Introduction

Wanna (want to) is an English contraction and its use depends on specific syntactic restrictions. The contraction is sometimes possible as in who do you wanna meet? but not always as in who do you want to meet to?. This different can be explained in terms of subject Vs. no subject wh-questions. If the wh-word is asking about the subject of the to-infinitive clause, want to can’t be contracted to wanna. But if the question is asking about anything else in that clause, like the direct object of the verb, then the contraction is allowed. This analysis examines acceptability-judgment data from four participant groups: L1 adults, L1 children, child L2 learners, and adult L2 learners. These participants rated sentences that varied in clause type (If vs. Who) and whether there was a gap (Gap vs. NoGap). The goal is to reveal how sentence type and grammatical structure interact with group differences, highlighting both overall condition effects and the differences between participant groups.

1. Acceptability Across Groups

Mean acceptability judgments were plotted for every combination of clause type (if Vs. Who) and condition (gap Vs. no gap) to compare how participants responded to different sentences types. In the following graph, the bars show the average proportion of acceptable responses per group. The figure indicates that the four groups responded differently to the conditions.

library(tidyverse)
library(ggplot2)
library(readxl)


OSF <- OSF %>%
 arrange(group)

dat_summary <- OSF %>%
group_by(group, clause, gap) %>%
summarise(mean_accept = mean(judgment, na.rm = TRUE))

dat_summary$group <- factor(dat_summary$group,
                            levels = c("L1_adults", "L2_adults", 
                                       "L1_children", "L2_children"))

ggplot(dat_summary, aes(x = gap, y = mean_accept, fill = clause)) +
  geom_col(position = "dodge") +
  facet_wrap(~ group, nrow=2) +
  labs(
    title = "Acceptability Across Groups",
    x = "Gap Condition",
    y = "Mean Acceptability"
  )

NA
NA
NA

All four groups show differences across the conditions.L1 groups differ from L2 groups

ggplot(OSF, aes(x = factor(judgment), fill = clause)) +
  geom_bar(position = "dodge") +
  facet_grid(group ~ gap) +
  labs(
    title = "Proportion of Acceptable (1) vs. Unacceptable (0) Judgments",
    x = "Judgment",
    y = "Count"
  )

OSF %>%
group_by(group, gap) %>%
  summarise(mean_judge = mean(judgment, na.rm = TRUE)) %>%
  ggplot(aes(x = gap, y = mean_judge, group = group, color = group)) +
  geom_line() +
  geom_point(size = 3) +
  labs(title = "Interaction: Group × Gap",
       x = "Gap Type",
       y = "Mean Judgment")

LS0tDQp0aXRsZTogIldhbm5hLUNvbnRyYWN0aW9uIEFjY2VwdGFiaWxpdHkiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCmNvZGVfZm9sZGluZzogaGlkZQ0KLS0tDQojIyMgSW50cm9kdWN0aW9uDQoqV2FubmEqICh3YW50IHRvKSBpcyBhbiBFbmdsaXNoIGNvbnRyYWN0aW9uIGFuZCBpdHMgdXNlIGRlcGVuZHMgb24gc3BlY2lmaWMgc3ludGFjdGljIHJlc3RyaWN0aW9ucy4gVGhlIGNvbnRyYWN0aW9uIGlzIHNvbWV0aW1lcyBwb3NzaWJsZSBhcyBpbiAqd2hvIGRvIHlvdSB3YW5uYSBtZWV0PyogYnV0IG5vdCBhbHdheXMgYXMgaW4gKndobyBkbyB5b3Ugd2FudCB0byBtZWV0IHRvPyouIFRoaXMgZGlmZmVyZW50IGNhbiBiZSBleHBsYWluZWQgaW4gdGVybXMgb2Ygc3ViamVjdCBWcy4gbm8gc3ViamVjdCB3aC1xdWVzdGlvbnMuIElmIHRoZSB3aC13b3JkIGlzIGFza2luZyBhYm91dCB0aGUgc3ViamVjdCBvZiB0aGUgdG8taW5maW5pdGl2ZSBjbGF1c2UsICp3YW50IHRvKiBjYW7igJl0IGJlIGNvbnRyYWN0ZWQgdG8gKndhbm5hKi4gQnV0IGlmIHRoZSBxdWVzdGlvbiBpcyBhc2tpbmcgYWJvdXQgYW55dGhpbmcgZWxzZSBpbiB0aGF0IGNsYXVzZSwgbGlrZSB0aGUgZGlyZWN0IG9iamVjdCBvZiB0aGUgdmVyYiwgdGhlbiB0aGUgY29udHJhY3Rpb24gaXMgYWxsb3dlZC4NClRoaXMgYW5hbHlzaXMgZXhhbWluZXMgYWNjZXB0YWJpbGl0eS1qdWRnbWVudCBkYXRhIGZyb20gZm91ciBwYXJ0aWNpcGFudCBncm91cHM6IEwxIGFkdWx0cywgTDEgY2hpbGRyZW4sIGNoaWxkIEwyIGxlYXJuZXJzLCBhbmQgYWR1bHQgTDIgbGVhcm5lcnMuIFRoZXNlIHBhcnRpY2lwYW50cyByYXRlZCBzZW50ZW5jZXMgdGhhdCB2YXJpZWQgaW4gY2xhdXNlIHR5cGUgKElmIHZzLiBXaG8pIGFuZCB3aGV0aGVyIHRoZXJlIHdhcyBhIGdhcCAoR2FwIHZzLiBOb0dhcCkuICBUaGUgZ29hbCBpcyB0byByZXZlYWwgaG93IHNlbnRlbmNlIHR5cGUgYW5kIGdyYW1tYXRpY2FsIHN0cnVjdHVyZSBpbnRlcmFjdCB3aXRoIGdyb3VwIGRpZmZlcmVuY2VzLCBoaWdobGlnaHRpbmcgYm90aCBvdmVyYWxsIGNvbmRpdGlvbiBlZmZlY3RzIGFuZCB0aGUgZGlmZmVyZW5jZXMgYmV0d2VlbiBwYXJ0aWNpcGFudCBncm91cHMuIA0KDQojIyMgMS4gQWNjZXB0YWJpbGl0eSBBY3Jvc3MgR3JvdXBzDQpNZWFuIGFjY2VwdGFiaWxpdHkganVkZ21lbnRzIHdlcmUgcGxvdHRlZCBmb3IgZXZlcnkgY29tYmluYXRpb24gb2YgY2xhdXNlIHR5cGUgKGlmIFZzLiBXaG8pIGFuZCBjb25kaXRpb24gKGdhcCBWcy4gbm8gZ2FwKSB0byBjb21wYXJlIGhvdyBwYXJ0aWNpcGFudHMgcmVzcG9uZGVkIHRvIGRpZmZlcmVudCBzZW50ZW5jZXMgdHlwZXMuIEluIHRoZSBmb2xsb3dpbmcgZ3JhcGgsIHRoZSBiYXJzIHNob3cgdGhlIGF2ZXJhZ2UgcHJvcG9ydGlvbiBvZiBhY2NlcHRhYmxlIHJlc3BvbnNlcyBwZXIgZ3JvdXAuIFRoZSBmaWd1cmUgaW5kaWNhdGVzIHRoYXQgdGhlIGZvdXIgZ3JvdXBzIHJlc3BvbmRlZCBkaWZmZXJlbnRseSB0byB0aGUgY29uZGl0aW9ucy4NCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkocmVhZHhsKQ0KDQoNCk9TRiA8LSBPU0YgJT4lDQogYXJyYW5nZShncm91cCkNCg0KZGF0X3N1bW1hcnkgPC0gT1NGICU+JQ0KZ3JvdXBfYnkoZ3JvdXAsIGNsYXVzZSwgZ2FwKSAlPiUNCnN1bW1hcmlzZShtZWFuX2FjY2VwdCA9IG1lYW4oanVkZ21lbnQsIG5hLnJtID0gVFJVRSkpDQoNCmRhdF9zdW1tYXJ5JGdyb3VwIDwtIGZhY3RvcihkYXRfc3VtbWFyeSRncm91cCwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsZXZlbHMgPSBjKCJMMV9hZHVsdHMiLCAiTDJfYWR1bHRzIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiTDFfY2hpbGRyZW4iLCAiTDJfY2hpbGRyZW4iKSkNCg0KZ2dwbG90KGRhdF9zdW1tYXJ5LCBhZXMoeCA9IGdhcCwgeSA9IG1lYW5fYWNjZXB0LCBmaWxsID0gY2xhdXNlKSkgKw0KICBnZW9tX2NvbChwb3NpdGlvbiA9ICJkb2RnZSIpICsNCiAgZmFjZXRfd3JhcCh+IGdyb3VwLCBucm93PTIpICsNCiAgbGFicygNCiAgICB0aXRsZSA9ICJBY2NlcHRhYmlsaXR5IEFjcm9zcyBHcm91cHMiLA0KICAgIHggPSAiR2FwIENvbmRpdGlvbiIsDQogICAgeSA9ICJNZWFuIEFjY2VwdGFiaWxpdHkiDQogICkNCg0KDQoNCmBgYA0KQWxsIGZvdXIgZ3JvdXBzIHNob3cgZGlmZmVyZW5jZXMgYWNyb3NzIHRoZSBjb25kaXRpb25zLkwxIGdyb3VwcyBkaWZmZXIgZnJvbSBMMiBncm91cHMNCg0KYGBge3J9DQpnZ3Bsb3QoT1NGLCBhZXMoeCA9IGZhY3RvcihqdWRnbWVudCksIGZpbGwgPSBjbGF1c2UpKSArDQogIGdlb21fYmFyKHBvc2l0aW9uID0gImRvZGdlIikgKw0KICBmYWNldF9ncmlkKGdyb3VwIH4gZ2FwKSArDQogIGxhYnMoDQogICAgdGl0bGUgPSAiUHJvcG9ydGlvbiBvZiBBY2NlcHRhYmxlICgxKSB2cy4gVW5hY2NlcHRhYmxlICgwKSBKdWRnbWVudHMiLA0KICAgIHggPSAiSnVkZ21lbnQiLA0KICAgIHkgPSAiQ291bnQiDQogICkNCmBgYA0KDQoNCmBgYHtyfQ0KT1NGICU+JQ0KZ3JvdXBfYnkoZ3JvdXAsIGdhcCkgJT4lDQogIHN1bW1hcmlzZShtZWFuX2p1ZGdlID0gbWVhbihqdWRnbWVudCwgbmEucm0gPSBUUlVFKSkgJT4lDQogIGdncGxvdChhZXMoeCA9IGdhcCwgeSA9IG1lYW5fanVkZ2UsIGdyb3VwID0gZ3JvdXAsIGNvbG9yID0gZ3JvdXApKSArDQogIGdlb21fbGluZSgpICsNCiAgZ2VvbV9wb2ludChzaXplID0gMykgKw0KICBsYWJzKHRpdGxlID0gIkludGVyYWN0aW9uOiBHcm91cCDDlyBHYXAiLA0KICAgICAgIHggPSAiR2FwIFR5cGUiLA0KICAgICAgIHkgPSAiTWVhbiBKdWRnbWVudCIpDQoNCmBgYA0KDQo=