
Case Study 1
Area Between Curves – Open Pit Mine Cross-Section: A
mining engineer analyzes the cross-sectional
area of an open pit mine. The pit walls are modeled by two
functions:
\[
\begin{eqnarray*}
y_1(x) &=& 0.03x^2 + 4 \\
y_2(x) &=& 0.6x + 1
\end{eqnarray*}
\]
where \(x\) and \(y\) are measured in
meters.
Tasks
- Determine the integration limits.
- Compute the area of the pit cross-section.
Case Study 2
Ore Body Area Above Cut-Off Grade: An ore body
profile above the cut-off boundary is approximated by:
\[
y = 25 - 0.02x^2
\]
The cut-off grade boundary is given by:
\[
y = 7
\]
Tasks
- Compute the area of the mineable ore body.
- Adjust the area using a recovery factor of
85%.
Case Study 3
Drainage Area of Underground Mine Tunnel: The
drainage cross-section of an underground tunnel is modeled by:
\[
y = 10 - x^2
\]
Tasks
- Compute the cross-sectional drainage area.
- Estimate the water inflow capacity if each \(1,m^2\) can drain 1.5 m\(^3\)/hour.
Case Study 4
Volume of Overburden – Disk Method: The vertical
profile of an overburden layer in a surface mine is given by:
\[
y = 15 - 0.01x^2
\]
The region is rotated about the \(x\)-axis.
Tasks
- Identify the appropriate volume method.
- Compute the overburden volume.
Case Study 5
Volume of Mine Shaft – Solid of Revolution: The wall
profile of a mine shaft is modeled by:
\[
y = 0.03x^2
\]
The curve is rotated about the \(y\)-axis from \(y = 0\) to \(y =
12\) meters.
Tasks
- Compute the shaft volume.
- Determine the usable volume if structural supports
occupy 10% of the space.
Case Study 6
Ore Layer Volume – Washer Method: An ore layer is
bounded by:
\[
\begin{eqnarray*}
y_1(x) &=& 22 - 0.015x^2 \\
y_2(x) &=& 6
\end{eqnarray*}
\]
The region is rotated about the \(x\)-axis.
Tasks
- Identify the inner and outer radii.
- Compute the volume of extractable ore.
Case Study 7
Stockpile Volume – Shell Method: The profile of a
mineral stockpile is modeled by:
\[
x = 0.4y^2
\]
The region is rotated about the \(y\)-axis from \(y = 0\) to \(y =
9\) meters.
Tasks
- Identify the shell radius and height.
- Compute the stockpile volume using the shell
method.
LS0tCnRpdGxlOiAiU3R1ZHkgQ2FzZXMiICAgICAgICAgICAgIyBNYWluIHRpdGxlIG9mIHRoZSBkb2N1bWVudApzdWJ0aXRsZTogIkFwcGxpY2F0aW9uIG9mIEludGVncmFsc34gV2VlayAxMyIgICMgU3VidGl0bGUgb3IgdG9waWMgZm9yIHdlZWsgMgphdXRob3I6ICJCYWt0aSBTaXJlZ2FyLCBNLlNjLiwgQ0RTLiIgICAgICAjIFJlcGxhY2Ugd2l0aCB5b3VyIGZ1bGwgbmFtZQpkYXRlOiAgImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJUIgJWQsICVZJylgIiAjIEF1dG8gZGlzcGxheXMgdGhlIGN1cnJlbnQgZGF0ZQpvdXRwdXQ6ICAgICAgICAgICAgICAgICAgICAgICAgICMgT3V0cHV0IHNlY3Rpb24gZGVmaW5lcyB0aGUgZm9ybWF0IGFuZCBsYXlvdXQgCiAgcm1kZm9ybWF0czo6cmVhZHRoZWRvd246ICAgICAgIyBodHRwczovL2dpdGh1Yi5jb20vanViYS9ybWRmb3JtYXRzCiAgICBzZWxmX2NvbnRhaW5lZDogdHJ1ZSAgICAgICAgIyBFbWJlZHMgYWxsIHJlc291cmNlcyAoQ1NTLCBKUywgaW1hZ2VzKSAKICAgIHRodW1ibmFpbHM6IHRydWUgICAgICAgICAgICAjIERpc3BsYXlzIGltYWdlIHRodW1ibmFpbHMgaW4gdGhlIGRvYwogICAgbGlnaHRib3g6IHRydWUgICAgICAgICAgICAgICMgRW5hYmxlcyBjbGljayB0byBlbmxhcmdlIGltYWdlcwogICAgZ2FsbGVyeTogdHJ1ZSAgICAgICAgICAgICAgICMgR3JvdXBzIGltYWdlcyBpbnRvIGFuIGludGVyYWN0aXZlIGdhbGxlcnkKICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZSAgICAgICAjIEF1dG9tYXRpY2FsbHkgbnVtYmVycyBhbGwgc2VjdGlvbnMKICAgIGxpYl9kaXI6IGxpYnMgICAgICAgICAgICAgICAjIERpcmVjdG9yeSB3aGVyZSBKYXZhU2NyaXB0L0NTUyBsaWJyYXJpZXMKICAgIGRmX3ByaW50OiAicGFnZWQiICAgICAgICAgICAjIERpc3BsYXlzIGRhdGEgZnJhbWVzIGFzIGludGVyYWN0aXZlIHBhZ2VkIAogICAgY29kZV9mb2xkaW5nOiAic2hvdyIgICAgICAgICMgQWxsb3dzIGZvbGRpbmcvdW5mb2xkaW5nIFIgY29kZSBibG9ja3MgCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMgICAgICAgICAgIyBBZGRzIGEgYnV0dG9uIHRvIGRvd25sb2FkIGFsbCBSIGNvZGUKLS0tCgoKPGltZyBpZD0iRm90byIgc3JjPSJodHRwczovL2dpdGh1Yi5jb20vZHNjaWVuY2VsYWJzL2ltYWdlcy9ibG9iL21hc3Rlci9Mb2dvX0RzY2llbmNlbGFic192MS5wbmc/cmF3PXRydWUiIGFsdD0iTG9nbyIgc3R5bGU9IndpZHRoOjIwMHB4OyBkaXNwbGF5OiBibG9jazsgbWFyZ2luOiBhdXRvOyI+CgotLS0KCiMjIENhc2UgU3R1ZHkgMQoKKipBcmVhIEJldHdlZW4gQ3VydmVzIOKAkyBPcGVuIFBpdCBNaW5lIENyb3NzLVNlY3Rpb246KioKQSAqKm1pbmluZyBlbmdpbmVlcioqIGFuYWx5emVzIHRoZSAqKmNyb3NzLXNlY3Rpb25hbCBhcmVhIG9mIGFuIG9wZW4gcGl0IG1pbmUqKi4gVGhlIHBpdCB3YWxscyBhcmUgbW9kZWxlZCBieSB0d28gZnVuY3Rpb25zOgoKJCQKXGJlZ2lue2VxbmFycmF5Kn0KeV8xKHgpICY9JiAwLjAzeF4yICsgNCBcXAp5XzIoeCkgJj0mIDAuNnggKyAxClxlbmR7ZXFuYXJyYXkqfQokJAoKd2hlcmUgJHgkIGFuZCAkeSQgYXJlIG1lYXN1cmVkIGluICoqbWV0ZXJzKiouCgoqKlRhc2tzKioKCjEuIERldGVybWluZSB0aGUgKippbnRlZ3JhdGlvbiBsaW1pdHMqKi4KMi4gQ29tcHV0ZSB0aGUgKiphcmVhIG9mIHRoZSBwaXQgY3Jvc3Mtc2VjdGlvbioqLgoKLS0tCgojIyBDYXNlIFN0dWR5IDIKCioqT3JlIEJvZHkgQXJlYSBBYm92ZSBDdXQtT2ZmIEdyYWRlOioqCkFuIG9yZSBib2R5IHByb2ZpbGUgYWJvdmUgdGhlIGN1dC1vZmYgYm91bmRhcnkgaXMgYXBwcm94aW1hdGVkIGJ5OgoKJCQKeSA9IDI1IC0gMC4wMnheMgokJAoKVGhlIGN1dC1vZmYgZ3JhZGUgYm91bmRhcnkgaXMgZ2l2ZW4gYnk6CgokJAp5ID0gNwokJAoKKipUYXNrcyoqCgoxLiBDb21wdXRlIHRoZSAqKmFyZWEgb2YgdGhlIG1pbmVhYmxlIG9yZSBib2R5KiouCjIuIEFkanVzdCB0aGUgYXJlYSB1c2luZyBhICoqcmVjb3ZlcnkgZmFjdG9yIG9mIDg1JSoqLgoKLS0tCgojIyBDYXNlIFN0dWR5IDMKCioqRHJhaW5hZ2UgQXJlYSBvZiBVbmRlcmdyb3VuZCBNaW5lIFR1bm5lbDoqKgpUaGUgZHJhaW5hZ2UgY3Jvc3Mtc2VjdGlvbiBvZiBhbiB1bmRlcmdyb3VuZCB0dW5uZWwgaXMgbW9kZWxlZCBieToKCiQkCnkgPSAxMCAtIHheMgokJAoKKipUYXNrcyoqCgoxLiBDb21wdXRlIHRoZSAqKmNyb3NzLXNlY3Rpb25hbCBkcmFpbmFnZSBhcmVhKiouCjIuIEVzdGltYXRlIHRoZSAqKndhdGVyIGluZmxvdyBjYXBhY2l0eSoqIGlmIGVhY2ggJDEsbV4yJCBjYW4gZHJhaW4gKioxLjUgbSReMyQvaG91cioqLgoKLS0tCgojIyBDYXNlIFN0dWR5IDQKCioqVm9sdW1lIG9mIE92ZXJidXJkZW4g4oCTIERpc2sgTWV0aG9kOioqClRoZSB2ZXJ0aWNhbCBwcm9maWxlIG9mIGFuIG92ZXJidXJkZW4gbGF5ZXIgaW4gYSBzdXJmYWNlIG1pbmUgaXMgZ2l2ZW4gYnk6CgokJAp5ID0gMTUgLSAwLjAxeF4yCiQkCgpUaGUgcmVnaW9uIGlzIHJvdGF0ZWQgYWJvdXQgdGhlICoqJHgkLWF4aXMqKi4KCioqVGFza3MqKgoKMS4gSWRlbnRpZnkgdGhlICoqYXBwcm9wcmlhdGUgdm9sdW1lIG1ldGhvZCoqLgoyLiBDb21wdXRlIHRoZSAqKm92ZXJidXJkZW4gdm9sdW1lKiouCgotLS0KCiMjIENhc2UgU3R1ZHkgNQoKKipWb2x1bWUgb2YgTWluZSBTaGFmdCDigJMgU29saWQgb2YgUmV2b2x1dGlvbjoqKgpUaGUgd2FsbCBwcm9maWxlIG9mIGEgbWluZSBzaGFmdCBpcyBtb2RlbGVkIGJ5OgoKJCQKeSA9IDAuMDN4XjIKJCQKClRoZSBjdXJ2ZSBpcyByb3RhdGVkIGFib3V0IHRoZSAqKiR5JC1heGlzKiogZnJvbSAkeSA9IDAkIHRvICR5ID0gMTIkIG1ldGVycy4KCioqVGFza3MqKgoKMS4gQ29tcHV0ZSB0aGUgKipzaGFmdCB2b2x1bWUqKi4KMi4gRGV0ZXJtaW5lIHRoZSAqKnVzYWJsZSB2b2x1bWUqKiBpZiBzdHJ1Y3R1cmFsIHN1cHBvcnRzIG9jY3VweSAqKjEwJSoqIG9mIHRoZSBzcGFjZS4KCi0tLQoKIyMgQ2FzZSBTdHVkeSA2CgoqKk9yZSBMYXllciBWb2x1bWUg4oCTIFdhc2hlciBNZXRob2Q6KioKQW4gb3JlIGxheWVyIGlzIGJvdW5kZWQgYnk6CgokJApcYmVnaW57ZXFuYXJyYXkqfQp5XzEoeCkgJj0mIDIyIC0gMC4wMTV4XjIgXFwKeV8yKHgpICY9JiA2ClxlbmR7ZXFuYXJyYXkqfQokJAoKVGhlIHJlZ2lvbiBpcyByb3RhdGVkIGFib3V0IHRoZSAqKiR4JC1heGlzKiouCgoqKlRhc2tzKioKCjEuIElkZW50aWZ5IHRoZSAqKmlubmVyIGFuZCBvdXRlciByYWRpaSoqLgoyLiBDb21wdXRlIHRoZSAqKnZvbHVtZSBvZiBleHRyYWN0YWJsZSBvcmUqKi4KCi0tLQoKIyMgQ2FzZSBTdHVkeSA3CgoqKlN0b2NrcGlsZSBWb2x1bWUg4oCTIFNoZWxsIE1ldGhvZDoqKgpUaGUgcHJvZmlsZSBvZiBhIG1pbmVyYWwgc3RvY2twaWxlIGlzIG1vZGVsZWQgYnk6CgokJAp4ID0gMC40eV4yCiQkCgpUaGUgcmVnaW9uIGlzIHJvdGF0ZWQgYWJvdXQgdGhlICoqJHkkLWF4aXMqKiBmcm9tICR5ID0gMCQgdG8gJHkgPSA5JCBtZXRlcnMuCgoqKlRhc2tzKioKCjEuIElkZW50aWZ5IHRoZSAqKnNoZWxsIHJhZGl1cyBhbmQgaGVpZ2h0KiouCjIuIENvbXB1dGUgdGhlICoqc3RvY2twaWxlIHZvbHVtZSoqIHVzaW5nIHRoZSBzaGVsbCBtZXRob2QuCg==