# ==============================================================================
# UNIVERSIDAD CENTRAL DEL ECUADOR
# PROYECTO: ANÁLISIS DE PROFUNDIDAD DE POZOS (2018)
# AUTOR: DENIS TERCERO
# ==============================================================================
# 1. CONFIGURACIÓN Y LIBRERÍAS
if(!require(readxl)) install.packages("readxl")
## Cargando paquete requerido: readxl
if(!require(dplyr)) install.packages("dplyr")
## Cargando paquete requerido: dplyr
##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
if(!require(gt)) install.packages("gt")
## Cargando paquete requerido: gt
if(!require(e1071)) install.packages("e1071")
## Cargando paquete requerido: e1071
library(readxl)
library(dplyr)
library(gt)
library(e1071)
# 2. CARGA DE DATOS
Datos_Brutos <- read_excel("tabela_de_pocos_janeiro_2018.xlsx", sheet = 1)
# Selección
vars_to_keep <- c("POCO", "OPERADOR", "ESTADO", "BACIA", "DIRECAO",
"TIPO", "SITUACAO", "PROFUNDIDADE_VERTICAL_M", "LAMINA_D_AGUA_M")
Datos <- Datos_Brutos %>%
select(any_of(vars_to_keep)) %>%
# Limpieza de decimales
mutate(PROFUNDIDADE_VERTICAL_M = as.numeric(gsub(",", ".", as.character(PROFUNDIDADE_VERTICAL_M))))
# Filtro
Variable <- na.omit(Datos$PROFUNDIDADE_VERTICAL_M)
Variable <- Variable[Variable > 0]
# 3. CÁLCULOS MATEMÁTICOS
N <- length(Variable)
if(N == 0) stop("ERROR: No hay datos válidos. Revisa el archivo.")
min_val <- min(Variable)
max_val <- max(Variable)
Rango <- max_val - min_val
K <- floor(1 + 3.322 * log10(N))
Amplitud <- Rango / K
# Cálculo de límites exactos
breaks_raw <- seq(min_val, max_val, length.out = K + 1)
breaks_raw[length(breaks_raw)] <- max_val + 0.0001
lim_inf_raw <- breaks_raw[1:K]
lim_sup_raw <- breaks_raw[2:(K+1)]
MC <- (lim_inf_raw + lim_sup_raw) / 2
# Frecuencias
ni <- numeric(K)
for (i in 1:K) {
if (i < K) {
ni[i] <- length(Variable[Variable >= lim_inf_raw[i] & Variable < lim_sup_raw[i]])
} else {
ni[i] <- length(Variable[Variable >= lim_inf_raw[i] & Variable <= lim_sup_raw[i]])
}
}
hi <- (ni / sum(ni)) * 100
Ni_asc <- cumsum(ni)
Ni_desc <- rev(cumsum(rev(ni)))
Hi_asc <- cumsum(hi)
Hi_desc <- rev(cumsum(rev(hi)))
# Dataframe Visualización
TDF_Profundidad <- data.frame(
Li = round(lim_inf_raw, 2),
Ls = round(lim_sup_raw, 2),
MC = round(MC, 2),
ni = ni,
hi = round(hi, 2),
Ni_asc = Ni_asc,
Ni_desc = Ni_desc,
Hi_asc = round(Hi_asc, 2),
Hi_desc = round(Hi_desc, 2)
)
# 4. TABLA DE FRECUENCIAS
totales <- c("TOTAL", "-", "-", sum(ni), round(sum(hi), 2), "-", "-", "-", "-")
TDF_Char <- TDF_Profundidad %>% mutate(across(everything(), as.character))
TDF_Final <- rbind(TDF_Char, totales)
tabla_gt <- TDF_Final %>%
gt() %>%
tab_header(
title = md("**DISTRIBUCIÓN DE FRECUENCIAS**"),
subtitle = md("Variable: **Profundidad Vertical (m)**")
) %>%
tab_source_note(source_note = "Fuente: Datos ANP 2018") %>%
cols_label(
Li = "Lím. Inf", Ls = "Lím. Sup", MC = "Marca Clase (Xi)",
ni = "ni", hi = "hi (%)",
Ni_asc = "Ni (Asc)", Ni_desc = "Ni (Desc)",
Hi_asc = "Hi (Asc)", Hi_desc = "Hi (Desc)"
) %>%
cols_align(align = "center", columns = everything()) %>%
tab_style(
style = list(cell_fill(color = "#2E4053"), cell_text(color = "white", weight = "bold")),
locations = cells_title()
) %>%
tab_style(
style = list(cell_fill(color = "#F2F3F4"), cell_text(weight = "bold", color = "#2E4053")),
locations = cells_column_labels()
) %>%
tab_options(
table.border.top.color = "#2E4053",
table.border.bottom.color = "#2E4053",
column_labels.border.bottom.color = "#2E4053",
data_row.padding = px(6)
)
tabla_gt
| DISTRIBUCIÓN DE FRECUENCIAS |
| Variable: Profundidad Vertical (m) |
| Lím. Inf |
Lím. Sup |
Marca Clase (Xi) |
ni |
hi (%) |
Ni (Asc) |
Ni (Desc) |
Hi (Asc) |
Hi (Desc) |
| 4 |
2660.33 |
1332.17 |
1825 |
74.01 |
1825 |
2466 |
74.01 |
100 |
| 2660.33 |
5316.67 |
3988.5 |
566 |
22.95 |
2391 |
641 |
96.96 |
25.99 |
| 5316.67 |
7973 |
6644.83 |
73 |
2.96 |
2464 |
75 |
99.92 |
3.04 |
| 7973 |
10629.33 |
9301.17 |
0 |
0 |
2464 |
2 |
99.92 |
0.08 |
| 10629.33 |
13285.67 |
11957.5 |
0 |
0 |
2464 |
2 |
99.92 |
0.08 |
| 13285.67 |
15942 |
14613.83 |
0 |
0 |
2464 |
2 |
99.92 |
0.08 |
| 15942 |
18598.33 |
17270.17 |
0 |
0 |
2464 |
2 |
99.92 |
0.08 |
| 18598.33 |
21254.67 |
19926.5 |
0 |
0 |
2464 |
2 |
99.92 |
0.08 |
| 21254.67 |
23911 |
22582.83 |
0 |
0 |
2464 |
2 |
99.92 |
0.08 |
| 23911 |
26567.33 |
25239.17 |
0 |
0 |
2464 |
2 |
99.92 |
0.08 |
| 26567.33 |
29223.67 |
27895.5 |
1 |
0.04 |
2465 |
2 |
99.96 |
0.08 |
| 29223.67 |
31880 |
30551.83 |
1 |
0.04 |
2466 |
1 |
100 |
0.04 |
| TOTAL |
- |
- |
2466 |
100 |
- |
- |
- |
- |
| Fuente: Datos ANP 2018 |
# 5. GRÁFICOS
col_gris_azulado <- "#5D6D7E"
h_base <- hist(Variable, breaks = breaks_raw, right = FALSE, plot = FALSE)
# --- GRÁFICO 1: Histograma Absoluto ---
par(mar = c(8, 5, 4, 2))
plot(h_base,
main = "Gráfica No.1: Distribución de Profundidad Vertical (Local)",
xlab = "Profundidad Vertical (m)",
ylab = "Frecuencia Absoluta",
col = col_gris_azulado,
border = "white",
axes = FALSE,
ylim = c(0, max(ni) * 1.1))
# Ejes manuales
axis(1, at = round(breaks_raw, 0), labels = format(round(breaks_raw, 0), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted")

# --- GRÁFICO 2: Histograma Global ---
par(mar = c(8, 5, 4, 2))
plot(h_base,
main = "Gráfica N°2: Distribución de Profundidad Vertical (Global)",
xlab = "Profundidad Vertical (m)",
ylab = "Total Pozos",
col = col_gris_azulado,
border = "white",
axes = FALSE,
ylim = c(0, sum(ni)))
axis(1, at = round(breaks_raw, 0), labels = format(round(breaks_raw, 0), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted")

# --- GRÁFICO 3: Porcentajes ---
h_porc <- h_base
h_porc$counts <- hi
h_porc$density <- hi
par(mar = c(8, 5, 4, 2))
plot(h_porc,
main = "Gráfica N°3: Distribución Porcentual de Profundidad Vertical (Local)",
xlab = "Profundidad Vertical (m)",
ylab = "Porcentaje (%)",
col = col_gris_azulado,
border = "white",
axes = FALSE,
freq = TRUE,
ylim = c(0, max(hi)*1.2))
axis(1, at = round(breaks_raw, 0), labels = format(round(breaks_raw, 0), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
text(x = h_base$mids, y = hi, label = paste0(round(hi, 1), "%"), pos = 3, cex = 0.6, col = "#2E4053")
grid(nx=NA, ny=NULL, col="#D7DBDD", lty="dotted")

# --- GRÁFICO 4: Global Porcentual ---
par(mar = c(8, 5, 4, 2))
plot(h_porc,
main = "Gráfica No.4: Distribución Porcentual de la Profundidad Vertical (Global)",
xlab = "Profundidad Vertical (m)",
ylab = "% del Total",
col = col_gris_azulado,
border = "white",
axes = FALSE,
freq = TRUE,
ylim = c(0, 100))
# Ejes exactos
axis(1, at = round(breaks_raw, 0), labels = format(round(breaks_raw, 0), scientific = FALSE), las = 2, cex.axis = 0.7)
axis(2)
abline(h=seq(0,100,20), col="#D7DBDD", lty="dotted")

# --- GRÁFICO 5: Boxplot ---
par(mar = c(5, 5, 4, 2))
boxplot(Variable,
horizontal = TRUE,
col = col_gris_azulado,
main = "Gráfica No.5: Distribución de la Profundidad Vertical (BOXPLOT)",
xlab = "Profundidad (m)",
outline = TRUE,
outpch = 19,
outcol = "#C0392B",
boxwex = 0.5,
frame.plot = FALSE,
xaxt = "n")
eje_x_detallado <- pretty(Variable, n = 20)
axis(1, at = eje_x_detallado, labels = format(eje_x_detallado, scientific = FALSE), cex.axis=0.7, las=2)
grid(nx=NULL, ny=NA, col="lightgray", lty="dotted")

# --- GRÁFICO 6: Ojivas ---
par(mar = c(5, 5, 4, 8), xpd = TRUE)
x_asc <- c(min(breaks_raw), breaks_raw[2:length(breaks_raw)])
y_asc <- c(0, Ni_asc)
x_desc <- c(breaks_raw[1:(length(breaks_raw)-1)], max(breaks_raw))
y_desc <- c(Ni_desc, 0)
if(length(x_desc) != length(y_desc)) {
x_desc <- c(TDF_Profundidad$Li, max(TDF_Profundidad$Ls))
y_desc <- c(TDF_Profundidad$Ni_desc, 0)
}
x_range <- range(c(x_asc, x_desc))
y_range <- c(0, max(c(y_asc, y_desc)))
col_azul <- "#2E4053"
col_rojo <- "#C0392B"
plot(x_asc, y_asc, type = "o", col = col_azul, lwd=2, pch=19,
main = "Gráfica No.6: Ojivas Ascendente y Descendente de Distribución de Profundidad Vertical",
xlab = "Profundidad (m)",
ylab = "Frecuencia acumulada",
xlim = x_range, ylim = y_range,
axes = FALSE,
frame.plot = FALSE)
axis(1, at = round(breaks_raw,0), labels = format(round(breaks_raw,0), scientific = FALSE), las=2, cex.axis=0.6)
axis(2, at = pretty(y_asc), labels = format(pretty(y_asc), scientific = FALSE))
lines(x_desc, y_desc, type = "o", col = col_rojo, lwd=2, pch=19)
legend("right", legend = c("Ascendente", "Descendente"),
col = c(col_azul, col_rojo), lty = 1, pch = 19, cex = 0.7, lwd=2,
inset = c(-0.3, 0), bty="n")
grid()

# 7. ESTADÍSTICOS
tabla_ind <- data.frame(
Variable = "Profundidad Vertical(m)",
Media = round(mean(Variable), 2),
Mediana = round(median(Variable), 2),
Moda = paste(round(TDF_Profundidad$MC[TDF_Profundidad$ni == max(TDF_Profundidad$ni)], 2), collapse=", "),
Varianza = round(var(Variable), 2),
Desv_Est = round(sd(Variable), 2),
CV_Porc = round((sd(Variable)/mean(Variable))*100, 2),
Asimetria = round(skewness(Variable), 4),
Curtosis = round(kurtosis(Variable), 2)
)
gt(tabla_ind) %>%
tab_header(
title = md("**RESUMEN ESTADÍSTICO**"),
subtitle = md("Variable: **Profundidad Vertical (m)**")
) %>%
fmt_number(columns = 2:9, decimals = 2) %>%
tab_options(
column_labels.background.color = "#2E4053",
table.border.top.color = "black",
table.border.bottom.color = "#2E4053",
column_labels.border.bottom.color = "#2E4053",
data_row.padding = px(6)
) %>%
tab_style(
style = list(cell_text(weight = "bold", color = "white")),
locations = cells_column_labels()
)
| RESUMEN ESTADÍSTICO |
| Variable: Profundidad Vertical (m) |
| Variable |
Media |
Mediana |
Moda |
Varianza |
Desv_Est |
CV_Porc |
Asimetria |
Curtosis |
| Profundidad Vertical(m) |
1,798.48 |
1,304.10 |
1332.17 |
2,594,022.17 |
1,610.60 |
89.55 |
4.90 |
72.20 |