##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: LEONARDO RUIZ ####
### CARRERA: INGENIERÍA EN PETROLEOS #####


##1. Carga de Datos
library(readxl)
datos <- read_excel("C:/Users/LEO/Documents/Producción Campo Sacha.csv.xlsx")
str(datos)
## tibble [8,344 × 31] (S3: tbl_df/tbl/data.frame)
##  $ mes                   : chr [1:8344] "Ene" "Ene" "Ene" "Ene" ...
##  $ día                   : num [1:8344] 1 1 1 1 1 1 1 1 1 1 ...
##  $ Pozo                  : chr [1:8344] "SACHA-001A" "SACHA-019A" "SACHA-052B" "SACHA-083A" ...
##  $ Campo                 : chr [1:8344] "SACHA" "SACHA" "SACHA" "SACHA" ...
##  $ Reservorio            : chr [1:8344] "U" "U" "U INFERIOR" "HOLLIN INFERIOR" ...
##  $ Bpd                   : num [1:8344] NA 53 249 139 186 136 NA 456 161 164 ...
##  $ Bppd_BH               : num [1:8344] 159 NA NA NA NA NA 155 NA NA NA ...
##  $ Bfpd_BE               : num [1:8344] NA 534 346 1158 1163 ...
##  $ Bfpd_BH               : num [1:8344] 695 NA NA NA NA NA 441 NA NA NA ...
##  $ Bapd_BE               : num [1:8344] NA 481 97 1019 977 ...
##  $ Bapd_BH               : num [1:8344] 536 NA NA NA NA NA 286 NA NA NA ...
##  $ Bsw_BE                : num [1:8344] NA 90.1 28 88 84 ...
##  $ Bsw_BH                : num [1:8344] 77.1 NA NA NA NA ...
##  $ Api_BE                : num [1:8344] NA 26.7 27.8 27.7 24 20.5 NA 28.5 29.9 26.3 ...
##  $ Api_BH                : num [1:8344] 27.8 NA NA NA NA NA 23.2 NA NA NA ...
##  $ Gas_BE                : num [1:8344] NA 10.76 50.55 1.11 27.9 ...
##  $ Gas_BH                : num [1:8344] 32.3 NA NA NA NA ...
##  $ Salinidad_BE          : num [1:8344] NA 15920 30227 1600 13000 ...
##  $ Salinidad_BH          : num [1:8344] 10800 NA NA NA NA NA 3800 NA NA NA ...
##  $ Rgl_BE                : num [1:8344] NA 20.15 146.1 0.96 23.99 ...
##  $ Rgl_BH                : num [1:8344] 46.5 NA NA NA NA ...
##  $ Gor_BE                : num [1:8344] NA 203.02 203.01 7.99 150 ...
##  $ Gor_BH                : num [1:8344] 203 NA NA NA NA ...
##  $ Horas_BE              : num [1:8344] NA 4 5 4 4 10 NA 4 10 10 ...
##  $ Horas_BH              : num [1:8344] 4 NA NA NA NA NA 4 NA NA NA ...
##  $ Bomba_BE              : chr [1:8344] NA "SF-320|SF-320|SF-900|SFGH2500/520/180/9259" "RC 1000|RC 1000|RC 1000/300/120/9250" "P23/68/30/7000" ...
##  $ Bomba_BH              : chr [1:8344] "JET  12K/0//0" NA NA NA ...
##  $ Frecuencia Operaciones: num [1:8344] NA 65 62 46 59 52 NA 58.5 57 54 ...
##  $ Voltaje               : num [1:8344] NA 479 457 364 440 452 NA 475 455 439 ...
##  $ Amperaje              : num [1:8344] NA 29 35 14 59 30 NA 23 35 34 ...
##  $ Presión Intake        : num [1:8344] NA 484 406 0 345 162 NA 546 338 0 ...
##2.Extraer la variable continua 
Gor_BE <- datos$Gor_BE 
Gor_BE <- as.numeric(Gor_BE)
Gor_BE <- na.omit(Gor_BE)

##3. Cálculo de intervalos (sturges)
R <- max(Gor_BE) - min(Gor_BE)
k <- floor(1 + (3.3 * log10(length(Gor_BE))))
A <- R / k

liminf <- seq(from = min(Gor_BE), 
              by = A, 
              length.out = k)

limsup <- liminf + A
limsup[k] <- max(Gor_BE)

MC <- (liminf + limsup) / 2

##4.Tabla de distribución de frecuencias
#4.1 Frecuencia absoluta
ni <- numeric(k)
for (i in 1:k) {
  if (i == k) {
    ni[i] <- sum(Gor_BE >= liminf[i] & Gor_BE <= limsup[i])
  } else {
    ni[i] <- sum(Gor_BE >= liminf[i] & Gor_BE < limsup[i])
  }
}

#4.2 Frecuencias relativas y acumuladas
hi <- (ni / length(Gor_BE)) * 100
Niasc <- cumsum(ni)
Nidsc <- rev(cumsum(rev(ni)))
Hiasc <- cumsum(hi)
Hidsc <- rev(cumsum(rev(hi)))

#4.3 Tabla de frecuencias
tabla_Gor_BE <- data.frame(
  Límite_Inferior = round(liminf, 2),
  Límite_Superior = round(limsup, 2),
  Marca_Clase = round(MC, 2),
  ni = ni,
  hi_porc = round(hi, 2),
  Ni_asc = Niasc,
  Ni_dsc = Nidsc,
  Hiasc_porc = round(Hiasc, 2),
  Hidsc_porc = round(Hidsc, 2))

# TABLA 1 CON GT()
library(gt)
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(e1071)
tabla_Gor_BE %>%
  gt() %>%
  tab_header(
    title = md("**Tabla 1: Distribución de Frecuencias de Gor_BE**"),
    subtitle = md("Campo Sacha | Método Sturges")  
  ) %>%
  tab_source_note(
    source_note = md("**Campo Sacha**")
  ) %>%  # ¡SOLO UN PARÉNTESIS AQUÍ!
  cols_label(
    Límite_Inferior = "L. Inferior",
    Límite_Superior = "L. Superior", 
    Marca_Clase = "Marca Clase",
    hi_porc = "hi %",
    Ni_asc = "Ni Asc.",
    Ni_dsc = "Ni Desc.",
    Hiasc_porc = "Hi Asc. %",
    Hidsc_porc = "Hi Desc. %"
  ) %>%
  fmt_number(
    columns = c(Límite_Inferior, Límite_Superior, Marca_Clase),
    decimals = 2
  ) %>%
  fmt_number(
    columns = c(hi_porc, Hiasc_porc, Hidsc_porc),
    decimals = 2,
    pattern = "{x}%"
  )
Tabla 1: Distribución de Frecuencias de Gor_BE
Campo Sacha | Método Sturges
L. Inferior L. Superior Marca Clase ni hi % Ni Asc. Ni Desc. Hi Asc. % Hi Desc. %
4.01 1,111.39 557.70 7682 99.70% 7682 7705 99.70% 100.00%
1,111.39 2,218.78 1,665.09 22 0.29% 7704 23 99.99% 0.30%
2,218.78 3,326.16 2,772.47 0 0.00% 7704 1 99.99% 0.01%
3,326.16 4,433.55 3,879.85 0 0.00% 7704 1 99.99% 0.01%
4,433.55 5,540.93 4,987.24 0 0.00% 7704 1 99.99% 0.01%
5,540.93 6,648.31 6,094.62 0 0.00% 7704 1 99.99% 0.01%
6,648.31 7,755.70 7,202.01 0 0.00% 7704 1 99.99% 0.01%
7,755.70 8,863.08 8,309.39 0 0.00% 7704 1 99.99% 0.01%
8,863.08 9,970.46 9,416.77 0 0.00% 7704 1 99.99% 0.01%
9,970.46 11,077.85 10,524.16 0 0.00% 7704 1 99.99% 0.01%
11,077.85 12,185.23 11,631.54 0 0.00% 7704 1 99.99% 0.01%
12,185.23 13,292.62 12,738.92 0 0.00% 7704 1 99.99% 0.01%
13,292.62 14,400.00 13,846.31 1 0.01% 7705 1 100.00% 0.01%
Campo Sacha
##5. Gráficos
#5.1 Histograma
hist(Gor_BE,
     main = "Gráfica No.1: Distribución de Gor_BE - Campo Sacha",
     breaks = seq(min(Gor_BE), max(Gor_BE) + A, by = A),
     xlab = "Gor_BE",
     ylab = "Cantidad",
     col = "lightblue",
     border = "darkblue",
     xaxt = "n")  # IMPORTANTE: Suprimir eje X automático

# Eje X personalizado con MARCAS DE CLASE
axis(1, at = MC,  # Posiciones: Marcas de Clase
     labels = round(MC, 2),  # Etiquetas: valores redondeados
     las = 1)  # Etiquetas horizontales

#5.2 Ojivas
x_asc <- c(min(liminf), limsup)
y_asc <- c(0, Niasc)
x_desc <- c(liminf, max(limsup))
y_desc <- c(Nidsc, 0)
x_range <- range(c(x_asc, x_desc))
y_range <- c(0, max(c(y_asc, y_desc)))

plot(x_asc, y_asc, type = "o", col = "skyblue",
     main = "Gráfica No.2: Ojivas Ascendente y Descendente de Gor_BE",
     xlab = "Gor_BE",
     ylab = "Frecuencia acumulada",
     xlim = x_range, ylim = y_range,
     xaxt = "n", pch = 16, lwd = 2)

axis(1, at = pretty(x_range), 
     labels = format(pretty(x_range), scientific = FALSE))
axis(2, at = pretty(y_range))

lines(x_desc, y_desc, type = "o", col = "steelblue4", pch = 17, lwd = 2)

legend("right", 
       legend = c("Ojiva Ascendente", "Ojiva Descendente"),
       col = c("skyblue", "steelblue4"), 
       pch = c(16, 17), 
       lty = 1, 
       lwd = 2,
       cex = 0.8)

#5.3 Diagramas de cajas
boxplot(Gor_BE, 
        horizontal = TRUE, 
        col = "steelblue",
        main = "Gráfica No.3: Distribución de Gor_BE - Campo Sacha",
        xlab = "Gor_BE",
        xaxt = "n")

axis(1, at = pretty(Gor_BE), 
     labels = format(pretty(Gor_BE), scientific = FALSE))

# Outliers

outliers <- boxplot.stats(Gor_BE)$out
cat("\nNúmero de outliers:", length(outliers), "\n")
## 
## Número de outliers: 25
if(length(outliers) > 0) {
  cat("Outliers:", round(outliers, 2), "\n")
}
## Outliers: 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 14400 1800 1800 1800 1800 1049.35 1580.25 1353.21 1110.67
##6. Indicadores estadísticos 
get_mode_interval <- function() {
  idx <- which.max(ni)
  return(paste0("[", round(liminf[idx], 2), ", ", round(limsup[idx], 2), "]"))
}

media <- mean(Gor_BE)
mediana <- median(Gor_BE)
moda_intervalo <- get_mode_interval()
desv <- sd(Gor_BE)
varianza <- var(Gor_BE)
cv <- (desv / media) * 100
asim <- skewness(Gor_BE)
curt <- kurtosis(Gor_BE)     

# CREAR DATA.FRAME DE INDICADORES (¡ESTA PARTE FALTABA!)
indicadores <- data.frame(
  Indicador = c("Mínimo", "Máximo", "Media", "Mediana", "Moda (intervalo)",
                "Desviación Estándar", "Varianza", "Coef. Variación (%)",
                "Asimetría", "Curtosis", "N° Outliers"),
  Valor = c(round(min(Gor_BE), 2), round(max(Gor_BE), 2),
            round(media, 2), round(mediana, 2), moda_intervalo,
            round(desv, 2), round(varianza, 2), round(cv, 2),
            round(asim, 2), round(curt, 2), length(outliers))
)

# TABLA 2 CON GT()
indicadores %>%
  gt() %>%
  tab_header(
    title = md("**Tabla 2: Indicadores Estadísticos de Gor_BE**")
  ) %>%
  tab_source_note(
    source_note = md("**Campo Sacha**")
  ) %>%
  cols_label(
    Indicador = "Indicador",
    Valor = "Valor"
  ) %>%
  tab_style(
    style = cell_text(weight = "bold"),
    locations = cells_body(columns = Indicador)
  )
Tabla 2: Indicadores Estadísticos de Gor_BE
Indicador Valor
Mínimo 4.01
Máximo 14400
Media 330.84
Mediana 246.94
Moda (intervalo) [4.01, 1111.39]
Desviación Estándar 294.23
Varianza 86571.36
Coef. Variación (%) 88.94
Asimetría 14.98
Curtosis 678.3
N° Outliers 25
Campo Sacha
##7. Conclusión 
#La variable Gor_BE fluctúa entre 4.01  y 14400.00  y sus valores están en torno a los 246.94  (media = 330.84 ), con una desviación estándar de 294.23 siendo un conjunto de valores heterogéneos  (CV = 88.94%) cuyos valores se concentran en el intervalo modal [4.01, 1111.39]  y con distribución leptocúrtica (K = 678.3) y sesgo pronunciado hacia la derecha (As = 14.98) a excepción de los 25 valores atípicos identificados, por lo tanto el comportamiento de la variable indica un proceso mayoritariamente estable con mediciones consistentes en el rango principal, aunque con presencia significativa de lecturas extremas que requieren análisis particular.