.519 5749.5724 6059.466
## 458 1227.935 958.6119 1497.259
## 459 10581.104 10351.4112 10810.796
## 460 5904.519 5749.5724 6059.466
## 461 4969.203 4803.2757 5135.129
## 462 3566.227 3369.7274 3762.727
## 463 5904.519 5749.5724 6059.466
## 464 1695.594 1442.2067 1948.981
## 465 6839.836 6686.2900 6993.382
## 466 14322.371 13959.8826 14684.859
## 467 11516.420 11256.0710 11776.770
## 468 5436.861 5277.5382 5596.184
## 469 9645.787 9443.7311 9847.842
## 470 4033.886 3849.0995 4218.672
## 471 2630.911 2407.6101 2854.211
## 472 9645.787 9443.7311 9847.842
## 473 4969.203 4803.2757 5135.129
## 474 15725.346 15308.6471 16142.045
## 475 4033.886 3849.0995 4218.672
## 476 4033.886 3849.0995 4218.672
## 477 1695.594 1442.2067 1948.981
## 478 16193.004 15757.9600 16628.049
## 479 4501.544 4327.0378 4676.051
## 480 4033.886 3849.0995 4218.672
## 481 1695.594 1442.2067 1948.981
## 482 4033.886 3849.0995 4218.672
## 483 5436.861 5277.5382 5596.184
## 484 5436.861 5277.5382 5596.184
## 485 7307.495 7150.9075 7464.082
## 486 4033.886 3849.0995 4218.672
## 487 9178.128 8988.3401 9367.916
## 488 1695.594 1442.2067 1948.981
## 489 5904.519 5749.5724 6059.466
## 490 11048.762 10804.0503 11293.474
## 491 4969.203 4803.2757 5135.129
## 492 5904.519 5749.5724 6059.466
## 493 11048.762 10804.0503 11293.474
## 494 5904.519 5749.5724 6059.466
## 495 4969.203 4803.2757 5135.129
## 496 3566.227 3369.7274 3762.727
## 497 2630.911 2407.6101 2854.211
## 498 13387.054 13059.7906 13714.317
## 499 2630.911 2407.6101 2854.211
## 500 4033.886 3849.0995 4218.672
## 501 4033.886 3849.0995 4218.672
## 502 1695.594 1442.2067 1948.981
## 503 9645.787 9443.7311 9847.842
## 504 5904.519 5749.5724 6059.466
## 505 3566.227 3369.7274 3762.727
## 506 2630.911 2407.6101 2854.211
## 507 5904.519 5749.5724 6059.466
## 508 4033.886 3849.0995 4218.672
## 509 9178.128 8988.3401 9367.916
## 510 8242.811 8073.3299 8412.293
## 511 8710.470 8531.6253 8889.314
## 512 7307.495 7150.9075 7464.082
## 513 3566.227 3369.7274 3762.727
## 514 1695.594 1442.2067 1948.981
## 515 5904.519 5749.5724 6059.466
## 516 1695.594 1442.2067 1948.981
## 517 3566.227 3369.7274 3762.727
## 518 3098.569 2889.1620 3307.976
## 519 4969.203 4803.2757 5135.129
## 520 5904.519 5749.5724 6059.466
## 521 6839.836 6686.2900 6993.382
## 522 4033.886 3849.0995 4218.672
## 523 3098.569 2889.1620 3307.976
## 524 10581.104 10351.4112 10810.796
## 525 5436.861 5277.5382 5596.184
## 526 3098.569 2889.1620 3307.976
## 527 10581.104 10351.4112 10810.796
## 528 5904.519 5749.5724 6059.466
## 529 9645.787 9443.7311 9847.842
## 530 5904.519 5749.5724 6059.466
## 531 5436.861 5277.5382 5596.184
## 532 5904.519 5749.5724 6059.466
## 533 10581.104 10351.4112 10810.796
## 534 10581.104 10351.4112 10810.796
## 535 16193.004 15757.9600 16628.049
## 536 11984.079 11707.5783 12260.579
## 537 5904.519 5749.5724 6059.466
## 538 5436.861 5277.5382 5596.184
## 539 11516.420 11256.0710 11776.770
## 540 3098.569 2889.1620 3307.976
## 541 5904.519 5749.5724 6059.466
## 542 5904.519 5749.5724 6059.466
## 543 5904.519 5749.5724 6059.466
## 544 5436.861 5277.5382 5596.184
## 545 14322.371 13959.8826 14684.859
## 546 5904.519 5749.5724 6059.466
## 547 1695.594 1442.2067 1948.981
## 548 4501.544 4327.0378 4676.051
## 549 4501.544 4327.0378 4676.051
## 550 5904.519 5749.5724 6059.466
## 551 3566.227 3369.7274 3762.727
## 552 6839.836 6686.2900 6993.382
## 553 15257.688 14859.2091 15656.166
## 554 3566.227 3369.7274 3762.727
## 555 5436.861 5277.5382 5596.184
## 556 2163.252 1925.2445 2401.260
## 557 10113.445 9898.0243 10328.866
## 558 8710.470 8531.6253 8889.314
## 559 5904.519 5749.5724 6059.466
## 560 4033.886 3849.0995 4218.672
## 561 4501.544 4327.0378 4676.051
## 562 17128.321 16656.2692 17600.373
## 563 5904.519 5749.5724 6059.466
## 564 4033.886 3849.0995 4218.672
## 565 5436.861 5277.5382 5596.184
## 566 2163.252 1925.2445 2401.260
## 567 4969.203 4803.2757 5135.129
## 568 4033.886 3849.0995 4218.672
## 569 12451.737 12158.6569 12744.817
## 570 5904.519 5749.5724 6059.466
## 571 3566.227 3369.7274 3762.727
## 572 3566.227 3369.7274 3762.727
## 573 6372.178 6219.1872 6525.168
## 574 4033.886 3849.0995 4218.672
## 575 5904.519 5749.5724 6059.466
## 576 5436.861 5277.5382 5596.184
## 577 3566.227 3369.7274 3762.727
## 578 4033.886 3849.0995 4218.672
## 579 9178.128 8988.3401 9367.916
## 580 4033.886 3849.0995 4218.672
## 581 2630.911 2407.6101 2854.211
## 582 4501.544 4327.0378 4676.051
## 583 4969.203 4803.2757 5135.129
## 584 4033.886 3849.0995 4218.672
## 585 12451.737 12158.6569 12744.817
## 586 1695.594 1442.2067 1948.981
## 587 1695.594 1442.2067 1948.981
## 588 5436.861 5277.5382 5596.184
## 589 15257.688 14859.2091 15656.166
## 590 1695.594 1442.2067 1948.981
## 591 7775.153 7613.1796 7937.126
## 592 4033.886 3849.0995 4218.672
## 593 13387.054 13059.7906 13714.317
## 594 5904.519 5749.5724 6059.466
## 595 5904.519 5749.5724 6059.466
## 596 19934.272 19349.3886 20519.155
## 597 4501.544 4327.0378 4676.051
## 598 4969.203 4803.2757 5135.129
## 599 3566.227 3369.7274 3762.727
## 600 4969.203 4803.2757 5135.129
## 601 7775.153 7613.1796 7937.126
## 602 5904.519 5749.5724 6059.466
## 603 6839.836 6686.2900 6993.382
## 604 1695.594 1442.2067 1948.981
## 605 5904.519 5749.5724 6059.466
## 606 7307.495 7150.9075 7464.082
## 607 4033.886 3849.0995 4218.672
## 608 5436.861 5277.5382 5596.184
## 609 6839.836 6686.2900 6993.382
## 610 11516.420 11256.0710 11776.770
## 611 5436.861 5277.5382 5596.184
## 612 9178.128 8988.3401 9367.916
## 613 4969.203 4803.2757 5135.129
## 614 3098.569 2889.1620 3307.976
## 615 4969.203 4803.2757 5135.129
## 616 1227.935 958.6119 1497.259
## 617 14790.029 14409.6281 15170.430
## 618 5904.519 5749.5724 6059.466
## 619 4033.886 3849.0995 4218.672
## 620 5436.861 5277.5382 5596.184
## 621 4033.886 3849.0995 4218.672
## 622 9645.787 9443.7311 9847.842
## 623 4969.203 4803.2757 5135.129
## 624 5904.519 5749.5724 6059.466
## 625 17595.980 17105.2892 18086.670
## 626 9645.787 9443.7311 9847.842
## 627 5436.861 5277.5382 5596.184
## 628 15725.346 15308.6471 16142.045
## 629 5436.861 5277.5382 5596.184
## 630 4033.886 3849.0995 4218.672
## 631 3098.569 2889.1620 3307.976
## 632 5904.519 5749.5724 6059.466
## 633 4969.203 4803.2757 5135.129
## 634 4033.886 3849.0995 4218.672
## 635 3566.227 3369.7274 3762.727
## 636 9178.128 8988.3401 9367.916
## 637 5904.519 5749.5724 6059.466
## 638 3098.569 2889.1620 3307.976
## 639 3566.227 3369.7274 3762.727
## 640 4501.544 4327.0378 4676.051
## 641 4033.886 3849.0995 4218.672
## 642 5904.519 5749.5724 6059.466
## 643 2630.911 2407.6101 2854.211
## 644 9178.128 8988.3401 9367.916
## 645 4969.203 4803.2757 5135.129
## 646 3566.227 3369.7274 3762.727
## 647 14322.371 13959.8826 14684.859
## 648 8710.470 8531.6253 8889.314
## 649 5904.519 5749.5724 6059.466
## 650 16660.663 16207.1631 17114.163
## 651 6839.836 6686.2900 6993.382
## 652 4969.203 4803.2757 5135.129
## 653 5904.519 5749.5724 6059.466
## 654 15725.346 15308.6471 16142.045
## 655 7307.495 7150.9075 7464.082
## 656 4501.544 4327.0378 4676.051
## 657 1695.594 1442.2067 1948.981
## 658 4969.203 4803.2757 5135.129
## 659 4969.203 4803.2757 5135.129
## 660 3098.569 2889.1620 3307.976
## 661 2630.911 2407.6101 2854.211
## 662 3098.569 2889.1620 3307.976
## 663 2163.252 1925.2445 2401.260
## 664 1695.594 1442.2067 1948.981
## 665 9178.128 8988.3401 9367.916
## 666 2630.911 2407.6101 2854.211
## 667 3098.569 2889.1620 3307.976
## 668 5904.519 5749.5724 6059.466
## 669 4033.886 3849.0995 4218.672
## 670 4969.203 4803.2757 5135.129
## 671 1695.594 1442.2067 1948.981
## 672 1695.594 1442.2067 1948.981
## 673 5904.519 5749.5724 6059.466
## 674 4033.886 3849.0995 4218.672
## 675 12451.737 12158.6569 12744.817
## 676 7307.495 7150.9075 7464.082
## 677 5904.519 5749.5724 6059.466
## 678 14790.029 14409.6281 15170.430
## 679 7307.495 7150.9075 7464.082
## 680 5436.861 5277.5382 5596.184
## 681 4969.203 4803.2757 5135.129
## 682 8242.811 8073.3299 8412.293
## 683 3566.227 3369.7274 3762.727
## 684 1695.594 1442.2067 1948.981
## 685 6372.178 6219.1872 6525.168
## 686 4501.544 4327.0378 4676.051
## 687 10581.104 10351.4112 10810.796
## 688 8710.470 8531.6253 8889.314
## 689 1695.594 1442.2067 1948.981
## 690 1695.594 1442.2067 1948.981
## 691 5904.519 5749.5724 6059.466
## 692 2630.911 2407.6101 2854.211
## 693 4969.203 4803.2757 5135.129
## 694 8710.470 8531.6253 8889.314
## 695 4033.886 3849.0995 4218.672
## 696 9178.128 8988.3401 9367.916
## 697 5436.861 5277.5382 5596.184
## 698 2630.911 2407.6101 2854.211
## 699 3566.227 3369.7274 3762.727
## 700 13387.054 13059.7906 13714.317
## 701 4501.544 4327.0378 4676.051
## 702 11516.420 11256.0710 11776.770
## 703 5904.519 5749.5724 6059.466
## 704 4033.886 3849.0995 4218.672
## 705 6839.836 6686.2900 6993.382
## 706 5436.861 5277.5382 5596.184
## 707 11516.420 11256.0710 11776.770
## 708 10581.104 10351.4112 10810.796
## 709 6839.836 6686.2900 6993.382
## 710 3098.569 2889.1620 3307.976
## 711 5904.519 5749.5724 6059.466
## 712 2630.911 2407.6101 2854.211
## 713 3566.227 3369.7274 3762.727
## 714 4969.203 4803.2757 5135.129
## 715 16193.004 15757.9600 16628.049
## 716 4033.886 3849.0995 4218.672
## 717 11048.762 10804.0503 11293.474
## 718 3098.569 2889.1620 3307.976
## 719 5436.861 5277.5382 5596.184
## 720 5436.861 5277.5382 5596.184
## 721 4501.544 4327.0378 4676.051
## 722 11516.420 11256.0710 11776.770
## 723 2630.911 2407.6101 2854.211
## 724 7307.495 7150.9075 7464.082
## 725 3566.227 3369.7274 3762.727
## 726 3566.227 3369.7274 3762.727
## 727 3098.569 2889.1620 3307.976
## 728 1227.935 958.6119 1497.259
## 729 11516.420 11256.0710 11776.770
## 730 8710.470 8531.6253 8889.314
## 731 5436.861 5277.5382 5596.184
## 732 1695.594 1442.2067 1948.981
## 733 3098.569 2889.1620 3307.976
## 734 4969.203 4803.2757 5135.129
## 735 3098.569 2889.1620 3307.976
## 736 10113.445 9898.0243 10328.866
## 737 13854.712 13509.9471 14199.478
## 738 4969.203 4803.2757 5135.129
## 739 11048.762 10804.0503 11293.474
## 740 3098.569 2889.1620 3307.976
## 741 2630.911 2407.6101 2854.211
## 742 11048.762 10804.0503 11293.474
## 743 4969.203 4803.2757 5135.129
## 744 15257.688 14859.2091 15656.166
## 745 8242.811 8073.3299 8412.293
## 746 9178.128 8988.3401 9367.916
## 747 11048.762 10804.0503 11293.474
## 748 10113.445 9898.0243 10328.866
## 749 4501.544 4327.0378 4676.051
## 750 16660.663 16207.1631 17114.163
## 751 11984.079 11707.5783 12260.579
## 752 10113.445 9898.0243 10328.866
## 753 9645.787 9443.7311 9847.842
## 754 11048.762 10804.0503 11293.474
## 755 2630.911 2407.6101 2854.211
## 756 13387.054 13059.7906 13714.317
## 757 5904.519 5749.5724 6059.466
## 758 8710.470 8531.6253 8889.314
## 759 7775.153 7613.1796 7937.126
## 760 4033.886 3849.0995 4218.672
## 761 15257.688 14859.2091 15656.166
## 762 5436.861 5277.5382 5596.184
## 763 4033.886 3849.0995 4218.672
## 764 1695.594 1442.2067 1948.981
## 765 1695.594 1442.2067 1948.981
## 766 4969.203 4803.2757 5135.129
## 767 14790.029 14409.6281 15170.430
## 768 4969.203 4803.2757 5135.129
## 769 4969.203 4803.2757 5135.129
## 770 3566.227 3369.7274 3762.727
## 771 11984.079 11707.5783 12260.579
## 772 7307.495 7150.9075 7464.082
## 773 9645.787 9443.7311 9847.842
## 774 8242.811 8073.3299 8412.293
## 775 15725.346 15308.6471 16142.045
## 776 9645.787 9443.7311 9847.842
## 777 2163.252 1925.2445 2401.260
## 778 1695.594 1442.2067 1948.981
## 779 10113.445 9898.0243 10328.866
## 780 9645.787 9443.7311 9847.842
## 781 5904.519 5749.5724 6059.466
## 782 4033.886 3849.0995 4218.672
## 783 4501.544 4327.0378 4676.051
## 784 5904.519 5749.5724 6059.466
## 785 10581.104 10351.4112 10810.796
## 786 7775.153 7613.1796 7937.126
## 787 2630.911 2407.6101 2854.211
## 788 11984.079 11707.5783 12260.579
## 789 5904.519 5749.5724 6059.466
## 790 12451.737 12158.6569 12744.817
## 791 5436.861 5277.5382 5596.184
## 792 5436.861 5277.5382 5596.184
## 793 7775.153 7613.1796 7937.126
## 794 3098.569 2889.1620 3307.976
## 795 4501.544 4327.0378 4676.051
## 796 4969.203 4803.2757 5135.129
## 797 4501.544 4327.0378 4676.051
## 798 1695.594 1442.2067 1948.981
## 799 3566.227 3369.7274 3762.727
## 800 11984.079 11707.5783 12260.579
## 801 1695.594 1442.2067 1948.981
## 802 3566.227 3369.7274 3762.727
## 803 3098.569 2889.1620 3307.976
## 804 4033.886 3849.0995 4218.672
## 805 13854.712 13509.9471 14199.478
## 806 8242.811 8073.3299 8412.293
## 807 9645.787 9443.7311 9847.842
## 808 5436.861 5277.5382 5596.184
## 809 6372.178 6219.1872 6525.168
## 810 5904.519 5749.5724 6059.466
## 811 11984.079 11707.5783 12260.579
## 812 5904.519 5749.5724 6059.466
## 813 9645.787 9443.7311 9847.842
## 814 11048.762 10804.0503 11293.474
## 815 11048.762 10804.0503 11293.474
## 816 2163.252 1925.2445 2401.260
## 817 5436.861 5277.5382 5596.184
## 818 9645.787 9443.7311 9847.842
## 819 2630.911 2407.6101 2854.211
## 820 4033.886 3849.0995 4218.672
## 821 3566.227 3369.7274 3762.727
## 822 11516.420 11256.0710 11776.770
## 823 3566.227 3369.7274 3762.727
## 824 4969.203 4803.2757 5135.129
## 825 8710.470 8531.6253 8889.314
## 826 5904.519 5749.5724 6059.466
## 827 4501.544 4327.0378 4676.051
## 828 2630.911 2407.6101 2854.211
## 829 1227.935 958.6119 1497.259
## 830 4033.886 3849.0995 4218.672
## 831 4033.886 3849.0995 4218.672
## 832 2163.252 1925.2445 2401.260
## 833 5436.861 5277.5382 5596.184
## 834 3098.569 2889.1620 3307.976
## 835 4033.886 3849.0995 4218.672
## 836 4033.886 3849.0995 4218.672
## 837 6372.178 6219.1872 6525.168
## 838 10581.104 10351.4112 10810.796
## 839 11516.420 11256.0710 11776.770
## 840 5436.861 5277.5382 5596.184
## 841 5904.519 5749.5724 6059.466
## 842 4033.886 3849.0995 4218.672
## 843 1695.594 1442.2067 1948.981
## 844 4969.203 4803.2757 5135.129
## 845 5904.519 5749.5724 6059.466
## 846 8710.470 8531.6253 8889.314
## 847 8242.811 8073.3299 8412.293
## 848 7775.153 7613.1796 7937.126
## 849 2163.252 1925.2445 2401.260
## 850 4501.544 4327.0378 4676.051
## 851 1695.594 1442.2067 1948.981
## 852 14322.371 13959.8826 14684.859
## 853 5904.519 5749.5724 6059.466
## 854 1695.594 1442.2067 1948.981
## 855 4501.544 4327.0378 4676.051
## 856 7775.153 7613.1796 7937.126
## 857 2163.252 1925.2445 2401.260
## 858 4033.886 3849.0995 4218.672
## 859 13387.054 13059.7906 13714.317
## 860 4033.886 3849.0995 4218.672
## 861 1695.594 1442.2067 1948.981
## 862 14322.371 13959.8826 14684.859
## 863 4033.886 3849.0995 4218.672
## 864 3566.227 3369.7274 3762.727
## 865 3566.227 3369.7274 3762.727
## 866 4969.203 4803.2757 5135.129
## 867 3566.227 3369.7274 3762.727
## 868 16193.004 15757.9600 16628.049
## 869 4033.886 3849.0995 4218.672
## 870 12919.396 12609.3757 13229.415
## 871 8242.811 8073.3299 8412.293
## 872 1695.594 1442.2067 1948.981
## 873 5904.519 5749.5724 6059.466
## 874 4501.544 4327.0378 4676.051
## 875 5904.519 5749.5724 6059.466
## 876 10581.104 10351.4112 10810.796
## 877 2163.252 1925.2445 2401.260
## 878 6839.836 6686.2900 6993.382
## 879 5904.519 5749.5724 6059.466
## 880 6839.836 6686.2900 6993.382
## 881 2163.252 1925.2445 2401.260
## 882 5904.519 5749.5724 6059.466
## 883 9178.128 8988.3401 9367.916
## 884 8242.811 8073.3299 8412.293
## 885 4501.544 4327.0378 4676.051
## 886 3566.227 3369.7274 3762.727
## 887 6839.836 6686.2900 6993.382
## 888 10581.104 10351.4112 10810.796
## 889 8710.470 8531.6253 8889.314
## 890 5436.861 5277.5382 5596.184
## 891 16660.663 16207.1631 17114.163
## 892 5904.519 5749.5724 6059.466
## 893 1695.594 1442.2067 1948.981
## 894 2630.911 2407.6101 2854.211
## 895 18063.638 17554.2327 18573.043
## 896 4033.886 3849.0995 4218.672
## 897 5904.519 5749.5724 6059.466
## 898 7307.495 7150.9075 7464.082
## 899 12919.396 12609.3757 13229.415
## 900 11984.079 11707.5783 12260.579
## 901 6839.836 6686.2900 6993.382
## 902 4501.544 4327.0378 4676.051
## 903 3566.227 3369.7274 3762.727
## 904 4033.886 3849.0995 4218.672
## 905 12919.396 12609.3757 13229.415
## 906 5436.861 5277.5382 5596.184
## 907 2163.252 1925.2445 2401.260
## 908 13387.054 13059.7906 13714.317
## 909 5904.519 5749.5724 6059.466
## 910 1695.594 1442.2067 1948.981
## 911 1695.594 1442.2067 1948.981
## 912 1695.594 1442.2067 1948.981
## 913 4969.203 4803.2757 5135.129
## 914 13387.054 13059.7906 13714.317
## 915 17128.321 16656.2692 17600.373
## 916 2163.252 1925.2445 2401.260
## 917 13387.054 13059.7906 13714.317
## 918 3098.569 2889.1620 3307.976
## 919 15725.346 15308.6471 16142.045
## 920 12919.396 12609.3757 13229.415
## 921 8242.811 8073.3299 8412.293
## 922 3566.227 3369.7274 3762.727
## 923 13387.054 13059.7906 13714.317
## 924 7775.153 7613.1796 7937.126
## 925 3098.569 2889.1620 3307.976
## 926 9645.787 9443.7311 9847.842
## 927 11984.079 11707.5783 12260.579
## 928 9645.787 9443.7311 9847.842
## 929 5904.519 5749.5724 6059.466
## 930 2163.252 1925.2445 2401.260
## 931 4969.203 4803.2757 5135.129
## 932 5904.519 5749.5724 6059.466
## 933 5904.519 5749.5724 6059.466
## 934 3566.227 3369.7274 3762.727
## 935 2163.252 1925.2445 2401.260
## 936 5904.519 5749.5724 6059.466
## 937 11516.420 11256.0710 11776.770
## 938 11048.762 10804.0503 11293.474
## 939 2163.252 1925.2445 2401.260
## 940 5904.519 5749.5724 6059.466
## 941 4033.886 3849.0995 4218.672
## 942 5904.519 5749.5724 6059.466
## 943 5904.519 5749.5724 6059.466
## 944 5904.519 5749.5724 6059.466
## 945 5904.519 5749.5724 6059.466
## 946 12919.396 12609.3757 13229.415
## 947 5436.861 5277.5382 5596.184
## 948 5904.519 5749.5724 6059.466
## 949 5436.861 5277.5382 5596.184
## 950 5436.861 5277.5382 5596.184
## 951 5904.519 5749.5724 6059.466
## 952 10113.445 9898.0243 10328.866
## 953 2630.911 2407.6101 2854.211
## 954 5904.519 5749.5724 6059.466
## 955 11048.762 10804.0503 11293.474
## 956 11984.079 11707.5783 12260.579
## 957 18063.638 17554.2327 18573.043
## 958 4033.886 3849.0995 4218.672
## 959 5904.519 5749.5724 6059.466
## 960 5436.861 5277.5382 5596.184
## 961 5904.519 5749.5724 6059.466
## 962 5436.861 5277.5382 5596.184
## 963 16660.663 16207.1631 17114.163
## 964 6372.178 6219.1872 6525.168
## 965 5904.519 5749.5724 6059.466
## 966 4501.544 4327.0378 4676.051
## 967 15725.346 15308.6471 16142.045
## 968 4501.544 4327.0378 4676.051
## 969 9178.128 8988.3401 9367.916
## 970 6372.178 6219.1872 6525.168
## 971 3566.227 3369.7274 3762.727
## 972 14790.029 14409.6281 15170.430
## 973 1227.935 958.6119 1497.259
## 974 5904.519 5749.5724 6059.466
## 975 4969.203 4803.2757 5135.129
## 976 12451.737 12158.6569 12744.817
## 977 16660.663 16207.1631 17114.163
## 978 3566.227 3369.7274 3762.727
## 979 8242.811 8073.3299 8412.293
## 980 5904.519 5749.5724 6059.466
## 981 2630.911 2407.6101 2854.211
## 982 3566.227 3369.7274 3762.727
## 983 3098.569 2889.1620 3307.976
## 984 7775.153 7613.1796 7937.126
## 985 3566.227 3369.7274 3762.727
## 986 5904.519 5749.5724 6059.466
## 987 4969.203 4803.2757 5135.129
## 988 7775.153 7613.1796 7937.126
## 989 6839.836 6686.2900 6993.382
## 990 4969.203 4803.2757 5135.129
## 991 4969.203 4803.2757 5135.129
## 992 3098.569 2889.1620 3307.976
## 993 7307.495 7150.9075 7464.082
## 994 4033.886 3849.0995 4218.672
## 995 12451.737 12158.6569 12744.817
## 996 10581.104 10351.4112 10810.796
## 997 4033.886 3849.0995 4218.672
## 998 4969.203 4803.2757 5135.129
## 999 3566.227 3369.7274 3762.727
## 1000 11048.762 10804.0503 11293.474
## 1001 6839.836 6686.2900 6993.382
## 1002 4969.203 4803.2757 5135.129
## 1003 5904.519 5749.5724 6059.466
## 1004 4501.544 4327.0378 4676.051
## 1005 4969.203 4803.2757 5135.129
## 1006 5904.519 5749.5724 6059.466
## 1007 10581.104 10351.4112 10810.796
## 1008 5436.861 5277.5382 5596.184
## 1009 14790.029 14409.6281 15170.430
## 1010 16193.004 15757.9600 16628.049
## 1011 15725.346 15308.6471 16142.045
## 1012 8242.811 8073.3299 8412.293
## 1013 1695.594 1442.2067 1948.981
## 1014 4969.203 4803.2757 5135.129
## 1015 5436.861 5277.5382 5596.184
## 1016 5904.519 5749.5724 6059.466
## 1017 1695.594 1442.2067 1948.981
## 1018 4033.886 3849.0995 4218.672
## 1019 5904.519 5749.5724 6059.466
## 1020 6372.178 6219.1872 6525.168
## 1021 9178.128 8988.3401 9367.916
## 1022 4033.886 3849.0995 4218.672
## 1023 4501.544 4327.0378 4676.051
## 1024 3566.227 3369.7274 3762.727
## 1025 13387.054 13059.7906 13714.317
## 1026 3566.227 3369.7274 3762.727
## 1027 4501.544 4327.0378 4676.051
## 1028 4501.544 4327.0378 4676.051
## 1029 4501.544 4327.0378 4676.051
## 1030 6372.178 6219.1872 6525.168
## 1031 7307.495 7150.9075 7464.082
## 1032 14322.371 13959.8826 14684.859
## 1033 6372.178 6219.1872 6525.168
## 1034 5904.519 5749.5724 6059.466
## 1035 12451.737 12158.6569 12744.817
## 1036 4969.203 4803.2757 5135.129
## 1037 4501.544 4327.0378 4676.051
## 1038 5904.519 5749.5724 6059.466
## 1039 8242.811 8073.3299 8412.293
## 1040 2163.252 1925.2445 2401.260
## 1041 8710.470 8531.6253 8889.314
## 1042 4033.886 3849.0995 4218.672
## 1043 4501.544 4327.0378 4676.051
## 1044 17595.980 17105.2892 18086.670
## 1045 10581.104 10351.4112 10810.796
## 1046 4969.203 4803.2757 5135.129
## 1047 4033.886 3849.0995 4218.672
## 1048 3566.227 3369.7274 3762.727
## 1049 8242.811 8073.3299 8412.293
## 1050 3098.569 2889.1620 3307.976
## 1051 6839.836 6686.2900 6993.382
## 1052 6372.178 6219.1872 6525.168
## 1053 1695.594 1442.2067 1948.981
## 1054 7307.495 7150.9075 7464.082
## 1055 14790.029 14409.6281 15170.430
## 1056 8710.470 8531.6253 8889.314
## 1057 3566.227 3369.7274 3762.727
## 1058 4501.544 4327.0378 4676.051
## 1059 8710.470 8531.6253 8889.314
## 1060 1695.594 1442.2067 1948.981
## 1061 3098.569 2889.1620 3307.976
## 1062 1695.594 1442.2067 1948.981
## 1063 8710.470 8531.6253 8889.314
## 1064 5904.519 5749.5724 6059.466
## 1065 4033.886 3849.0995 4218.672
## 1066 3098.569 2889.1620 3307.976
## 1067 4969.203 4803.2757 5135.129
## 1068 6372.178 6219.1872 6525.168
## 1069 4969.203 4803.2757 5135.129
## 1070 1695.594 1442.2067 1948.981
## 1071 3566.227 3369.7274 3762.727
## 1072 5904.519 5749.5724 6059.466
## 1073 3098.569 2889.1620 3307.976
## 1074 4969.203 4803.2757 5135.129
## 1075 7775.153 7613.1796 7937.126
## 1076 5904.519 5749.5724 6059.466
## 1077 13387.054 13059.7906 13714.317
## 1078 6372.178 6219.1872 6525.168
## 1079 12451.737 12158.6569 12744.817
## 1080 5436.861 5277.5382 5596.184
## 1081 11984.079 11707.5783 12260.579
## 1082 6372.178 6219.1872 6525.168
## 1083 3566.227 3369.7274 3762.727
## 1084 8242.811 8073.3299 8412.293
## 1085 5904.519 5749.5724 6059.466
## 1086 4501.544 4327.0378 4676.051
## 1087 16193.004 15757.9600 16628.049
## 1088 6839.836 6686.2900 6993.382
## 1089 3098.569 2889.1620 3307.976
## 1090 5904.519 5749.5724 6059.466
## 1091 5436.861 5277.5382 5596.184
## 1092 3566.227 3369.7274 3762.727
## 1093 4969.203 4803.2757 5135.129
## 1094 12451.737 12158.6569 12744.817
## 1095 5436.861 5277.5382 5596.184
## 1096 8242.811 8073.3299 8412.293
## 1097 11048.762 10804.0503 11293.474
## 1098 2163.252 1925.2445 2401.260
## 1099 4969.203 4803.2757 5135.129
## 1100 5904.519 5749.5724 6059.466
## 1101 4033.886 3849.0995 4218.672
## 1102 6839.836 6686.2900 6993.382
## 1103 4501.544 4327.0378 4676.051
## 1104 9645.787 9443.7311 9847.842
## 1105 3566.227 3369.7274 3762.727
## 1106 4969.203 4803.2757 5135.129
## 1107 5904.519 5749.5724 6059.466
## 1108 5904.519 5749.5724 6059.466
## 1109 2630.911 2407.6101 2854.211
## 1110 5436.861 5277.5382 5596.184
## 1111 1695.594 1442.2067 1948.981
## 1112 17128.321 16656.2692 17600.373
## 1113 4501.544 4327.0378 4676.051
## 1114 5436.861 5277.5382 5596.184
## 1115 5904.519 5749.5724 6059.466
## 1116 1695.594 1442.2067 1948.981
## 1117 18063.638 17554.2327 18573.043
## 1118 5436.861 5277.5382 5596.184
## 1119 1695.594 1442.2067 1948.981
## 1120 5904.519 5749.5724 6059.466
## 1121 4969.203 4803.2757 5135.129
## 1122 8242.811 8073.3299 8412.293
## 1123 5904.519 5749.5724 6059.466
## 1124 5904.519 5749.5724 6059.466
## 1125 6372.178 6219.1872 6525.168
## 1126 4033.886 3849.0995 4218.672
## 1127 13854.712 13509.9471 14199.478
## 1128 3098.569 2889.1620 3307.976
## 1129 5436.861 5277.5382 5596.184
## 1130 12451.737 12158.6569 12744.817
## 1131 5904.519 5749.5724 6059.466
## 1132 4969.203 4803.2757 5135.129
## 1133 3566.227 3369.7274 3762.727
## 1134 4969.203 4803.2757 5135.129
## 1135 1695.594 1442.2067 1948.981
## 1136 13854.712 13509.9471 14199.478
## 1137 1695.594 1442.2067 1948.981
## 1138 3098.569 2889.1620 3307.976
## 1139 16193.004 15757.9600 16628.049
## 1140 4033.886 3849.0995 4218.672
## 1141 11984.079 11707.5783 12260.579
## 1142 4033.886 3849.0995 4218.672
## 1143 5904.519 5749.5724 6059.466
## 1144 5904.519 5749.5724 6059.466
## 1145 5904.519 5749.5724 6059.466
## 1146 4501.544 4327.0378 4676.051
## 1147 5436.861 5277.5382 5596.184
## 1148 5904.519 5749.5724 6059.466
## 1149 5904.519 5749.5724 6059.466
## 1150 4501.544 4327.0378 4676.051
## 1151 8710.470 8531.6253 8889.314
## 1152 4033.886 3849.0995 4218.672
## 1153 2630.911 2407.6101 2854.211
## 1154 1227.935 958.6119 1497.259
## 1155 13854.712 13509.9471 14199.478
## 1156 6372.178 6219.1872 6525.168
## 1157 9645.787 9443.7311 9847.842
## 1158 8242.811 8073.3299 8412.293
## 1159 5436.861 5277.5382 5596.184
## 1160 5904.519 5749.5724 6059.466
## 1161 5904.519 5749.5724 6059.466
## 1162 5904.519 5749.5724 6059.466
## 1163 8242.811 8073.3299 8412.293
## 1164 4969.203 4803.2757 5135.129
## 1165 9645.787 9443.7311 9847.842
## 1166 7775.153 7613.1796 7937.126
## 1167 11984.079 11707.5783 12260.579
## 1168 4501.544 4327.0378 4676.051
## 1169 4033.886 3849.0995 4218.672
## 1170 3566.227 3369.7274 3762.727
## 1171 4033.886 3849.0995 4218.672
## 1172 5904.519 5749.5724 6059.466
## 1173 4969.203 4803.2757 5135.129
## 1174 5436.861 5277.5382 5596.184
## 1175 4501.544 4327.0378 4676.051
## 1176 4501.544 4327.0378 4676.051
## 1177 13854.712 13509.9471 14199.478
## 1178 10113.445 9898.0243 10328.866
## 1179 2163.252 1925.2445 2401.260
## 1180 6372.178 6219.1872 6525.168
## 1181 8242.811 8073.3299 8412.293
## 1182 15257.688 14859.2091 15656.166
## 1183 3098.569 2889.1620 3307.976
## 1184 7307.495 7150.9075 7464.082
## 1185 18063.638 17554.2327 18573.043
## 1186 7775.153 7613.1796 7937.126
## 1187 7307.495 7150.9075 7464.082
## 1188 10113.445 9898.0243 10328.866
## 1189 5904.519 5749.5724 6059.466
## 1190 4033.886 3849.0995 4218.672
## 1191 5904.519 5749.5724 6059.466
## 1192 5904.519 5749.5724 6059.466
## 1193 9178.128 8988.3401 9367.916
## 1194 3098.569 2889.1620 3307.976
## 1195 14790.029 14409.6281 15170.430
## 1196 11984.079 11707.5783 12260.579
## 1197 11048.762 10804.0503 11293.474
## 1198 2163.252 1925.2445 2401.260
## 1199 4501.544 4327.0378 4676.051
## 1200 5904.519 5749.5724 6059.466
## 1201 4969.203 4803.2757 5135.129
## 1202 3566.227 3369.7274 3762.727
## 1203 4501.544 4327.0378 4676.051
## 1204 6372.178 6219.1872 6525.168
## 1205 10113.445 9898.0243 10328.866
## 1206 1695.594 1442.2067 1948.981
## 1207 4501.544 4327.0378 4676.051
## 1208 4969.203 4803.2757 5135.129
## 1209 8242.811 8073.3299 8412.293
## 1210 10113.445 9898.0243 10328.866
## 1211 7775.153 7613.1796 7937.126
## 1212 4033.886 3849.0995 4218.672
## 1213 5904.519 5749.5724 6059.466
## 1214 2630.911 2407.6101 2854.211
## 1215 5436.861 5277.5382 5596.184
## 1216 4033.886 3849.0995 4218.672
## 1217 5904.519 5749.5724 6059.466
## 1218 3566.227 3369.7274 3762.727
## 1219 5904.519 5749.5724 6059.466
## 1220 5436.861 5277.5382 5596.184
## 1221 9178.128 8988.3401 9367.916
## 1222 12919.396 12609.3757 13229.415
## 1223 1695.594 1442.2067 1948.981
## 1224 12919.396 12609.3757 13229.415
## 1225 2630.911 2407.6101 2854.211
## 1226 11048.762 10804.0503 11293.474
## 1227 5904.519 5749.5724 6059.466
## 1228 4033.886 3849.0995 4218.672
## 1229 5904.519 5749.5724 6059.466
## 1230 9645.787 9443.7311 9847.842
## 1231 4033.886 3849.0995 4218.672
## 1232 10113.445 9898.0243 10328.866
## 1233 9178.128 8988.3401 9367.916
## 1234 5904.519 5749.5724 6059.466
## 1235 3098.569 2889.1620 3307.976
## 1236 7307.495 7150.9075 7464.082
## 1237 8710.470 8531.6253 8889.314
## 1238 5904.519 5749.5724 6059.466
## 1239 2630.911 2407.6101 2854.211
## 1240 5436.861 5277.5382 5596.184
## 1241 5436.861 5277.5382 5596.184
## 1242 5904.519 5749.5724 6059.466
## 1243 11048.762 10804.0503 11293.474
## 1244 5436.861 5277.5382 5596.184
## 1245 5904.519 5749.5724 6059.466
## 1246 2630.911 2407.6101 2854.211
## 1247 4033.886 3849.0995 4218.672
## 1248 4033.886 3849.0995 4218.672
## 1249 4033.886 3849.0995 4218.672
## 1250 2163.252 1925.2445 2401.260
## 1251 5904.519 5749.5724 6059.466
## 1252 6839.836 6686.2900 6993.382
## 1253 4033.886 3849.0995 4218.672
## 1254 7307.495 7150.9075 7464.082
## 1255 4969.203 4803.2757 5135.129
## 1256 6372.178 6219.1872 6525.168
## 1257 5436.861 5277.5382 5596.184
## 1258 5904.519 5749.5724 6059.466
## 1259 1695.594 1442.2067 1948.981
## 1260 5904.519 5749.5724 6059.466
## 1261 6839.836 6686.2900 6993.382
## 1262 8242.811 8073.3299 8412.293
## 1263 4033.886 3849.0995 4218.672
## 1264 4501.544 4327.0378 4676.051
## 1265 17128.321 16656.2692 17600.373
## 1266 6372.178 6219.1872 6525.168
## 1267 3566.227 3369.7274 3762.727
## 1268 8242.811 8073.3299 8412.293
## 1269 13854.712 13509.9471 14199.478
## 1270 5904.519 5749.5724 6059.466
## 1271 4033.886 3849.0995 4218.672
## 1272 1695.594 1442.2067 1948.981
## 1273 3566.227 3369.7274 3762.727
## 1274 1695.594 1442.2067 1948.981
## 1275 7307.495 7150.9075 7464.082
## 1276 8242.811 8073.3299 8412.293
## 1277 3566.227 3369.7274 3762.727
## 1278 12451.737 12158.6569 12744.817
## 1279 8242.811 8073.3299 8412.293
## 1280 4033.886 3849.0995 4218.672
## 1281 10113.445 9898.0243 10328.866
## 1282 5904.519 5749.5724 6059.466
## 1283 7775.153 7613.1796 7937.126
## 1284 3566.227 3369.7274 3762.727
## 1285 5436.861 5277.5382 5596.184
## 1286 4033.886 3849.0995 4218.672
## 1287 4501.544 4327.0378 4676.051
## 1288 5904.519 5749.5724 6059.466
## 1289 8242.811 8073.3299 8412.293
## 1290 7307.495 7150.9075 7464.082
## 1291 6372.178 6219.1872 6525.168
## 1292 5904.519 5749.5724 6059.466
## 1293 4501.544 4327.0378 4676.051
## 1294 4501.544 4327.0378 4676.051
## 1295 6372.178 6219.1872 6525.168
## 1296 11984.079 11707.5783 12260.579
## 1297 5436.861 5277.5382 5596.184
## 1298 4033.886 3849.0995 4218.672
## 1299 7307.495 7150.9075 7464.082
## 1300 6839.836 6686.2900 6993.382
## 1301 5904.519 5749.5724 6059.466
## 1302 18531.297 18003.1078 19059.485
## 1303 4033.886 3849.0995 4218.672
## 1304 14322.371 13959.8826 14684.859
## 1305 8242.811 8073.3299 8412.293
## 1306 7775.153 7613.1796 7937.126
## 1307 5436.861 5277.5382 5596.184
## 1308 2630.911 2407.6101 2854.211
## 1309 10581.104 10351.4112 10810.796
## 1310 3566.227 3369.7274 3762.727
## 1311 11984.079 11707.5783 12260.579
## 1312 1227.935 958.6119 1497.259
## 1313 2163.252 1925.2445 2401.260
## 1314 3098.569 2889.1620 3307.976
## 1315 5904.519 5749.5724 6059.466
## 1316 8242.811 8073.3299 8412.293
## 1317 4501.544 4327.0378 4676.051
## 1318 4033.886 3849.0995 4218.672
## 1319 6372.178 6219.1872 6525.168
## 1320 3098.569 2889.1620 3307.976
## 1321 5904.519 5749.5724 6059.466
## 1322 4501.544 4327.0378 4676.051
## 1323 6839.836 6686.2900 6993.382
## 1324 2630.911 2407.6101 2854.211
## 1325 6372.178 6219.1872 6525.168
## 1326 4969.203 4803.2757 5135.129
## 1327 4501.544 4327.0378 4676.051
## 1328 12919.396 12609.3757 13229.415
## 1329 5436.861 5277.5382 5596.184
## 1330 1695.594 1442.2067 1948.981
## 1331 11048.762 10804.0503 11293.474
## 1332 14790.029 14409.6281 15170.430
## 1333 1695.594 1442.2067 1948.981
## 1334 7775.153 7613.1796 7937.126
## 1335 4969.203 4803.2757 5135.129
## 1336 4501.544 4327.0378 4676.051
## 1337 10113.445 9898.0243 10328.866
## 1338 1695.594 1442.2067 1948.981
## 1339 1695.594 1442.2067 1948.981
## 1340 1695.594 1442.2067 1948.981
## 1341 5904.519 5749.5724 6059.466
## 1342 5904.519 5749.5724 6059.466
## 1343 5436.861 5277.5382 5596.184
## 1344 6372.178 6219.1872 6525.168
## 1345 8710.470 8531.6253 8889.314
## 1346 3098.569 2889.1620 3307.976
## 1347 5904.519 5749.5724 6059.466
## 1348 5904.519 5749.5724 6059.466
## 1349 11516.420 11256.0710 11776.770
## 1350 1695.594 1442.2067 1948.981
## 1351 5436.861 5277.5382 5596.184
## 1352 12451.737 12158.6569 12744.817
## 1353 5904.519 5749.5724 6059.466
## 1354 3566.227 3369.7274 3762.727
## 1355 3566.227 3369.7274 3762.727
## 1356 6839.836 6686.2900 6993.382
## 1357 7775.153 7613.1796 7937.126
## 1358 9645.787 9443.7311 9847.842
## 1359 4969.203 4803.2757 5135.129
## 1360 5436.861 5277.5382 5596.184
## 1361 3098.569 2889.1620 3307.976
## 1362 4969.203 4803.2757 5135.129
## 1363 6839.836 6686.2900 6993.382
## 1364 5904.519 5749.5724 6059.466
## 1365 4501.544 4327.0378 4676.051
## 1366 1695.594 1442.2067 1948.981
## 1367 5904.519 5749.5724 6059.466
## 1368 4033.886 3849.0995 4218.672
## 1369 8710.470 8531.6253 8889.314
## 1370 4033.886 3849.0995 4218.672
## 1371 8710.470 8531.6253 8889.314
## 1372 4033.886 3849.0995 4218.672
## 1373 5904.519 5749.5724 6059.466
## 1374 10581.104 10351.4112 10810.796
## 1375 14790.029 14409.6281 15170.430
## 1376 4969.203 4803.2757 5135.129
## 1377 5904.519 5749.5724 6059.466
## 1378 14322.371 13959.8826 14684.859
## 1379 7775.153 7613.1796 7937.126
## 1380 1695.594 1442.2067 1948.981
## 1381 4033.886 3849.0995 4218.672
## 1382 3566.227 3369.7274 3762.727
## 1383 3098.569 2889.1620 3307.976
## 1384 3566.227 3369.7274 3762.727
## 1385 7775.153 7613.1796 7937.126
## 1386 5436.861 5277.5382 5596.184
## 1387 4969.203 4803.2757 5135.129
## 1388 4033.886 3849.0995 4218.672
## 1389 5436.861 5277.5382 5596.184
## 1390 5904.519 5749.5724 6059.466
## 1391 4033.886 3849.0995 4218.672
## 1392 10581.104 10351.4112 10810.796
## 1393 5904.519 5749.5724 6059.466
## 1394 4501.544 4327.0378 4676.051
## 1395 4969.203 4803.2757 5135.129
## 1396 5904.519 5749.5724 6059.466
## 1397 8242.811 8073.3299 8412.293
## 1398 5436.861 5277.5382 5596.184
## 1399 5436.861 5277.5382 5596.184
## 1400 5904.519 5749.5724 6059.466
## 1401 4501.544 4327.0378 4676.051
## 1402 17595.980 17105.2892 18086.670
## 1403 1695.594 1442.2067 1948.981
## 1404 11048.762 10804.0503 11293.474
## 1405 10581.104 10351.4112 10810.796
## 1406 7307.495 7150.9075 7464.082
## 1407 5436.861 5277.5382 5596.184
## 1408 3098.569 2889.1620 3307.976
## 1409 3566.227 3369.7274 3762.727
## 1410 5904.519 5749.5724 6059.466
## 1411 8242.811 8073.3299 8412.293
## 1412 4033.886 3849.0995 4218.672
## 1413 6839.836 6686.2900 6993.382
## 1414 4501.544 4327.0378 4676.051
## 1415 12919.396 12609.3757 13229.415
## 1416 1695.594 1442.2067 1948.981
## 1417 8710.470 8531.6253 8889.314
## 1418 2630.911 2407.6101 2854.211
## 1419 5904.519 5749.5724 6059.466
## 1420 5436.861 5277.5382 5596.184
## 1421 6839.836 6686.2900 6993.382
## 1422 7775.153 7613.1796 7937.126
## 1423 3566.227 3369.7274 3762.727
## 1424 3098.569 2889.1620 3307.976
## 1425 5904.519 5749.5724 6059.466
## 1426 5904.519 5749.5724 6059.466
## 1427 4033.886 3849.0995 4218.672
## 1428 4969.203 4803.2757 5135.129
## 1429 2630.911 2407.6101 2854.211
## 1430 9645.787 9443.7311 9847.842
## 1431 10581.104 10351.4112 10810.796
## 1432 7775.153 7613.1796 7937.126
## 1433 8710.470 8531.6253 8889.314
## 1434 4033.886 3849.0995 4218.672
## 1435 8710.470 8531.6253 8889.314
## 1436 4033.886 3849.0995 4218.672
## 1437 2163.252 1925.2445 2401.260
## 1438 11048.762 10804.0503 11293.474
## 1439 1695.594 1442.2067 1948.981
## 1440 5904.519 5749.5724 6059.466
## 1441 9645.787 9443.7311 9847.842
## 1442 7307.495 7150.9075 7464.082
## 1443 3098.569 2889.1620 3307.976
## 1444 12451.737 12158.6569 12744.817
## 1445 7775.153 7613.1796 7937.126
## 1446 11048.762 10804.0503 11293.474
## 1447 4969.203 4803.2757 5135.129
## 1448 8242.811 8073.3299 8412.293
## 1449 7775.153 7613.1796 7937.126
## 1450 3098.569 2889.1620 3307.976
## 1451 5436.861 5277.5382 5596.184
## 1452 5904.519 5749.5724 6059.466
## 1453 6839.836 6686.2900 6993.382
## 1454 4969.203 4803.2757 5135.129
## 1455 4969.203 4803.2757 5135.129
## 1456 4969.203 4803.2757 5135.129
## 1457 5904.519 5749.5724 6059.466
## 1458 10581.104 10351.4112 10810.796
## 1459 3098.569 2889.1620 3307.976
## 1460 5904.519 5749.5724 6059.466
## 1461 3566.227 3369.7274 3762.727
## 1462 10581.104 10351.4112 10810.796
## 1463 11048.762 10804.0503 11293.474
## 1464 5904.519 5749.5724 6059.466
## 1465 3566.227 3369.7274 3762.727
## 1466 9178.128 8988.3401 9367.916
## 1467 5436.861 5277.5382 5596.184
## 1468 4033.886 3849.0995 4218.672
## 1469 9178.128 8988.3401 9367.916
## 1470 4033.886 3849.0995 4218.672
El modelo de regresión lineal simple permitió evidenciar la relación existente entre el ingreso mensual y los años de experiencia laboral. El análisis estadístico y gráfico confirmó la utilidad del modelo para describir y predecir el comportamiento de la variable respuesta. Los intervalos de confianza y de predicción aportaron información adicional sobre la precisión de las estimaciones, reforzando la validez del modelo planteado.
En esta sección se desarrolla el análisis de regresión lineal múltiple, considerando tanto variables cuantitativas como cualitativas. Inicialmente se realiza un análisis descriptivo de las variables y diagramas de dispersión para las variables cuantitativas. Posteriormente, se formula el modelo de regresión lineal múltiple, evaluando el modelo total y un modelo reducido mediante el análisis de varianza y el estudio de los coeficientes.
summary(desercion_empleados_IBM_ETL$Age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 18.00 30.00 36.00 36.92 43.00 60.00
summary(desercion_empleados_IBM_ETL$MonthlyIncome)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1009 2911 4919 6503 8379 19999
summary(desercion_empleados_IBM_ETL$DistanceFromHome)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 2.000 7.000 9.193 14.000 29.000
summary(desercion_empleados_IBM_ETL$TotalWorkingYears)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 6.00 10.00 11.28 15.00 40.00
summary(desercion_empleados_IBM_ETL$YearsAtCompany)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 3.000 5.000 7.008 9.000 40.000
summary(desercion_empleados_IBM_ETL$YearsSinceLastPromotion)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.000 1.000 2.188 3.000 15.000
table(desercion_empleados_IBM_ETL$WorkLifeBalance)
##
## 1 2 3 4
## 80 344 893 153
prop.table(table(desercion_empleados_IBM_ETL$WorkLifeBalancet))
## Warning: Unknown or uninitialised column: `WorkLifeBalancet`.
## numeric(0)
barplot(table(desercion_empleados_IBM_ETL$WorkLifeBalance))
table(desercion_empleados_IBM_ETL$BusinessTravel)
##
## Non-Travel Travel_Frequently Travel_Rarely
## 150 277 1043
prop.table(table(desercion_empleados_IBM_ETL$BusinessTravel))
##
## Non-Travel Travel_Frequently Travel_Rarely
## 0.1020408 0.1884354 0.7095238
barplot(table(desercion_empleados_IBM_ETL$BusinessTravel))
table(desercion_empleados_IBM_ETL$EducationField)
##
## Human Resources Life Sciences Marketing Medical
## 27 606 159 464
## Other Technical Degree
## 82 132
prop.table(table(desercion_empleados_IBM_ETL$EducationField))
##
## Human Resources Life Sciences Marketing Medical
## 0.01836735 0.41224490 0.10816327 0.31564626
## Other Technical Degree
## 0.05578231 0.08979592
barplot(table(desercion_empleados_IBM_ETL$EducationField))
table(desercion_empleados_IBM_ETL$JobRole)
##
## Healthcare Representative Human Resources Laboratory Technician
## 131 52 259
## Manager Manufacturing Director Research Director
## 102 145 80
## Research Scientist Sales Executive Sales Representative
## 292 326 83
prop.table(table(desercion_empleados_IBM_ETL$JobRole))
##
## Healthcare Representative Human Resources Laboratory Technician
## 0.08911565 0.03537415 0.17619048
## Manager Manufacturing Director Research Director
## 0.06938776 0.09863946 0.05442177
## Research Scientist Sales Executive Sales Representative
## 0.19863946 0.22176871 0.05646259
barplot(table(desercion_empleados_IBM_ETL$JobRole))
table(desercion_empleados_IBM_ETL$MaritalStatus)
##
## Divorced Married Single
## 327 673 470
prop.table(table(desercion_empleados_IBM_ETL$MaritalStatus))
##
## Divorced Married Single
## 0.2224490 0.4578231 0.3197279
barplot(table(desercion_empleados_IBM_ETL$MaritalStatus))
table(desercion_empleados_IBM_ETL$OverTime)
##
## No Yes
## 1054 416
prop.table(table(desercion_empleados_IBM_ETL$OverTime))
##
## No Yes
## 0.7170068 0.2829932
barplot(table(desercion_empleados_IBM_ETL$OverTime))
table(desercion_empleados_IBM_ETL$Gender)
##
## Female Male
## 588 882
prop.table(table(desercion_empleados_IBM_ETL$Gender))
##
## Female Male
## 0.4 0.6
barplot(table(desercion_empleados_IBM_ETL$Gender))
table(desercion_empleados_IBM_ETL$JobLevel)
##
## 1 2 3 4 5
## 543 534 218 106 69
prop.table(table(desercion_empleados_IBM_ETL$JobLevel))
##
## 1 2 3 4 5
## 0.36938776 0.36326531 0.14829932 0.07210884 0.04693878
barplot(table(desercion_empleados_IBM_ETL$JobLevel))
pairs(~MonthlyIncome + TotalWorkingYears + DistanceFromHome + YearsAtCompany + Age, data = desercion_empleados_IBM_ETL)
summary(lm(desercion_empleados_IBM_ETL$MonthlyIncome~desercion_empleados_IBM_ETL$Age+desercion_empleados_IBM_ETL$DistanceFromHome+desercion_empleados_IBM_ETL$TotalWorkingYears+desercion_empleados_IBM_ETL$YearsAtCompany+as.factor(desercion_empleados_IBM_ETL$Gender)+as.factor(desercion_empleados_IBM_ETL$Department)+as.factor(desercion_empleados_IBM_ETL$JobRole)+as.factor(desercion_empleados_IBM_ETL$MaritalStatus)+as.factor(desercion_empleados_IBM_ETL$OverTime)+as.factor(desercion_empleados_IBM_ETL$Attrition)))
##
## Call:
## lm(formula = desercion_empleados_IBM_ETL$MonthlyIncome ~ desercion_empleados_IBM_ETL$Age +
## desercion_empleados_IBM_ETL$DistanceFromHome + desercion_empleados_IBM_ETL$TotalWorkingYears +
## desercion_empleados_IBM_ETL$YearsAtCompany + as.factor(desercion_empleados_IBM_ETL$Gender) +
## as.factor(desercion_empleados_IBM_ETL$Department) + as.factor(desercion_empleados_IBM_ETL$JobRole) +
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus) + as.factor(desercion_empleados_IBM_ETL$OverTime) +
## as.factor(desercion_empleados_IBM_ETL$Attrition))
##
## Residuals:
## Min 1Q Median 3Q Max
## -5488.0 -1114.6 -95.4 965.9 5567.3
##
## Coefficients:
## Estimate
## (Intercept) 4760.7127
## desercion_empleados_IBM_ETL$Age -6.5757
## desercion_empleados_IBM_ETL$DistanceFromHome -0.1109
## desercion_empleados_IBM_ETL$TotalWorkingYears 195.5898
## desercion_empleados_IBM_ETL$YearsAtCompany 19.0682
## as.factor(desercion_empleados_IBM_ETL$Gender)Male 167.1945
## as.factor(desercion_empleados_IBM_ETL$Department)Research & Development -61.7069
## as.factor(desercion_empleados_IBM_ETL$Department)Sales -678.2870
## as.factor(desercion_empleados_IBM_ETL$JobRole)Human Resources -2203.1571
## as.factor(desercion_empleados_IBM_ETL$JobRole)Laboratory Technician -3041.0926
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manager 7762.6672
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manufacturing Director 40.3063
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Director 7059.6536
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Scientist -3037.5758
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Executive 576.6225
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Representative -2442.3279
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Married 71.8608
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Single 58.3186
## as.factor(desercion_empleados_IBM_ETL$OverTime)Yes 75.6673
## as.factor(desercion_empleados_IBM_ETL$Attrition)Yes 120.5454
## Std. Error
## (Intercept) 628.1286
## desercion_empleados_IBM_ETL$Age 6.6571
## desercion_empleados_IBM_ETL$DistanceFromHome 5.3709
## desercion_empleados_IBM_ETL$TotalWorkingYears 10.6928
## desercion_empleados_IBM_ETL$YearsAtCompany 9.3310
## as.factor(desercion_empleados_IBM_ETL$Gender)Male 88.9531
## as.factor(desercion_empleados_IBM_ETL$Department)Research & Development 549.5399
## as.factor(desercion_empleados_IBM_ETL$Department)Sales 569.4099
## as.factor(desercion_empleados_IBM_ETL$JobRole)Human Resources 617.9647
## as.factor(desercion_empleados_IBM_ETL$JobRole)Laboratory Technician 184.9092
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manager 277.1406
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manufacturing Director 200.1163
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Director 241.9007
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Scientist 180.7885
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Executive 394.9429
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Representative 433.7515
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Married 111.9668
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Single 121.7650
## as.factor(desercion_empleados_IBM_ETL$OverTime)Yes 99.9225
## as.factor(desercion_empleados_IBM_ETL$Attrition)Yes 128.1752
## t value
## (Intercept) 7.579
## desercion_empleados_IBM_ETL$Age -0.988
## desercion_empleados_IBM_ETL$DistanceFromHome -0.021
## desercion_empleados_IBM_ETL$TotalWorkingYears 18.292
## desercion_empleados_IBM_ETL$YearsAtCompany 2.044
## as.factor(desercion_empleados_IBM_ETL$Gender)Male 1.880
## as.factor(desercion_empleados_IBM_ETL$Department)Research & Development -0.112
## as.factor(desercion_empleados_IBM_ETL$Department)Sales -1.191
## as.factor(desercion_empleados_IBM_ETL$JobRole)Human Resources -3.565
## as.factor(desercion_empleados_IBM_ETL$JobRole)Laboratory Technician -16.446
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manager 28.010
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manufacturing Director 0.201
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Director 29.184
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Scientist -16.802
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Executive 1.460
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Representative -5.631
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Married 0.642
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Single 0.479
## as.factor(desercion_empleados_IBM_ETL$OverTime)Yes 0.757
## as.factor(desercion_empleados_IBM_ETL$Attrition)Yes 0.940
## Pr(>|t|)
## (Intercept) 6.17e-14
## desercion_empleados_IBM_ETL$Age 0.323429
## desercion_empleados_IBM_ETL$DistanceFromHome 0.983525
## desercion_empleados_IBM_ETL$TotalWorkingYears < 2e-16
## desercion_empleados_IBM_ETL$YearsAtCompany 0.041181
## as.factor(desercion_empleados_IBM_ETL$Gender)Male 0.060366
## as.factor(desercion_empleados_IBM_ETL$Department)Research & Development 0.910610
## as.factor(desercion_empleados_IBM_ETL$Department)Sales 0.233766
## as.factor(desercion_empleados_IBM_ETL$JobRole)Human Resources 0.000375
## as.factor(desercion_empleados_IBM_ETL$JobRole)Laboratory Technician < 2e-16
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manager < 2e-16
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manufacturing Director 0.840403
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Director < 2e-16
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Scientist < 2e-16
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Executive 0.144503
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Representative 2.15e-08
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Married 0.521101
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Single 0.632051
## as.factor(desercion_empleados_IBM_ETL$OverTime)Yes 0.449017
## as.factor(desercion_empleados_IBM_ETL$Attrition)Yes 0.347131
##
## (Intercept) ***
## desercion_empleados_IBM_ETL$Age
## desercion_empleados_IBM_ETL$DistanceFromHome
## desercion_empleados_IBM_ETL$TotalWorkingYears ***
## desercion_empleados_IBM_ETL$YearsAtCompany *
## as.factor(desercion_empleados_IBM_ETL$Gender)Male .
## as.factor(desercion_empleados_IBM_ETL$Department)Research & Development
## as.factor(desercion_empleados_IBM_ETL$Department)Sales
## as.factor(desercion_empleados_IBM_ETL$JobRole)Human Resources ***
## as.factor(desercion_empleados_IBM_ETL$JobRole)Laboratory Technician ***
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manager ***
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manufacturing Director
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Director ***
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Scientist ***
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Executive
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Representative ***
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Married
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Single
## as.factor(desercion_empleados_IBM_ETL$OverTime)Yes
## as.factor(desercion_empleados_IBM_ETL$Attrition)Yes
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1656 on 1450 degrees of freedom
## Multiple R-squared: 0.8779, Adjusted R-squared: 0.8763
## F-statistic: 548.6 on 19 and 1450 DF, p-value: < 2.2e-16
anova(lm(desercion_empleados_IBM_ETL$MonthlyIncome~desercion_empleados_IBM_ETL$Age+desercion_empleados_IBM_ETL$DistanceFromHome+desercion_empleados_IBM_ETL$TotalWorkingYears+desercion_empleados_IBM_ETL$YearsAtCompany+as.factor(desercion_empleados_IBM_ETL$Gender)+as.factor(desercion_empleados_IBM_ETL$Department)+as.factor(desercion_empleados_IBM_ETL$JobRole)+as.factor(desercion_empleados_IBM_ETL$MaritalStatus)+as.factor(desercion_empleados_IBM_ETL$OverTime)+as.factor(desercion_empleados_IBM_ETL$Attrition)))
## Analysis of Variance Table
##
## Response: desercion_empleados_IBM_ETL$MonthlyIncome
## Df Sum Sq Mean Sq
## desercion_empleados_IBM_ETL$Age 1 8.0703e+09 8.0703e+09
## desercion_empleados_IBM_ETL$DistanceFromHome 1 8.5188e+06 8.5188e+06
## desercion_empleados_IBM_ETL$TotalWorkingYears 1 1.1433e+10 1.1433e+10
## desercion_empleados_IBM_ETL$YearsAtCompany 1 2.9342e+07 2.9342e+07
## as.factor(desercion_empleados_IBM_ETL$Gender) 1 5.6459e+05 5.6459e+05
## as.factor(desercion_empleados_IBM_ETL$Department) 2 1.8106e+08 9.0528e+07
## as.factor(desercion_empleados_IBM_ETL$JobRole) 8 8.8544e+09 1.1068e+09
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus) 2 1.3055e+06 6.5275e+05
## as.factor(desercion_empleados_IBM_ETL$OverTime) 1 2.9902e+06 2.9902e+06
## as.factor(desercion_empleados_IBM_ETL$Attrition) 1 2.4254e+06 2.4254e+06
## Residuals 1450 3.9761e+09 2.7421e+06
## F value Pr(>F)
## desercion_empleados_IBM_ETL$Age 2943.1031 < 2.2e-16 ***
## desercion_empleados_IBM_ETL$DistanceFromHome 3.1066 0.078184 .
## desercion_empleados_IBM_ETL$TotalWorkingYears 4169.4472 < 2.2e-16 ***
## desercion_empleados_IBM_ETL$YearsAtCompany 10.7004 0.001096 **
## as.factor(desercion_empleados_IBM_ETL$Gender) 0.2059 0.650071
## as.factor(desercion_empleados_IBM_ETL$Department) 33.0138 9.531e-15 ***
## as.factor(desercion_empleados_IBM_ETL$JobRole) 403.6315 < 2.2e-16 ***
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus) 0.2380 0.788196
## as.factor(desercion_empleados_IBM_ETL$OverTime) 1.0905 0.296540
## as.factor(desercion_empleados_IBM_ETL$Attrition) 0.8845 0.347131
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coefficients(lm(desercion_empleados_IBM_ETL$MonthlyIncome~desercion_empleados_IBM_ETL$Age+desercion_empleados_IBM_ETL$DistanceFromHome+desercion_empleados_IBM_ETL$TotalWorkingYears+desercion_empleados_IBM_ETL$YearsAtCompany+as.factor(desercion_empleados_IBM_ETL$Gender)+as.factor(desercion_empleados_IBM_ETL$Department)+as.factor(desercion_empleados_IBM_ETL$JobRole)+as.factor(desercion_empleados_IBM_ETL$MaritalStatus)+as.factor(desercion_empleados_IBM_ETL$OverTime)+as.factor(desercion_empleados_IBM_ETL$Attrition)))
## (Intercept)
## 4760.7126741
## desercion_empleados_IBM_ETL$Age
## -6.5757276
## desercion_empleados_IBM_ETL$DistanceFromHome
## -0.1109269
## desercion_empleados_IBM_ETL$TotalWorkingYears
## 195.5897707
## desercion_empleados_IBM_ETL$YearsAtCompany
## 19.0681717
## as.factor(desercion_empleados_IBM_ETL$Gender)Male
## 167.1945466
## as.factor(desercion_empleados_IBM_ETL$Department)Research & Development
## -61.7069286
## as.factor(desercion_empleados_IBM_ETL$Department)Sales
## -678.2870175
## as.factor(desercion_empleados_IBM_ETL$JobRole)Human Resources
## -2203.1571390
## as.factor(desercion_empleados_IBM_ETL$JobRole)Laboratory Technician
## -3041.0925971
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manager
## 7762.6672295
## as.factor(desercion_empleados_IBM_ETL$JobRole)Manufacturing Director
## 40.3062649
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Director
## 7059.6536500
## as.factor(desercion_empleados_IBM_ETL$JobRole)Research Scientist
## -3037.5757772
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Executive
## 576.6225055
## as.factor(desercion_empleados_IBM_ETL$JobRole)Sales Representative
## -2442.3278666
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Married
## 71.8608351
## as.factor(desercion_empleados_IBM_ETL$MaritalStatus)Single
## 58.3186283
## as.factor(desercion_empleados_IBM_ETL$OverTime)Yes
## 75.6672676
## as.factor(desercion_empleados_IBM_ETL$Attrition)Yes
## 120.5454382
coefficients(lm(desercion_empleados_IBM_ETL$MonthlyIncome~desercion_empleados_IBM_ETL$Age+desercion_empleados_IBM_ETL$TotalWorkingYears+as.factor (desercion_empleados_IBM_ETL$Gender)+as.factor(desercion_empleados_IBM_ETL$Department)+as.factor(desercion_empleados_IBM_ETL$Attrition)))
## (Intercept)
## 2109.66229
## desercion_empleados_IBM_ETL$Age
## -27.25187
## desercion_empleados_IBM_ETL$TotalWorkingYears
## 486.38641
## as.factor(desercion_empleados_IBM_ETL$Gender)Male
## 68.06153
## as.factor(desercion_empleados_IBM_ETL$Department)Research & Development
## -310.28897
## as.factor(desercion_empleados_IBM_ETL$Department)Sales
## 503.93966
## as.factor(desercion_empleados_IBM_ETL$Attrition)Yes
## -481.39273
La regresión lineal múltiple permitió analizar de manera conjunta el efecto de varias variables explicativas sobre la variable respuesta. El análisis de los coeficientes y la comparación entre el modelo total y el reducido facilitaron la identificación de las variables más relevantes. En general, este modelo aportó una visión más completa del fenómeno estudiado, en comparación con la regresión lineal simple.
En este apartado se desarrolla el análisis de regresión logística simple, orientado al estudio de una variable respuesta categórica. Se realizan análisis descriptivos mediante resúmenes estadísticos, boxplots, histogramas y diagramas de barras, con el fin de comprender el comportamiento de las variables involucradas. Posteriormente, se formula el modelo de regresión logística y se analizan sus coeficientes y resumen estadístico.
summary(desercion_empleados_IBM_ETL$TotalWorkingYears)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 6.00 10.00 11.28 15.00 40.00
boxplot(desercion_empleados_IBM_ETL$TotalWorkingYears, main = "Diagrama de Caja de Total de años trabajados", col = c("orange"))
summary(desercion_empleados_IBM_ETL$TotalWorkingYears)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 6.00 10.00 11.28 15.00 40.00
hist(desercion_empleados_IBM_ETL$TotalWorkingYears, main = "Histograma de Total de años trabajados", col = c("Purple"))
table(desercion_empleados_IBM_ETL$Attrition)
##
## No Yes
## 1233 237
prop.table(table(desercion_empleados_IBM_ETL$Attrition))
##
## No Yes
## 0.8387755 0.1612245
barplot(table(desercion_empleados_IBM_ETL$Attrition), main = "Renuncia", col = c("violet"))
tapply(desercion_empleados_IBM_ETL_1$MonthlyIncome, desercion_empleados_IBM_ETL_1$Attrition, mean)
## 0 1
## 6832.740 4787.093
tapply(desercion_empleados_IBM_ETL_1$MonthlyIncome, desercion_empleados_IBM_ETL_1$Attrition, median)
## 0 1
## 5204 3202
boxplot(desercion_empleados_IBM_ETL_1$MonthlyIncome~ desercion_empleados_IBM_ETL_1$Attrition, main = "Boxplot Conjunto: Ingreso mensual-TotalWorkingYears" , col = c("purple", "blue"))
desercion_empleados_IBM_ETL$Attrition_bin <-
ifelse(desercion_empleados_IBM_ETL$Attrition == "Yes", 1, 0)
modelo_RLog_Simple_S <- glm(Attrition_bin ~ MonthlyIncome,
family = "binomial",
data = desercion_empleados_IBM_ETL)
coef(modelo_RLog_Simple_S)
## (Intercept) MonthlyIncome
## -0.9291087486 -0.0001271042
desercion_empleados_IBM_ETL$Attrition_bin <-
ifelse(desercion_empleados_IBM_ETL$Attrition == "Yes", 1, 0)
names(desercion_empleados_IBM_ETL)[1:20]
## [1] "Age" "Attrition" "BusinessTravel"
## [4] "DailyRate" "Department" "DistanceFromHome"
## [7] "Education" "EducationField" "EmployeeNumber"
## [10] "Gender" "HourlyRate" "JobInvolvement"
## [13] "JobLevel" "JobRole" "JobSatisfaction"
## [16] "MaritalStatus" "MonthlyIncome" "MonthlyRate"
## [19] "NumCompaniesWorked" "Over18"
table(desercion_empleados_IBM_ETL$Attrition_bin)
##
## 0 1
## 1233 237
Attrition_bin ~ MonthlyIncome
## Attrition_bin ~ MonthlyIncome
modelo_RLog_Simple_S <- glm(
Attrition_bin ~ MonthlyIncome,
family = binomial,
data = desercion_empleados_IBM_ETL
)
summary(modelo_RLog_Simple_S)
##
## Call:
## glm(formula = Attrition_bin ~ MonthlyIncome, family = binomial,
## data = desercion_empleados_IBM_ETL)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -9.291e-01 1.292e-01 -7.191 6.43e-13 ***
## MonthlyIncome -1.271e-04 2.162e-05 -5.879 4.12e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1298.6 on 1469 degrees of freedom
## Residual deviance: 1253.1 on 1468 degrees of freedom
## AIC: 1257.1
##
## Number of Fisher Scoring iterations: 5
coef(modelo_RLog_Simple_S)
## (Intercept) MonthlyIncome
## -0.9291087486 -0.0001271042
round(exp(coef(modelo_RLog_Simple_S)),6)
## (Intercept) MonthlyIncome
## 0.394906 0.999873
predict(modelo_RLog_Simple_S)
## 1 2 3 4 5 6 7 8
## -1.690844 -1.581153 -1.194756 -1.298855 -1.369906 -1.319064 -1.268477 -1.271400
## 9 10 11 12 13 14 15 16
## -2.139903 -1.594753 -1.237463 -1.462057 -1.299109 -1.267333 -1.186876 -2.197608
## 17 18 19 20 21 22 23 24
## -1.348298 -1.302159 -2.889945 -1.430408 -1.438924 -1.362153 -2.453596 -1.085701
## 25 26 27 28 29 30 31 32
## -1.305337 -3.356036 -1.427230 -1.796595 -2.231672 -3.337351 -1.246361 -1.750837
## 33 34 35 36 37 38 39 40
## -1.209501 -1.194248 -1.220559 -1.265299 -1.270129 -1.185097 -1.363678 -1.612421
## 41 42 43 44 45 46 47 48
## -1.177089 -1.226660 -1.220559 -2.038220 -1.438924 -3.413360 -1.509721 -1.313218
## 49 50 51 52 53 54 55 56
## -1.662754 -1.217508 -1.613056 -1.366474 -1.622335 -2.185406 -1.457481 -2.639677
## 57 58 59 60 61 62 63 64
## -2.081816 -1.439305 -1.680930 -1.690844 -1.712325 -1.234921 -3.311041 -1.899803
## 65 66 67 68 69 70 71 72
## -2.212352 -2.804658 -1.755159 -2.165070 -1.207975 -1.359738 -1.624750 -1.272671
## 73 74 75 76 77 78 79 80
## -1.246996 -1.719697 -1.315251 -1.491418 -1.477182 -2.612603 -2.665860 -1.567299
## 81 82 83 84 85 86 87 88
## -1.580645 -1.292500 -2.230528 -1.606447 -1.478834 -1.851885 -1.224245 -1.192850
## 89 90 91 92 93 94 95 96
## -1.456845 -2.151724 -2.645396 -1.620683 -1.591194 -2.285692 -1.565901 -2.651243
## 97 98 99 100 101 102 103 104
## -1.564502 -1.465615 -2.692298 -1.188655 -1.192596 -1.304829 -1.301016 -1.540353
## 105 106 107 108 109 110 111 112
## -1.585348 -3.324260 -3.238846 -1.659195 -1.296313 -1.294025 -1.880356 -1.701139
## 113 114 115 116 117 118 119 120
## -3.131570 -1.281696 -1.501713 -1.873239 -2.407457 -2.166849 -1.289449 -3.084668
## 121 122 123 124 125 126 127 128
## -1.261232 -1.710291 -1.559927 -3.412343 -1.713596 -1.230091 -2.239807 -1.142008
## 129 130 131 132 133 134 135 136
## -1.249793 -1.763802 -1.531455 -2.099484 -1.508577 -1.969965 -1.303049 -1.557130
## 137 138 139 140 141 142 143 144
## -2.282768 -1.679278 -2.027162 -1.735839 -1.462946 -1.367872 -1.477817 -1.263647
## 145 146 147 148 149 150 151 152
## -1.522431 -1.336351 -1.274832 -3.112885 -1.213568 -1.117604 -1.641528 -1.856334
## 153 154 155 156 157 158 159 160
## -1.222211 -1.227549 -2.072792 -1.478072 -1.708512 -1.354399 -2.308824 -1.212678
## 161 162 163 164 165 166 167 168
## -1.224372 -1.186368 -1.273942 -2.128845 -1.255258 -3.461786 -1.240641 -2.126303
## 169 170 171 172 173 174 175 176
## -2.033136 -1.315251 -1.317793 -1.224626 -1.194502 -1.319573 -1.565392 -1.470191
## 177 178 179 180 181 182 183 184
## -1.246869 -1.069178 -2.257729 -1.219923 -1.428501 -1.222846 -1.328216 -1.398123
## 185 186 187 188 189 190 191 192
## -1.494722 -1.279408 -3.348282 -3.308753 -2.142572 -2.674757 -3.471065 -1.218779
## 193 194 195 196 197 198 199 200
## -1.681057 -1.194629 -3.063442 -1.382108 -1.491545 -1.598312 -1.762022 -1.724908
## 201 202 203 204 205 206 207 208
## -1.475402 -1.793926 -1.414011 -1.277501 -1.777275 -1.900057 -1.225007 -1.202764
## 209 210 211 212 213 214 215 216
## -1.548869 -2.123380 -2.250992 -2.006189 -2.197735 -2.516640 -1.266825 -2.656581
## 217 218 219 220 221 222 223 224
## -1.780198 -1.190689 -2.055887 -1.684108 -1.680803 -1.262376 -2.477873 -2.277557
## 225 226 227 228 229 230 231 232
## -1.481376 -1.205815 -1.284111 -1.935520 -2.046227 -1.232761 -1.337367 -3.373576
## 233 234 235 236 237 238 239 240
## -1.217254 -3.409801 -1.238735 -2.970910 -1.273180 -3.352731 -1.428755 -1.403207
## 241 242 243 244 245 246 247 248
## -1.212805 -1.496629 -1.319573 -1.350967 -3.369763 -2.667258 -1.299109 -1.686268
## 249 250 251 252 253 254 255 256
## -1.427357 -1.746897 -2.206251 -2.319374 -1.226533 -1.761006 -1.810068 -1.551665
## 257 258 259 260 261 262 263 264
## -1.258690 -3.399505 -1.275213 -1.371304 -1.284238 -1.596279 -1.205687 -3.073610
## 265 266 267 268 269 270 271 272
## -1.372067 -1.773589 -1.638604 -1.437525 -2.644507 -1.337113 -3.349808 -2.435166
## 273 274 275 276 277 278 279 280
## -1.192214 -1.755540 -1.339655 -2.658107 -2.453850 -1.641528 -1.742194 -3.362391
## 281 282 283 284 285 286 287 288
## -3.164108 -1.552809 -1.507941 -1.617378 -1.531710 -1.197934 -1.330885 -1.659322
## 289 290 291 292 293 294 295 296
## -1.230727 -1.349824 -3.301508 -1.499171 -1.283602 -1.669872 -1.224753 -2.648193
## 297 298 299 300 301 302 303 304
## -1.109597 -1.948484 -1.397869 -1.625894 -2.964682 -1.081634 -1.648645 -1.809814
## 305 306 307 308 309 310 311 312
## -2.150961 -1.650298 -1.626148 -2.462112 -1.648518 -1.541878 -1.743846 -1.591321
## 313 314 315 316 317 318 319 320
## -1.271654 -2.438852 -3.098523 -1.241149 -2.703991 -1.557130 -1.244073 -1.593609
## 321 322 323 324 325 326 327 328
## -1.498281 -1.888364 -1.571620 -1.369398 -1.663135 -2.065801 -3.378660 -1.594880
## 329 330 331 332 333 334 335 336
## -1.524210 -3.255115 -1.597295 -1.736093 -1.547979 -2.198244 -1.399013 -1.876925
## 337 338 339 340 341 342 343 344
## -1.198442 -1.435365 -1.706732 -1.718934 -1.735839 -2.392078 -1.837014 -1.980006
## 345 346 347 348 349 350 351 352
## -1.958017 -1.298219 -1.695801 -1.307371 -2.961759 -1.520016 -1.271782 -1.230346
## 353 354 355 356 357 358 359 360
## -2.518419 -1.688429 -1.531074 -1.602252 -1.791002 -1.205433 -1.774733 -2.161892
## 361 362 363 364 365 366 367 368
## -1.787697 -1.210390 -1.260851 -1.291483 -1.367872 -1.597422 -2.118168 -2.263194
## 369 370 371 372 373 374 375 376
## -1.740033 -1.266825 -1.274324 -1.208865 -1.760370 -1.414138 -1.596787 -2.322806
## 377 378 379 380 381 382 383 384
## -1.556495 -1.252335 -1.603269 -3.046537 -1.470573 -1.243819 -1.323386 -1.214331
## 385 386 387 388 389 390 391 392
## -1.894592 -1.219542 -1.314743 -1.655509 -1.256529 -1.462565 -2.751274 -1.367364
## 393 394 395 396 397 398 399 400
## -3.395692 -1.760116 -1.476419 -1.216110 -1.503874 -1.499425 -1.494595 -1.211026
## 401 402 403 404 405 406 407 408
## -3.369127 -2.608409 -1.765073 -1.995767 -1.508450 -1.441466 -1.942002 -1.266443
## 409 410 411 412 413 414 415 416
## -3.033318 -1.508195 -1.703300 -3.416029 -1.540480 -1.504001 -1.336096 -1.227931
## 417 418 419 420 421 422 423 424
## -1.145440 -3.222195 -1.295931 -1.195646 -2.446097 -1.252716 -1.255004 -1.998309
## 425 426 427 428 429 430 431 432
## -2.723565 -3.095726 -1.255004 -2.233960 -1.573527 -3.199316 -1.466759 -1.409563
## 433 434 435 436 437 438 439 440
## -1.280933 -2.082071 -2.282514 -2.658996 -1.362280 -1.308260 -1.899168 -2.177780
## 441 442 443 444 445 446 447 448
## -2.193795 -1.195138 -2.197608 -1.424052 -1.444008 -3.068907 -1.720968 -1.528659
## 449 450 451 452 453 454 455 456
## -2.611587 -1.406385 -1.765708 -1.870442 -1.539844 -1.277501 -1.470827 -2.986163
## 457 458 459 460 461 462 463 464
## -2.398052 -1.167810 -2.318612 -1.794815 -1.476419 -1.546708 -1.607464 -1.226533
## 465 466 467 468 469 470 471 472
## -1.881246 -2.267134 -3.038402 -2.051947 -1.637969 -1.527388 -1.234159 -2.177780
## 473 474 475 476 477 478 479 480
## -1.748549 -3.407894 -1.275468 -1.726306 -1.199459 -3.242405 -1.195519 -1.295931
## 481 482 483 484 485 486 487 488
## -1.187512 -1.389480 -1.467141 -1.396979 -1.623098 -1.207086 -2.149563 -1.289576
## 489 490 491 492 493 494 495 496
## -1.448838 -3.042470 -1.261995 -1.650933 -2.886767 -1.689827 -1.256910 -1.315633
## 497 498 499 500 501 502 503 504
## -1.367237 -3.409292 -1.281569 -1.832057 -1.732661 -1.193867 -1.994369 -1.271146
## 505 506 507 508 509 510 511 512
## -1.473877 -1.267079 -2.128209 -1.635935 -1.773843 -1.910988 -2.292301 -2.053599
## 513 514 515 516 517 518 519 520
## -1.189037 -1.057357 -1.354654 -1.091929 -1.287415 -1.545691 -1.441084 -1.274832
## 521 522 523 524 525 526 527 528
## -1.961195 -1.519762 -1.523956 -1.338511 -2.024874 -1.510865 -1.507814 -1.614963
## 529 530 531 532 533 534 535 536
## -1.792909 -1.898278 -1.871205 -2.347464 -1.559545 -2.260525 -2.812030 -3.362010
## 537 538 539 540 541 542 543 544
## -1.616107 -2.046736 -3.368111 -1.421637 -1.210772 -2.417880 -1.928275 -1.400411
## 545 546 547 548 549 550 551 552
## -2.679333 -1.603269 -1.264918 -1.279789 -1.793926 -1.709783 -1.246869 -1.741177
## 553 554 555 556 557 558 559 560
## -2.340346 -1.226787 -1.794815 -1.221067 -1.240514 -1.576450 -1.603905 -1.317666
## 561 562 563 564 565 566 567 568
## -1.580009 -3.071577 -1.270511 -1.714613 -1.772064 -1.374609 -1.742194 -1.726560
## 569 570 571 572 573 574 575 576
## -3.453270 -1.893448 -1.470318 -1.483791 -1.480105 -1.606066 -1.346010 -1.626275
## 577 578 579 580 581 582 583 584
## -1.480995 -1.282713 -1.689192 -1.485952 -1.256021 -1.416299 -1.468539 -1.755286
## 585 586 587 588 589 590 591 592
## -3.271639 -1.132603 -1.271527 -1.329360 -3.171099 -1.223863 -2.415084 -1.605811
## 593 594 595 596 597 598 599 600
## -3.058358 -1.593609 -1.272290 -3.375356 -1.247632 -1.699614 -1.486079 -1.201493
## 601 602 603 604 605 606 607 608
## -1.712325 -1.576577 -1.803204 -1.218144 -1.492689 -1.728340 -1.253606 -1.901964
## 609 610 611 612 613 614 615 616
## -1.584966 -3.110089 -2.557059 -2.228240 -1.536540 -1.404097 -1.229837 -1.145948
## 617 618 619 620 621 622 623 624
## -3.001796 -1.683218 -1.364313 -1.442228 -1.254368 -1.717282 -1.488748 -1.407148
## 625 626 627 628 629 630 631 632
## -2.318866 -2.296877 -1.586873 -2.686451 -1.734187 -1.556495 -1.536031 -1.287288
## 633 634 635 636 637 638 639 640
## -1.248776 -1.226787 -1.462184 -2.287217 -1.186113 -1.223228 -1.470064 -1.384142
## 641 642 643 644 645 646 647 648
## -1.331012 -1.758336 -1.297584 -1.593991 -1.228566 -1.285000 -2.433514 -2.314925
## 649 650 651 652 653 654 655 656
## -1.306989 -2.743521 -1.636062 -1.505780 -1.900439 -3.207324 -1.590559 -1.218525
## 657 658 659 660 661 662 663 664
## -1.284365 -1.250937 -1.254368 -1.552936 -1.231617 -1.534760 -1.188910 -1.271400
## 665 666 667 668 669 670 671 672
## -1.766217 -1.347790 -1.459260 -1.282204 -1.231235 -1.234667 -1.223736 -1.184334
## 673 674 675 676 677 678 679 680
## -1.722747 -1.284873 -2.270312 -1.225134 -1.439305 -1.870061 -1.216237 -1.810195
## 681 682 683 684 685 686 687 688
## -1.523702 -2.655438 -1.225516 -1.235811 -2.162655 -1.474894 -1.529168 -1.249284
## 689 690 691 692 693 694 695 696
## -1.198697 -1.306989 -1.673304 -1.388845 -1.783884 -2.241459 -1.812356 -2.277557
## 697 698 699 700 701 702 703 704
## -1.494341 -1.203272 -1.513915 -3.102463 -1.244200 -2.816860 -1.852393 -1.649281
## 705 706 707 708 709 710 711 712
## -1.923445 -1.930690 -2.606121 -1.573146 -1.574671 -1.224118 -3.146314 -1.234667
## 713 714 715 716 717 718 719 720
## -1.367872 -1.217635 -3.140594 -1.626656 -3.397345 -1.286399 -1.390878 -1.458243
## 721 722 723 724 725 726 727 728
## -1.200095 -2.705135 -1.270256 -2.307553 -1.485444 -1.404860 -1.456337 -1.062695
## 729 730 731 732 733 734 735 736
## -2.294080 -2.249467 -2.380130 -1.259580 -1.236955 -1.624623 -1.240641 -1.468030
## 737 738 739 740 741 742 743 744
## -2.327127 -1.565011 -2.548670 -1.466378 -1.426976 -3.255496 -1.231617 -2.673741
## 745 746 747 748 749 750 751 752
## -1.536285 -1.740669 -3.467760 -1.801170 -1.560689 -3.451491 -2.622136 -1.735839
## 753 754 755 756 757 758 759 760
## -1.277755 -2.312002 -1.226787 -3.172497 -1.440703 -2.165197 -2.442157 -1.205815
## 761 762 763 764 765 766 767 768
## -1.885568 -1.543530 -1.188655 -1.211280 -1.062822 -1.287670 -3.374212 -1.451126
## 769 770 771 772 773 774 775 776
## -1.996275 -1.184207 -3.423782 -2.287344 -1.303049 -2.054997 -3.058866 -2.301580
## 777 778 779 780 781 782 783 784
## -1.224372 -1.109088 -1.515694 -1.241912 -2.037711 -1.431806 -2.194685 -1.358212
## 785 786 787 788 789 790 791 792
## -2.050549 -2.241078 -1.516457 -2.324204 -1.394310 -2.261415 -1.833963 -2.147021
## 793 794 795 796 797 798 799 800
## -1.502094 -1.209628 -1.914929 -1.779944 -1.398250 -1.231235 -1.223101 -3.174404
## 801 802 803 804 805 806 807 808
## -1.259071 -1.530057 -1.475911 -1.307752 -3.075263 -1.640002 -2.256712 -2.039999
## 809 810 811 812 813 814 815 816
## -1.248649 -1.902091 -3.148983 -1.863451 -2.304376 -2.475839 -3.423655 -1.192214
## 817 818 819 820 821 822 823 824
## -1.791129 -1.917852 -1.283856 -1.335969 -1.560562 -2.596715 -1.441720 -1.347409
## 825 826 827 828 829 830 831 832
## -1.472098 -1.571747 -1.290593 -1.272671 -1.171115 -1.974413 -1.534887 -1.260851
## 833 834 835 836 837 838 839 840
## -1.657543 -1.251826 -1.655382 -1.478580 -1.861545 -2.644888 -2.677808 -1.584331
## 841 842 843 844 845 846 847 848
## -1.216110 -1.386302 -1.248776 -1.490909 -1.765200 -1.491163 -2.234977 -1.608226
## 849 850 851 852 853 854 855 856
## -1.231108 -1.608608 -1.288432 -3.463947 -1.327072 -1.253479 -1.498154 -1.751981
## 857 858 859 860 861 862 863 864
## -1.314616 -1.302287 -3.294009 -1.204671 -1.291737 -3.095981 -1.220177 -1.386684
## 865 866 867 868 869 870 871 872
## -1.196917 -1.452142 -1.479088 -3.198681 -1.335334 -3.354383 -2.068725 -1.210009
## 873 874 875 876 877 878 879 880
## -1.506035 -1.277501 -1.372829 -1.506289 -1.269494 -1.867010 -1.726306 -1.592593
## 881 882 883 884 885 886 887 888
## -1.277755 -1.564375 -2.232181 -1.282585 -1.800027 -1.558274 -1.384015 -2.605740
## 889 890 891 892 893 894 895 896
## -2.248069 -1.213187 -2.263957 -1.184715 -1.165395 -1.407020 -3.188894 -1.797612
## 897 898 899 900 901 902 903 904
## -1.794942 -1.586364 -3.438145 -3.307355 -1.398377 -1.254368 -1.249030 -1.770920
## 905 906 907 908 909 910 911 912
## -3.250666 -2.978536 -1.257673 -3.244057 -1.994242 -1.309659 -1.084557 -1.071211
## 913 914 915 916 917 918 919 920
## -1.294533 -3.321718 -2.654802 -1.262757 -3.317269 -1.505907 -3.451745 -2.265228
## 921 922 923 924 925 926 927 928
## -1.493960 -1.202891 -3.368238 -1.499806 -1.374736 -1.230600 -2.229511 -1.616742
## 929 930 931 932 933 934 935 936
## -1.943146 -1.420621 -1.289830 -1.525863 -1.353510 -1.193485 -1.195519 -1.718299
## 937 938 939 940 941 942 943 944
## -3.224737 -3.105513 -1.230600 -1.549758 -1.425323 -1.517220 -1.830786 -1.364186
## 945 946 947 948 949 950 951 952
## -1.777402 -3.074627 -2.084994 -2.002631 -2.443682 -1.505399 -2.181339 -1.710926
## 953 954 955 956 957 958 959 960
## -1.221703 -1.229329 -3.199316 -3.367856 -3.435222 -1.379566 -2.009494 -1.521541
## 961 962 963 964 965 966 967 968
## -1.450617 -1.469174 -2.711872 -1.805238 -1.707622 -1.395454 -2.201167 -1.232506
## 969 970 971 972 973 974 975 976
## -1.518745 -1.932977 -1.251191 -2.599512 -1.133874 -1.610768 -1.573654 -2.669800
## 977 978 979 980 981 982 983 984
## -2.632559 -1.187003 -1.739652 -1.619157 -1.283094 -1.515567 -1.260851 -1.779054
## 985 986 987 988 989 990 991 992
## -1.529549 -1.714485 -1.706986 -2.275905 -1.623987 -1.309913 -2.199896 -1.447440
## 993 994 995 996 997 998 999 1000
## -2.317086 -1.721222 -2.612858 -1.447821 -1.662373 -1.233396 -1.425323 -3.064332
## 1001 1002 1003 1004 1005 1006 1007 1008
## -1.304066 -1.390370 -2.119058 -1.339528 -1.383887 -1.944417 -1.473623 -1.889127
## 1009 1010 1011 1012 1013 1014 1015 1016
## -3.131570 -3.433188 -2.801607 -2.108381 -1.101843 -1.536540 -3.016413 -1.309913
## 1017 1018 1019 1020 1021 1022 1023 1024
## -1.089387 -1.195900 -1.667584 -1.646866 -1.363805 -1.488367 -1.373973 -1.191706
## 1025 1026 1027 1028 1029 1030 1031 1032
## -3.111360 -1.458116 -2.098976 -1.347790 -1.199459 -1.434348 -2.300944 -2.212352
## 1033 1034 1035 1036 1037 1038 1039 1040
## -1.392531 -1.875526 -2.308316 -1.197171 -1.402190 -2.121346 -1.626402 -1.277628
## 1041 1042 1043 1044 1045 1046 1047 1048
## -2.677681 -2.004791 -1.331012 -3.038784 -1.774479 -1.227168 -1.363805 -1.484935
## 1049 1050 1051 1052 1053 1054 1055 1056
## -1.533997 -1.602888 -1.395962 -1.535141 -1.091039 -1.551919 -2.259381 -3.090769
## 1057 1058 1059 1060 1061 1062 1063 1064
## -1.298855 -1.661864 -1.513661 -1.234667 -1.332283 -1.187512 -2.226715 -2.024747
## 1065 1066 1067 1068 1069 1070 1071 1072
## -1.191452 -1.441974 -1.416935 -1.512644 -1.254623 -1.127773 -1.551665 -1.537811
## 1073 1074 1075 1076 1077 1078 1079 1080
## -1.333300 -1.761514 -1.741050 -2.358268 -2.966843 -1.229329 -3.004466 -1.993733
## 1081 1082 1083 1084 1085 1086 1087 1088
## -3.039801 -2.022967 -1.217889 -1.185605 -1.829388 -1.448202 -2.760807 -1.222465
## 1089 1090 1091 1092 1093 1094 1095 1096
## -1.544420 -1.473750 -2.163926 -1.478199 -1.200095 -2.215911 -1.624750 -1.590940
## 1097 1098 1099 1100 1101 1102 1103 1104
## -3.018320 -1.220940 -1.446296 -1.874891 -1.237972 -1.676227 -1.265172 -1.747532
## 1105 1106 1107 1108 1109 1110 1111 1112
## -1.240641 -1.741559 -2.163799 -1.701521 -1.240514 -2.104822 -1.192723 -2.221631
## 1113 1114 1115 1116 1117 1118 1119 1120
## -1.546199 -1.448583 -1.229964 -1.306862 -3.418571 -1.626148 -1.191070 -2.190491
## 1121 1122 1123 1124 1125 1126 1127 1128
## -1.462692 -1.795324 -1.529422 -1.709783 -1.976066 -2.054362 -3.386159 -1.192596
## 1129 1130 1131 1132 1133 1134 1135 1136
## -1.636062 -3.422003 -1.362153 -1.572637 -1.518745 -1.548869 -1.271019 -3.161948
## 1137 1138 1139 1140 1141 1142 1143 1144
## -1.235176 -1.286780 -2.358395 -1.350078 -3.350316 -1.201239 -1.662373 -1.486461
## 1145 1146 1147 1148 1149 1150 1151 1152
## -1.606828 -1.521795 -1.529549 -1.337240 -1.612548 -1.445914 -1.591067 -1.548996
## 1153 1154 1155 1156 1157 1158 1159 1160
## -1.325292 -1.128535 -3.427722 -1.319191 -2.255441 -1.456337 -1.662246 -1.569968
## 1161 1162 1163 1164 1165 1166 1167 1168
## -1.662500 -1.914929 -2.239044 -1.429391 -1.938951 -1.659068 -2.861346 -1.620555
## 1169 1170 1171 1172 1173 1174 1175 1176
## -1.407020 -1.376134 -1.257038 -1.204416 -1.675083 -1.946959 -1.590813 -1.602125
## 1177 1178 1179 1180 1181 1182 1183 1184
## -3.015269 -2.615654 -1.282840 -1.619666 -1.184969 -2.704246 -1.485062 -1.798755
## 1185 1186 1187 1188 1189 1190 1191 1192
## -3.144026 -3.166523 -1.511373 -1.530947 -1.461294 -1.628817 -1.624369 -1.625131
## 1193 1194 1195 1196 1197 1198 1199 1200
## -1.257927 -1.239243 -2.959217 -2.883844 -1.829260 -1.275849 -1.611404 -1.608735
## 1201 1202 1203 1204 1205 1206 1207 1208
## -1.335207 -1.436127 -1.349315 -1.819473 -1.266570 -1.106165 -1.255766 -1.378676
## 1209 1210 1211 1212 1213 1214 1215 1216
## -1.435746 -2.312383 -1.186876 -2.139776 -1.301397 -1.218271 -1.930562 -1.555732
## 1217 1218 1219 1220 1221 1222 1223 1224
## -1.926495 -1.488494 -2.103678 -1.307117 -1.501332 -2.295224 -1.126756 -2.573328
## 1225 1226 1227 1228 1229 1230 1231 1232
## -1.222084 -3.052257 -1.365457 -1.371050 -1.746389 -1.757320 -1.425705 -1.636062
## 1233 1234 1235 1236 1237 1238 1239 1240
## -1.803967 -1.292881 -1.561833 -2.246925 -1.708766 -1.785155 -1.347917 -1.594880
## 1241 1242 1243 1244 1245 1246 1247 1248
## -1.751727 -2.150580 -3.449966 -2.169137 -1.560562 -1.201747 -1.206196 -1.989920
## 1249 1250 1251 1252 1253 1254 1255 1256
## -1.366983 -1.279916 -1.729102 -1.836633 -1.301778 -1.583314 -1.501967 -2.017629
## 1257 1258 1259 1260 1261 1262 1263 1264
## -1.242802 -1.966406 -1.197171 -1.601998 -1.274578 -1.667711 -1.238862 -1.280679
## 1265 1266 1267 1268 1269 1270 1271 1272
## -3.348918 -1.317412 -1.220050 -1.437653 -2.577014 -1.378930 -1.695420 -1.269621
## 1273 1274 1275 1276 1277 1278 1279 1280
## -1.399648 -1.233905 -1.624114 -2.596207 -1.461548 -3.385778 -1.986743 -1.226787
## 1281 1282 1283 1284 1285 1286 1287 1288
## -1.446550 -1.667965 -1.328597 -1.188910 -2.640439 -1.944798 -1.358340 -1.633012
## 1289 1290 1291 1292 1293 1294 1295 1296
## -1.661483 -1.258563 -1.608608 -1.464599 -1.453668 -1.238989 -1.802314 -2.256966
## 1297 1298 1299 1300 1301 1302 1303 1304
## -2.157825 -1.202129 -2.063641 -1.756938 -1.793290 -2.999763 -1.272926 -2.242476
## 1305 1306 1307 1308 1309 1310 1311 1312
## -1.494468 -1.800281 -2.154012 -1.385540 -1.616107 -1.524465 -2.935702 -1.121544
## 1313 1314 1315 1316 1317 1318 1319 1320
## -1.304829 -1.225897 -1.584204 -1.814008 -1.650425 -1.231490 -1.413630 -1.519889
## 1321 1322 1323 1324 1325 1326 1327 1328
## -1.302287 -1.196663 -2.019408 -1.273053 -1.740542 -1.433458 -2.188330 -2.610061
## 1329 1330 1331 1332 1333 1334 1335 1336
## -1.379058 -1.285509 -3.393913 -3.428612 -1.239116 -1.858749 -1.535904 -1.425069
## 1337 1338 1339 1340 1341 1342 1343 1344
## -1.267460 -1.292118 -1.066508 -1.243310 -1.650171 -1.462565 -2.163672 -1.191198
## 1345 1346 1347 1348 1349 1350 1351 1352
## -1.473623 -1.537684 -1.679786 -1.423036 -3.067382 -1.301905 -1.755286 -3.111996
## 1353 1354 1355 1356 1357 1358 1359 1360
## -1.568824 -1.222338 -1.257927 -1.629071 -1.487477 -2.625695 -1.765835 -1.959034
## 1361 1362 1363 1364 1365 1366 1367 1368
## -1.434729 -1.252462 -1.615344 -1.626529 -1.797739 -1.067779 -1.658178 -1.212043
## 1369 1370 1371 1372 1373 1374 1375 1376
## -1.659576 -2.181593 -1.623987 -1.612929 -1.583822 -1.200222 -3.201096 -1.238226
## 1377 1378 1379 1380 1381 1382 1383 1384
## -1.535523 -3.364552 -1.575688 -1.293008 -1.635935 -1.201620 -1.318683 -1.286271
## 1385 1386 1387 1388 1389 1390 1391 1392
## -2.185915 -2.025764 -1.293516 -1.612039 -1.776512 -1.565011 -1.229964 -1.292372
## 1393 1394 1395 1396 1397 1398 1399 1400
## -1.590559 -1.450871 -2.159350 -1.643053 -2.257093 -1.297330 -1.687666 -1.883661
## 1401 1402 1403 1404 1405 1406 1407 1408
## -1.309277 -3.424926 -1.072609 -2.624805 -1.479724 -2.331195 -1.493451 -1.515949
## 1409 1410 1411 1412 1413 1414 1415 1416
## -1.265553 -1.732788 -1.650679 -1.207086 -1.405495 -1.434602 -2.026399 -1.184334
## 1417 1418 1419 1420 1421 1422 1423 1424
## -1.493451 -1.318937 -1.605430 -1.616742 -1.282713 -2.448893 -1.267206 -1.358085
## 1425 1426 1427 1428 1429 1430 1431 1432
## -1.577086 -1.549123 -1.289703 -1.234921 -1.217508 -1.451253 -2.607646 -2.253788
## 1433 1434 1435 1436 1437 1438 1439 1440
## -2.676028 -1.552809 -1.371685 -1.238735 -1.231617 -3.398870 -1.156625 -1.900693
## 1441 1442 1443 1444 1445 1446 1447 1448
## -1.581280 -1.730628 -1.537556 -3.328835 -1.226405 -2.653912 -1.782232 -1.616234
## 1449 1450 1451 1452 1453 1454 1455 1456
## -2.065166 -1.239116 -2.052328 -1.608226 -1.784266 -1.774606 -1.545564 -1.286144
## 1457 1458 1459 1460 1461 1462 1463 1464
## -1.652204 -1.183444 -1.307498 -1.440703 -1.410198 -2.308697 -2.458299 -2.192016
## 1465 1466 1467 1468 1469 1470
## -1.306100 -1.255894 -2.199006 -1.709783 -1.614200 -1.488876
desercion_empleados_IBM_ETL$Attrition_bin <-
ifelse(desercion_empleados_IBM_ETL$Attrition == "Yes", 1, 0)
target <- desercion_empleados_IBM_ETL$Attrition_bin
MonthlyIncome <- desercion_empleados_IBM_ETL$MonthlyIncome
dataPlot <- data.frame(MonthlyIncome, target)
plot(target~MonthlyIncome, data = dataPlot, main = "Modelo RLogS: MonthlyIncome-Attrition_bin", xlab = "MonthlyIncome", ylab = "Attrition_bin = 0 | Attrition_bin = 1", col = "gold", pch = "I")
curve(predict(glm(target~MonthlyIncome, family = "binomial", data = dataPlot), data.frame(MonthlyIncome = x), type = "response"), col = "violet", lwd = 3, add = TRUE)
La regresión logística simple permitió estimar la probabilidad de ocurrencia de la variable respuesta en función de la variable predictora analizada. El estudio de los coeficientes y las probabilidades estimadas facilitó la interpretación del modelo, mientras que la representación gráfica ayudó a visualizar su comportamiento. Esta técnica resultó adecuada para el análisis de variables categóricas dentro de la base de datos.
El análisis de varianza (ANOVA) es una técnica estadística que permite comparar los ingresos mensuales promedio entre diferentes roles de trabajo. A través de este análisis, se busca identificar si existen diferencias significativas en los salarios segun el cargo desempeñado, lo que contribuye a comprender laa estructura salarial dentro de la organización y a respaldar el análisis con datos objetivos.
anova_ingresos <- aov(MonthlyIncome ~ JobRole,
data = desercion_empleados_IBM_ETL)
summary(anova_ingresos)
## Df Sum Sq Mean Sq F value Pr(>F)
## JobRole 8 2.657e+10 3.321e+09 810.2 <2e-16 ***
## Residuals 1461 5.989e+09 4.099e+06
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(MonthlyIncome ~ JobRole,
data = desercion_empleados_IBM_ETL,
las = 2,
main = "Distribucion de MonthlyIncome por JobRole",
ylab = "MonthlyIncome")
La figura correspondiente al boxplot de MonthlyIncome por JobRole confirma visualmente estas diferencias, observándose salarios considerablemente más altos en cargos de dirección y ejecutivos frente a roles operativos como representantes de ventas o personal de recursos humanos.
TukeyHSD(anova_ingresos)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = MonthlyIncome ~ JobRole, data = desercion_empleados_IBM_ETL)
##
## $JobRole
## diff lwr
## Human Resources-Healthcare Representative -3293.013359 -4323.8896
## Laboratory Technician-Healthcare Representative -4291.593475 -4965.9120
## Manager-Healthcare Representative 9652.913112 8822.3732
## Manufacturing Director-Healthcare Representative -233.625428 -991.7720
## Research Director-Healthcare Representative 8504.786641 7612.3470
## Research Scientist-Healthcare Representative -4288.790756 -4950.1865
## Sales Executive-Healthcare Representative -604.484218 -1255.1110
## Sales Representative-Healthcare Representative -4902.763359 -5785.1328
## Laboratory Technician-Human Resources -998.580116 -1954.3359
## Manager-Human Resources 12945.926471 11874.2174
## Manufacturing Director-Human Resources 3059.387931 2042.7514
## Research Director-Human Resources 11797.800000 10677.4374
## Research Scientist-Human Resources -995.777397 -1942.4600
## Sales Executive-Human Resources 2688.529141 1749.3386
## Sales Representative-Human Resources -1609.750000 -2722.1077
## Manager-Laboratory Technician 13944.506586 13209.2788
## Manufacturing Director-Laboratory Technician 4057.968047 3405.6264
## Research Director-Laboratory Technician 12796.380116 11991.8853
## Research Scientist-Laboratory Technician 2.802719 -534.0471
## Sales Executive-Laboratory Technician 3687.109257 3163.5841
## Sales Representative-Laboratory Technician -611.169884 -1404.4789
## Manufacturing Director-Manager -9886.538540 -10699.3366
## Research Director-Manager -1148.126471 -2087.4364
## Research Scientist-Manager -13941.703868 -14665.0978
## Sales Executive-Manager -10257.397329 -10970.9586
## Sales Representative-Manager -14555.676471 -15485.4240
## Research Director-Manufacturing Director 8738.412069 7862.4596
## Research Scientist-Manufacturing Director -4055.165328 -4694.1399
## Sales Executive-Manufacturing Director -370.858790 -998.6799
## Sales Representative-Manufacturing Director -4669.137931 -5534.8285
## Research Scientist-Research Director -12793.577397 -13587.2718
## Sales Executive-Research Director -9109.270859 -9894.0140
## Sales Representative-Research Director -13407.550000 -14392.9852
## Sales Executive-Research Scientist 3684.306538 3177.5349
## Sales Representative-Research Scientist -613.972603 -1396.3269
## Sales Representative-Sales Executive -4298.279141 -5071.5508
## upr p adj
## Human Resources-Healthcare Representative -2262.13715 0.0000000
## Laboratory Technician-Healthcare Representative -3617.27499 0.0000000
## Manager-Healthcare Representative 10483.45304 0.0000000
## Manufacturing Director-Healthcare Representative 524.52116 0.9894290
## Research Director-Healthcare Representative 9397.22633 0.0000000
## Research Scientist-Healthcare Representative -3627.39500 0.0000000
## Sales Executive-Healthcare Representative 46.14257 0.0928541
## Sales Representative-Healthcare Representative -4020.39387 0.0000000
## Laboratory Technician-Human Resources -42.82434 0.0327038
## Manager-Human Resources 14017.63551 0.0000000
## Manufacturing Director-Human Resources 4076.02451 0.0000000
## Research Director-Human Resources 12918.16257 0.0000000
## Research Scientist-Human Resources -49.09475 0.0305199
## Sales Executive-Human Resources 3627.71970 0.0000000
## Sales Representative-Human Resources -497.39232 0.0002571
## Manager-Laboratory Technician 14679.73439 0.0000000
## Manufacturing Director-Laboratory Technician 4710.30967 0.0000000
## Research Director-Laboratory Technician 13600.87496 0.0000000
## Research Scientist-Laboratory Technician 539.65250 1.0000000
## Sales Executive-Laboratory Technician 4210.63440 0.0000000
## Sales Representative-Laboratory Technician 182.13918 0.2883145
## Manufacturing Director-Manager -9073.74044 0.0000000
## Research Director-Manager -208.81656 0.0047993
## Research Scientist-Manager -13218.30989 0.0000000
## Sales Executive-Manager -9543.83603 0.0000000
## Sales Representative-Manager -13625.92896 0.0000000
## Research Director-Manufacturing Director 9614.36457 0.0000000
## Research Scientist-Manufacturing Director -3416.19075 0.0000000
## Sales Executive-Manufacturing Director 256.96236 0.6587161
## Sales Representative-Manufacturing Director -3803.44740 0.0000000
## Research Scientist-Research Director -11999.88295 0.0000000
## Sales Executive-Research Director -8324.52774 0.0000000
## Sales Representative-Research Director -12422.11484 0.0000000
## Sales Executive-Research Scientist 4191.07818 0.0000000
## Sales Representative-Research Scientist 168.38166 0.2641555
## Sales Representative-Sales Executive -3525.00747 0.0000000
Se realizó una prueba post‑hoc de Tukey para identificar qué pares de roles difieren en el ingreso mensual promedio.
Se puede concluir, que es posible modelar de manera adecuada la deserción de empleados de IBM a partir de información histórica limpia, transformada y analizada con R. El proceso ETL y la exploración multivariante permitieron comprender la estructura del conjunto de datos y detectar relaciones iniciales entre variables demográficas, laborales y la variable de deserción.
El ajuste del modelo de regresión logística binaria evidenció que factores cuantitativos como el ingreso mensual (MonthlyIncome) y otras características laborales tienen un efecto estadísticamente significativo sobre la probabilidad de deserción, ofreciendo una herramienta útil para estimar el riesgo de abandono de cada empleado. Las probabilidades estimadas permiten priorizar acciones de retención sobre grupos con mayor propensión a renunciar, lo que aporta valor práctico a la gestión de talento humano.
El análisis de varianza (ANOVA) de los ingresos mensuales según el rol de trabajo mostró diferencias salariales muy significativas entre cargos, lo que revela una estructura salarial estratificada dentro de la organización. La prueba post‑hoc de Tukey y los boxplots confirmaron que los puestos directivos y ejecutivos presentan niveles de ingreso sustancialmente superiores a los de cargos operativos y administrativos, información clave para interpretar desigualdades internas y su posible vínculo con la deserción
Tucker (1973), Porras C. (2016), Devore, Jay L. (2008), Cramer, Harald (1953), Díaz Morales & Morales Rivera (2012), Hair et al. (1999), Aldás & Uriel (2017), Doornik & Hansen (2008), Aristizábal R. (2017),