| title: “U.S. Storms Impact on Population Health & Economy” |
| author: “Jamshaid ur Rehman” |
| date: “15 December, 2025” |
| output: |
| html_document: |
| toc: yes |
| toc_float: yes |
| theme: cosmo |
| keep_md: no |
| df_print: paged |
##Reproducible Research Project Project 2
Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.
This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.
if (!require(ggplot2)) {
install.packages("ggplot2")
library(ggplot2)
}
## Loading required package: ggplot2
if (!require(dplyr)) {
install.packages("dplyr")
library(dplyr, warn.conflicts = FALSE)
}
## Loading required package: dplyr
## Warning: package 'dplyr' was built under R version 4.3.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
if (!require(xtable)) {
install.packages("xtable")
library(xtable, warn.conflicts = FALSE)
}
## Loading required package: xtable
## Warning: package 'xtable' was built under R version 4.3.3
sessionInfo()
## R version 4.3.2 (2023-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=English_United States.utf8
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## time zone: Asia/Karachi
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] xtable_1.8-4 dplyr_1.1.4 ggplot2_4.0.1
##
## loaded via a namespace (and not attached):
## [1] vctrs_0.6.5 cli_3.6.4 knitr_1.50 rlang_1.1.5
## [5] xfun_0.52 generics_0.1.4 S7_0.2.0 jsonlite_2.0.0
## [9] glue_1.8.0 htmltools_0.5.8.1 sass_0.4.9 scales_1.4.0
## [13] rmarkdown_2.30 grid_4.3.2 tibble_3.2.1 evaluate_1.0.5
## [17] jquerylib_0.1.4 fastmap_1.2.0 lifecycle_1.0.4 compiler_4.3.2
## [21] RColorBrewer_1.1-3 pkgconfig_2.0.3 rstudioapi_0.17.1 farver_2.1.2
## [25] digest_0.6.37 R6_2.6.1 tidyselect_1.2.1 pillar_1.11.1
## [29] magrittr_2.0.3 bslib_0.9.0 withr_3.0.2 tools_4.3.2
## [33] gtable_0.3.6 cachem_1.1.0
#setwd("~/repos/coursera/data-science-specialization-github-assignments/reproducible-research-course-project-2")
stormDataFileURL <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
stormDataFile <- "data/storm-data.csv.bz2"
if (!file.exists('data')) {
dir.create('data')
}
if (!file.exists(stormDataFile)) {
download.file(url = stormDataFileURL, destfile = stormDataFile)
}
stormData <- read.csv(stormDataFile, sep = ",", header = TRUE)
stopifnot(file.size(stormDataFile) == 49177144)
stopifnot(dim(stormData) == c(902297,37))
Summary statistics of the data
names(stormData)
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"
## [6] "COUNTYNAME" "STATE" "EVTYPE" "BGN_RANGE" "BGN_AZI"
## [11] "BGN_LOCATI" "END_DATE" "END_TIME" "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE" "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"
## [21] "F" "MAG" "FATALITIES" "INJURIES" "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG" "CROPDMGEXP" "WFO" "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE" "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS" "REFNUM"
str(stormData)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : chr "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1951 0:00:00" "6/8/1951 0:00:00" ...
## $ BGN_TIME : chr "0130" "0145" "1600" "0900" ...
## $ TIME_ZONE : chr "CST" "CST" "CST" "CST" ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: chr "MOBILE" "BALDWIN" "FAYETTE" "MADISON" ...
## $ STATE : chr "AL" "AL" "AL" "AL" ...
## $ EVTYPE : chr "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : chr "" "" "" "" ...
## $ BGN_LOCATI: chr "" "" "" "" ...
## $ END_DATE : chr "" "" "" "" ...
## $ END_TIME : chr "" "" "" "" ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : chr "" "" "" "" ...
## $ END_LOCATI: chr "" "" "" "" ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: chr "K" "K" "K" "K" ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: chr "" "" "" "" ...
## $ WFO : chr "" "" "" "" ...
## $ STATEOFFIC: chr "" "" "" "" ...
## $ ZONENAMES : chr "" "" "" "" ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : chr "" "" "" "" ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
head(stormData)
## STATE__ BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE EVTYPE
## 1 1 4/18/1950 0:00:00 0130 CST 97 MOBILE AL TORNADO
## 2 1 4/18/1950 0:00:00 0145 CST 3 BALDWIN AL TORNADO
## 3 1 2/20/1951 0:00:00 1600 CST 57 FAYETTE AL TORNADO
## 4 1 6/8/1951 0:00:00 0900 CST 89 MADISON AL TORNADO
## 5 1 11/15/1951 0:00:00 1500 CST 43 CULLMAN AL TORNADO
## 6 1 11/15/1951 0:00:00 2000 CST 77 LAUDERDALE AL TORNADO
## BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END COUNTYENDN
## 1 0 0 NA
## 2 0 0 NA
## 3 0 0 NA
## 4 0 0 NA
## 5 0 0 NA
## 6 0 0 NA
## END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES INJURIES PROPDMG
## 1 0 14.0 100 3 0 0 15 25.0
## 2 0 2.0 150 2 0 0 0 2.5
## 3 0 0.1 123 2 0 0 2 25.0
## 4 0 0.0 100 2 0 0 2 2.5
## 5 0 0.0 150 2 0 0 2 2.5
## 6 0 1.5 177 2 0 0 6 2.5
## PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES LATITUDE LONGITUDE
## 1 K 0 3040 8812
## 2 K 0 3042 8755
## 3 K 0 3340 8742
## 4 K 0 3458 8626
## 5 K 0 3412 8642
## 6 K 0 3450 8748
## LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1 3051 8806 1
## 2 0 0 2
## 3 0 0 3
## 4 0 0 4
## 5 0 0 5
## 6 0 0 6
stormDataTidy <- subset(stormData, EVTYPE != "?"
&
(FATALITIES > 0 | INJURIES > 0 | PROPDMG > 0 | CROPDMG > 0),
select = c("EVTYPE",
"FATALITIES",
"INJURIES",
"PROPDMG",
"PROPDMGEXP",
"CROPDMG",
"CROPDMGEXP",
"BGN_DATE",
"END_DATE",
"STATE"))
dim(stormDataTidy)
## [1] 254632 10
sum(is.na(stormDataTidy))
## [1] 0
length(unique(stormDataTidy$EVTYPE))
## [1] 487
stormDataTidy$EVTYPE <- toupper(stormDataTidy$EVTYPE)
# AVALANCHE
stormDataTidy$EVTYPE <- gsub('.*AVALANCE.*', 'AVALANCHE', stormDataTidy$EVTYPE)
# BLIZZARD
stormDataTidy$EVTYPE <- gsub('.*BLIZZARD.*', 'BLIZZARD', stormDataTidy$EVTYPE)
# CLOUD
stormDataTidy$EVTYPE <- gsub('.*CLOUD.*', 'CLOUD', stormDataTidy$EVTYPE)
# COLD
stormDataTidy$EVTYPE <- gsub('.*COLD.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*FREEZ.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*FROST.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*ICE.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LOW TEMPERATURE RECORD.*', 'COLD', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LO.*TEMP.*', 'COLD', stormDataTidy$EVTYPE)
# DRY
stormDataTidy$EVTYPE <- gsub('.*DRY.*', 'DRY', stormDataTidy$EVTYPE)
# DUST
stormDataTidy$EVTYPE <- gsub('.*DUST.*', 'DUST', stormDataTidy$EVTYPE)
# FIRE
stormDataTidy$EVTYPE <- gsub('.*FIRE.*', 'FIRE', stormDataTidy$EVTYPE)
# FLOOD
stormDataTidy$EVTYPE <- gsub('.*FLOOD.*', 'FLOOD', stormDataTidy$EVTYPE)
# FOG
stormDataTidy$EVTYPE <- gsub('.*FOG.*', 'FOG', stormDataTidy$EVTYPE)
# HAIL
stormDataTidy$EVTYPE <- gsub('.*HAIL.*', 'HAIL', stormDataTidy$EVTYPE)
# HEAT
stormDataTidy$EVTYPE <- gsub('.*HEAT.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WARM.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*HIGH.*TEMP.*', 'HEAT', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*RECORD HIGH TEMPERATURES.*', 'HEAT', stormDataTidy$EVTYPE)
# HYPOTHERMIA/EXPOSURE
stormDataTidy$EVTYPE <- gsub('.*HYPOTHERMIA.*', 'HYPOTHERMIA/EXPOSURE', stormDataTidy$EVTYPE)
# LANDSLIDE
stormDataTidy$EVTYPE <- gsub('.*LANDSLIDE.*', 'LANDSLIDE', stormDataTidy$EVTYPE)
# LIGHTNING
stormDataTidy$EVTYPE <- gsub('^LIGHTNING.*', 'LIGHTNING', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('^LIGNTNING.*', 'LIGHTNING', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('^LIGHTING.*', 'LIGHTNING', stormDataTidy$EVTYPE)
# MICROBURST
stormDataTidy$EVTYPE <- gsub('.*MICROBURST.*', 'MICROBURST', stormDataTidy$EVTYPE)
# MUDSLIDE
stormDataTidy$EVTYPE <- gsub('.*MUDSLIDE.*', 'MUDSLIDE', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*MUD SLIDE.*', 'MUDSLIDE', stormDataTidy$EVTYPE)
# RAIN
stormDataTidy$EVTYPE <- gsub('.*RAIN.*', 'RAIN', stormDataTidy$EVTYPE)
# RIP CURRENT
stormDataTidy$EVTYPE <- gsub('.*RIP CURRENT.*', 'RIP CURRENT', stormDataTidy$EVTYPE)
# STORM
stormDataTidy$EVTYPE <- gsub('.*STORM.*', 'STORM', stormDataTidy$EVTYPE)
# SUMMARY
stormDataTidy$EVTYPE <- gsub('.*SUMMARY.*', 'SUMMARY', stormDataTidy$EVTYPE)
# TORNADO
stormDataTidy$EVTYPE <- gsub('.*TORNADO.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*TORNDAO.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*LANDSPOUT.*', 'TORNADO', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WATERSPOUT.*', 'TORNADO', stormDataTidy$EVTYPE)
# SURF
stormDataTidy$EVTYPE <- gsub('.*SURF.*', 'SURF', stormDataTidy$EVTYPE)
# VOLCANIC
stormDataTidy$EVTYPE <- gsub('.*VOLCANIC.*', 'VOLCANIC', stormDataTidy$EVTYPE)
# WET
stormDataTidy$EVTYPE <- gsub('.*WET.*', 'WET', stormDataTidy$EVTYPE)
# WIND
stormDataTidy$EVTYPE <- gsub('.*WIND.*', 'WIND', stormDataTidy$EVTYPE)
# WINTER
stormDataTidy$EVTYPE <- gsub('.*WINTER.*', 'WINTER', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*WINTRY.*', 'WINTER', stormDataTidy$EVTYPE)
stormDataTidy$EVTYPE <- gsub('.*SNOW.*', 'WINTER', stormDataTidy$EVTYPE)
length(unique(stormDataTidy$EVTYPE))
## [1] 81
stormDataTidy$DATE_START <- as.Date(stormDataTidy$BGN_DATE, format = "%m/%d/%Y")
stormDataTidy$DATE_END <- as.Date(stormDataTidy$END_DATE, format = "%m/%d/%Y")
stormDataTidy$YEAR <- as.integer(format(stormDataTidy$DATE_START, "%Y"))
stormDataTidy$DURATION <- as.numeric(stormDataTidy$DATE_END - stormDataTidy$DATE_START)/3600
table(toupper(stormDataTidy$PROPDMGEXP))
##
## - + 0 2 3 4 5 6 7 B
## 11585 1 5 210 1 1 4 18 3 3 40
## H K M
## 7 231427 11327
table(toupper(stormDataTidy$CROPDMGEXP))
##
## ? 0 B K M
## 152663 6 17 7 99953 1986
# function to get multiplier factor
getMultiplier <- function(exp) {
exp <- toupper(exp);
if (exp == "") return (10^0);
if (exp == "-") return (10^0);
if (exp == "?") return (10^0);
if (exp == "+") return (10^0);
if (exp == "0") return (10^0);
if (exp == "1") return (10^1);
if (exp == "2") return (10^2);
if (exp == "3") return (10^3);
if (exp == "4") return (10^4);
if (exp == "5") return (10^5);
if (exp == "6") return (10^6);
if (exp == "7") return (10^7);
if (exp == "8") return (10^8);
if (exp == "9") return (10^9);
if (exp == "H") return (10^2);
if (exp == "K") return (10^3);
if (exp == "M") return (10^6);
if (exp == "B") return (10^9);
return (NA);
}
# calculate property damage and crop damage costs (in billions)
stormDataTidy$PROP_COST <- with(stormDataTidy, as.numeric(PROPDMG) * sapply(PROPDMGEXP, getMultiplier))/10^9
stormDataTidy$CROP_COST <- with(stormDataTidy, as.numeric(CROPDMG) * sapply(CROPDMGEXP, getMultiplier))/10^9
healthImpactData <- aggregate(x = list(HEALTH_IMPACT = stormDataTidy$FATALITIES + stormDataTidy$INJURIES),
by = list(EVENT_TYPE = stormDataTidy$EVTYPE),
FUN = sum,
na.rm = TRUE)
healthImpactData <- healthImpactData[order(healthImpactData$HEALTH_IMPACT, decreasing = TRUE),]
damageCostImpactData <- aggregate(x = list(DAMAGE_IMPACT = stormDataTidy$PROP_COST + stormDataTidy$CROP_COST),
by = list(EVENT_TYPE = stormDataTidy$EVTYPE),
FUN = sum,
na.rm = TRUE)
damageCostImpactData <- damageCostImpactData[order(damageCostImpactData$DAMAGE_IMPACT, decreasing = TRUE),]
print(xtable(head(healthImpactData, 10),
caption = "Top 10 Weather Events Most Harmful to Population Health"),
caption.placement = 'top',
type = "html",
include.rownames = FALSE,
html.table.attributes='class="table-bordered", width="100%"')
| EVENT_TYPE | HEALTH_IMPACT |
|---|---|
| TORNADO | 97075.00 |
| HEAT | 12392.00 |
| FLOOD | 10127.00 |
| WIND | 9893.00 |
| LIGHTNING | 6049.00 |
| STORM | 4780.00 |
| COLD | 3100.00 |
| WINTER | 1924.00 |
| FIRE | 1698.00 |
| HAIL | 1512.00 |
healthImpactChart <- ggplot(head(healthImpactData, 10),
aes(x = reorder(EVENT_TYPE, HEALTH_IMPACT), y = HEALTH_IMPACT, fill = EVENT_TYPE)) +
coord_flip() +
geom_bar(stat = "identity") +
xlab("Event Type") +
ylab("Total Fatalities and Injures") +
theme(plot.title = element_text(size = 14, hjust = 0.5)) +
ggtitle("Top 10 Weather Events Most Harmful to\nPopulation Health")
print(healthImpactChart)
print(xtable(head(damageCostImpactData, 10),
caption = "Top 10 Weather Events with Greatest Economic Consequences"),
caption.placement = 'top',
type = "html",
include.rownames = FALSE,
html.table.attributes='class="table-bordered", width="100%"')
| EVENT_TYPE | DAMAGE_IMPACT |
|---|---|
| FLOOD | 180.58 |
| HURRICANE/TYPHOON | 71.91 |
| STORM | 70.45 |
| TORNADO | 57.43 |
| HAIL | 20.74 |
| DROUGHT | 15.02 |
| HURRICANE | 14.61 |
| COLD | 12.70 |
| WIND | 12.01 |
| FIRE | 8.90 |
damageCostImpactChart <- ggplot(head(damageCostImpactData, 10),
aes(x = reorder(EVENT_TYPE, DAMAGE_IMPACT), y = DAMAGE_IMPACT, fill = EVENT_TYPE)) +
coord_flip() +
geom_bar(stat = "identity") +
xlab("Event Type") +
ylab("Total Property / Crop Damage Cost\n(in Billions)") +
theme(plot.title = element_text(size = 14, hjust = 0.5)) +
ggtitle("Top 10 Weather Events with\nGreatest Economic Consequences")
print(damageCostImpactChart)