title: “U.S. Storms Impact on Population Health & Economy”
author: “Jamshaid ur Rehman”
date: “15 December, 2025”
output:
html_document:
toc: yes
toc_float: yes
theme: cosmo
keep_md: no
df_print: paged

##Reproducible Research Project Project 2

Introduction

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

ggplot 2 for graphs

if (!require(ggplot2)) {
    install.packages("ggplot2")
    library(ggplot2)
}
## Loading required package: ggplot2
if (!require(dplyr)) {
    install.packages("dplyr")
    library(dplyr, warn.conflicts = FALSE)
}
## Loading required package: dplyr
## Warning: package 'dplyr' was built under R version 4.3.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
if (!require(xtable)) {
    install.packages("xtable")
    library(xtable, warn.conflicts = FALSE)
}
## Loading required package: xtable
## Warning: package 'xtable' was built under R version 4.3.3
sessionInfo()
## R version 4.3.2 (2023-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
## 
## Matrix products: default
## 
## 
## locale:
## [1] LC_COLLATE=English_United States.utf8 
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## time zone: Asia/Karachi
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] xtable_1.8-4  dplyr_1.1.4   ggplot2_4.0.1
## 
## loaded via a namespace (and not attached):
##  [1] vctrs_0.6.5        cli_3.6.4          knitr_1.50         rlang_1.1.5       
##  [5] xfun_0.52          generics_0.1.4     S7_0.2.0           jsonlite_2.0.0    
##  [9] glue_1.8.0         htmltools_0.5.8.1  sass_0.4.9         scales_1.4.0      
## [13] rmarkdown_2.30     grid_4.3.2         tibble_3.2.1       evaluate_1.0.5    
## [17] jquerylib_0.1.4    fastmap_1.2.0      lifecycle_1.0.4    compiler_4.3.2    
## [21] RColorBrewer_1.1-3 pkgconfig_2.0.3    rstudioapi_0.17.1  farver_2.1.2      
## [25] digest_0.6.37      R6_2.6.1           tidyselect_1.2.1   pillar_1.11.1     
## [29] magrittr_2.0.3     bslib_0.9.0        withr_3.0.2        tools_4.3.2       
## [33] gtable_0.3.6       cachem_1.1.0

Data digging

subcategories of the data

stormDataTidy <- subset(stormData, EVTYPE != "?"
                                   &
                                   (FATALITIES > 0 | INJURIES > 0 | PROPDMG > 0 | CROPDMG > 0),
                                   select = c("EVTYPE",
                                              "FATALITIES",
                                              "INJURIES", 
                                              "PROPDMG",
                                              "PROPDMGEXP",
                                              "CROPDMG",
                                              "CROPDMGEXP",
                                              "BGN_DATE",
                                              "END_DATE",
                                              "STATE"))
dim(stormDataTidy)
## [1] 254632     10
sum(is.na(stormDataTidy))
## [1] 0

Clean of the data

length(unique(stormDataTidy$EVTYPE))
## [1] 487
stormDataTidy$EVTYPE <- toupper(stormDataTidy$EVTYPE)
# AVALANCHE
stormDataTidy$EVTYPE <- gsub('.*AVALANCE.*', 'AVALANCHE', stormDataTidy$EVTYPE)

# BLIZZARD
stormDataTidy$EVTYPE <- gsub('.*BLIZZARD.*', 'BLIZZARD', stormDataTidy$EVTYPE)

# CLOUD
stormDataTidy$EVTYPE <- gsub('.*CLOUD.*', 'CLOUD', stormDataTidy$EVTYPE)

# COLD
stormDataTidy$EVTYPE <- gsub('.*COLD.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*FREEZ.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*FROST.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*ICE.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LOW TEMPERATURE RECORD.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LO.*TEMP.*', 'COLD', stormDataTidy$EVTYPE)

# DRY
stormDataTidy$EVTYPE <- gsub('.*DRY.*', 'DRY', stormDataTidy$EVTYPE)

# DUST
stormDataTidy$EVTYPE <- gsub('.*DUST.*', 'DUST', stormDataTidy$EVTYPE)

# FIRE
stormDataTidy$EVTYPE <- gsub('.*FIRE.*', 'FIRE', stormDataTidy$EVTYPE)

# FLOOD
stormDataTidy$EVTYPE <- gsub('.*FLOOD.*', 'FLOOD', stormDataTidy$EVTYPE)

# FOG
stormDataTidy$EVTYPE <- gsub('.*FOG.*', 'FOG', stormDataTidy$EVTYPE)

# HAIL
stormDataTidy$EVTYPE <- gsub('.*HAIL.*', 'HAIL', stormDataTidy$EVTYPE)

# HEAT
stormDataTidy$EVTYPE <- gsub('.*HEAT.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WARM.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*HIGH.*TEMP.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*RECORD HIGH TEMPERATURES.*', 'HEAT', stormDataTidy$EVTYPE)

# HYPOTHERMIA/EXPOSURE
stormDataTidy$EVTYPE <- gsub('.*HYPOTHERMIA.*', 'HYPOTHERMIA/EXPOSURE', stormDataTidy$EVTYPE)

# LANDSLIDE
stormDataTidy$EVTYPE <- gsub('.*LANDSLIDE.*', 'LANDSLIDE', stormDataTidy$EVTYPE)

# LIGHTNING
stormDataTidy$EVTYPE <- gsub('^LIGHTNING.*', 'LIGHTNING', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('^LIGNTNING.*', 'LIGHTNING', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('^LIGHTING.*', 'LIGHTNING', stormDataTidy$EVTYPE)

# MICROBURST
stormDataTidy$EVTYPE <- gsub('.*MICROBURST.*', 'MICROBURST', stormDataTidy$EVTYPE)

# MUDSLIDE
stormDataTidy$EVTYPE <- gsub('.*MUDSLIDE.*', 'MUDSLIDE', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*MUD SLIDE.*', 'MUDSLIDE', stormDataTidy$EVTYPE)

# RAIN
stormDataTidy$EVTYPE <- gsub('.*RAIN.*', 'RAIN', stormDataTidy$EVTYPE)

# RIP CURRENT
stormDataTidy$EVTYPE <- gsub('.*RIP CURRENT.*', 'RIP CURRENT', stormDataTidy$EVTYPE)

# STORM
stormDataTidy$EVTYPE <- gsub('.*STORM.*', 'STORM', stormDataTidy$EVTYPE)

# SUMMARY
stormDataTidy$EVTYPE <- gsub('.*SUMMARY.*', 'SUMMARY', stormDataTidy$EVTYPE)

# TORNADO
stormDataTidy$EVTYPE <- gsub('.*TORNADO.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*TORNDAO.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LANDSPOUT.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WATERSPOUT.*', 'TORNADO', stormDataTidy$EVTYPE)

# SURF
stormDataTidy$EVTYPE <- gsub('.*SURF.*', 'SURF', stormDataTidy$EVTYPE)

# VOLCANIC
stormDataTidy$EVTYPE <- gsub('.*VOLCANIC.*', 'VOLCANIC', stormDataTidy$EVTYPE)

# WET
stormDataTidy$EVTYPE <- gsub('.*WET.*', 'WET', stormDataTidy$EVTYPE)

# WIND
stormDataTidy$EVTYPE <- gsub('.*WIND.*', 'WIND', stormDataTidy$EVTYPE)

# WINTER
stormDataTidy$EVTYPE <- gsub('.*WINTER.*', 'WINTER', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WINTRY.*', 'WINTER', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*SNOW.*', 'WINTER', stormDataTidy$EVTYPE)
length(unique(stormDataTidy$EVTYPE))
## [1] 81
stormDataTidy$DATE_START <- as.Date(stormDataTidy$BGN_DATE, format = "%m/%d/%Y")
stormDataTidy$DATE_END <- as.Date(stormDataTidy$END_DATE, format = "%m/%d/%Y")
stormDataTidy$YEAR <- as.integer(format(stormDataTidy$DATE_START, "%Y"))
stormDataTidy$DURATION <- as.numeric(stormDataTidy$DATE_END - stormDataTidy$DATE_START)/3600

Economic Data analysis

table(toupper(stormDataTidy$PROPDMGEXP))
## 
##             -      +      0      2      3      4      5      6      7      B 
##  11585      1      5    210      1      1      4     18      3      3     40 
##      H      K      M 
##      7 231427  11327
table(toupper(stormDataTidy$CROPDMGEXP))
## 
##             ?      0      B      K      M 
## 152663      6     17      7  99953   1986
# function to get multiplier factor
getMultiplier <- function(exp) {
    exp <- toupper(exp);
    if (exp == "")  return (10^0);
    if (exp == "-") return (10^0);
    if (exp == "?") return (10^0);
    if (exp == "+") return (10^0);
    if (exp == "0") return (10^0);
    if (exp == "1") return (10^1);
    if (exp == "2") return (10^2);
    if (exp == "3") return (10^3);
    if (exp == "4") return (10^4);
    if (exp == "5") return (10^5);
    if (exp == "6") return (10^6);
    if (exp == "7") return (10^7);
    if (exp == "8") return (10^8);
    if (exp == "9") return (10^9);
    if (exp == "H") return (10^2);
    if (exp == "K") return (10^3);
    if (exp == "M") return (10^6);
    if (exp == "B") return (10^9);
    return (NA);
}

# calculate property damage and crop damage costs (in billions)
stormDataTidy$PROP_COST <- with(stormDataTidy, as.numeric(PROPDMG) * sapply(PROPDMGEXP, getMultiplier))/10^9
stormDataTidy$CROP_COST <- with(stormDataTidy, as.numeric(CROPDMG) * sapply(CROPDMGEXP, getMultiplier))/10^9

summary statistics of the data

healthImpactData <- aggregate(x = list(HEALTH_IMPACT = stormDataTidy$FATALITIES + stormDataTidy$INJURIES), 
                                  by = list(EVENT_TYPE = stormDataTidy$EVTYPE), 
                                  FUN = sum,
                                  na.rm = TRUE)
healthImpactData <- healthImpactData[order(healthImpactData$HEALTH_IMPACT, decreasing = TRUE),]
damageCostImpactData <- aggregate(x = list(DAMAGE_IMPACT = stormDataTidy$PROP_COST + stormDataTidy$CROP_COST), 
                                  by = list(EVENT_TYPE = stormDataTidy$EVTYPE), 
                                  FUN = sum,
                                  na.rm = TRUE)
damageCostImpactData <- damageCostImpactData[order(damageCostImpactData$DAMAGE_IMPACT, decreasing = TRUE),]

output

print(xtable(head(healthImpactData, 10),
             caption = "Top 10 Weather Events Most Harmful to Population Health"),
             caption.placement = 'top',
             type = "html",
             include.rownames = FALSE,
             html.table.attributes='class="table-bordered", width="100%"')
Top 10 Weather Events Most Harmful to Population Health
EVENT_TYPE HEALTH_IMPACT
TORNADO 97075.00
HEAT 12392.00
FLOOD 10127.00
WIND 9893.00
LIGHTNING 6049.00
STORM 4780.00
COLD 3100.00
WINTER 1924.00
FIRE 1698.00
HAIL 1512.00


healthImpactChart <- ggplot(head(healthImpactData, 10),
                            aes(x = reorder(EVENT_TYPE, HEALTH_IMPACT), y = HEALTH_IMPACT, fill = EVENT_TYPE)) +
                            coord_flip() +
                            geom_bar(stat = "identity") + 
                            xlab("Event Type") +
                            ylab("Total Fatalities and Injures") +
                            theme(plot.title = element_text(size = 14, hjust = 0.5)) +
                            ggtitle("Top 10 Weather Events Most Harmful to\nPopulation Health")
print(healthImpactChart)

print(xtable(head(damageCostImpactData, 10),
             caption = "Top 10 Weather Events with Greatest Economic Consequences"),
             caption.placement = 'top',
             type = "html",
             include.rownames = FALSE,
             html.table.attributes='class="table-bordered", width="100%"')
Top 10 Weather Events with Greatest Economic Consequences
EVENT_TYPE DAMAGE_IMPACT
FLOOD 180.58
HURRICANE/TYPHOON 71.91
STORM 70.45
TORNADO 57.43
HAIL 20.74
DROUGHT 15.02
HURRICANE 14.61
COLD 12.70
WIND 12.01
FIRE 8.90


damageCostImpactChart <- ggplot(head(damageCostImpactData, 10),
                            aes(x = reorder(EVENT_TYPE, DAMAGE_IMPACT), y = DAMAGE_IMPACT, fill = EVENT_TYPE)) +
                            coord_flip() +
                            geom_bar(stat = "identity") + 
                            xlab("Event Type") +
                            ylab("Total Property / Crop Damage Cost\n(in Billions)") +
                            theme(plot.title = element_text(size = 14, hjust = 0.5)) +
                            ggtitle("Top 10 Weather Events with\nGreatest Economic Consequences")
print(damageCostImpactChart)