Introduction
Wanna (want to) is an English contraction and its use
depends on specific syntactic restrictions. The contraction is sometimes
possible as in who do you wanna meet? but not always as in
who do you want to meet to?. This different can be explained in
terms of subject Vs. no subject wh-questions. If the wh-word is asking
about the subject of the to-infinitive clause, want to can’t be
contracted to wanna. But if the question is asking about
anything else in that clause, like the direct object of the verb, then
the contraction is allowed. This analysis examines
acceptability-judgment data from four participant groups: L1 adults, L1
children, child L2 learners, and adult L2 learners. These participants
rated sentences that varied in clause type (If vs. Who) and whether
there was a gap (Gap vs. NoGap). The goal is to reveal how sentence type
and grammatical structure interact with group differences, highlighting
both overall condition effects and the differences between participant
groups.
1. Acceptability Across Groups
Mean acceptability judgments were plotted for every combination of
clause type (if Vs. Who) and condition (gap Vs. no gap) to compare how
participants responded to different sentences types. In the following
graph, the bars show the average proportion of acceptable responses per
group. The figure indicates that the four groups responded differently
to the conditions.
library(tidyverse)
library(ggplot2)
library(readxl)
OSF <- OSF %>%
arrange(group)
dat_summary <- OSF %>%
group_by(group, clause, gap) %>%
summarise(mean_accept = mean(judgment, na.rm = TRUE))
dat_summary$group <- factor(dat_summary$group,
levels = c("L1_adults", "L2_adults",
"L1_children", "L2_children"))
ggplot(dat_summary, aes(x = gap, y = mean_accept, fill = clause)) +
geom_col(position = "dodge") +
facet_wrap(~ group, nrow=2) +
labs(
title = "Acceptability Across Groups",
x = "Gap Condition",
y = "Mean Acceptability"
)

NA
NA
NA
All four groups show differences across the conditions.L1 groups
differ from L2 groups
ggplot(OSF, aes(x = factor(judgment), fill = clause)) +
geom_bar(position = "dodge") +
facet_grid(group ~ gap) +
labs(
title = "Proportion of Acceptable (1) vs. Unacceptable (0) Judgments",
x = "Judgment",
y = "Count"
)

OSF %>%
group_by(group, gap) %>%
summarise(mean_judge = mean(judgment, na.rm = TRUE)) %>%
ggplot(aes(x = gap, y = mean_judge, group = group, color = group)) +
geom_line() +
geom_point(size = 3) +
labs(title = "Interaction: Group × Gap",
x = "Gap Type",
y = "Mean Judgment")

LS0tDQp0aXRsZTogIldhbm5hLUNvbnRyYWN0aW9uIEFjY2VwdGFiaWxpdHkiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCmNvZGVfZm9sZGluZzogaGlkZQ0KLS0tDQojIyMgSW50cm9kdWN0aW9uDQoqV2FubmEqICh3YW50IHRvKSBpcyBhbiBFbmdsaXNoIGNvbnRyYWN0aW9uIGFuZCBpdHMgdXNlIGRlcGVuZHMgb24gc3BlY2lmaWMgc3ludGFjdGljIHJlc3RyaWN0aW9ucy4gVGhlIGNvbnRyYWN0aW9uIGlzIHNvbWV0aW1lcyBwb3NzaWJsZSBhcyBpbiAqd2hvIGRvIHlvdSB3YW5uYSBtZWV0PyogYnV0IG5vdCBhbHdheXMgYXMgaW4gKndobyBkbyB5b3Ugd2FudCB0byBtZWV0IHRvPyouIFRoaXMgZGlmZmVyZW50IGNhbiBiZSBleHBsYWluZWQgaW4gdGVybXMgb2Ygc3ViamVjdCBWcy4gbm8gc3ViamVjdCB3aC1xdWVzdGlvbnMuIElmIHRoZSB3aC13b3JkIGlzIGFza2luZyBhYm91dCB0aGUgc3ViamVjdCBvZiB0aGUgdG8taW5maW5pdGl2ZSBjbGF1c2UsICp3YW50IHRvKiBjYW7igJl0IGJlIGNvbnRyYWN0ZWQgdG8gKndhbm5hKi4gQnV0IGlmIHRoZSBxdWVzdGlvbiBpcyBhc2tpbmcgYWJvdXQgYW55dGhpbmcgZWxzZSBpbiB0aGF0IGNsYXVzZSwgbGlrZSB0aGUgZGlyZWN0IG9iamVjdCBvZiB0aGUgdmVyYiwgdGhlbiB0aGUgY29udHJhY3Rpb24gaXMgYWxsb3dlZC4NClRoaXMgYW5hbHlzaXMgZXhhbWluZXMgYWNjZXB0YWJpbGl0eS1qdWRnbWVudCBkYXRhIGZyb20gZm91ciBwYXJ0aWNpcGFudCBncm91cHM6IEwxIGFkdWx0cywgTDEgY2hpbGRyZW4sIGNoaWxkIEwyIGxlYXJuZXJzLCBhbmQgYWR1bHQgTDIgbGVhcm5lcnMuIFRoZXNlIHBhcnRpY2lwYW50cyByYXRlZCBzZW50ZW5jZXMgdGhhdCB2YXJpZWQgaW4gY2xhdXNlIHR5cGUgKElmIHZzLiBXaG8pIGFuZCB3aGV0aGVyIHRoZXJlIHdhcyBhIGdhcCAoR2FwIHZzLiBOb0dhcCkuICBUaGUgZ29hbCBpcyB0byByZXZlYWwgaG93IHNlbnRlbmNlIHR5cGUgYW5kIGdyYW1tYXRpY2FsIHN0cnVjdHVyZSBpbnRlcmFjdCB3aXRoIGdyb3VwIGRpZmZlcmVuY2VzLCBoaWdobGlnaHRpbmcgYm90aCBvdmVyYWxsIGNvbmRpdGlvbiBlZmZlY3RzIGFuZCB0aGUgZGlmZmVyZW5jZXMgYmV0d2VlbiBwYXJ0aWNpcGFudCBncm91cHMuIA0KDQojIyMgMS4gQWNjZXB0YWJpbGl0eSBBY3Jvc3MgR3JvdXBzDQpNZWFuIGFjY2VwdGFiaWxpdHkganVkZ21lbnRzIHdlcmUgcGxvdHRlZCBmb3IgZXZlcnkgY29tYmluYXRpb24gb2YgY2xhdXNlIHR5cGUgKGlmIFZzLiBXaG8pIGFuZCBjb25kaXRpb24gKGdhcCBWcy4gbm8gZ2FwKSB0byBjb21wYXJlIGhvdyBwYXJ0aWNpcGFudHMgcmVzcG9uZGVkIHRvIGRpZmZlcmVudCBzZW50ZW5jZXMgdHlwZXMuIEluIHRoZSBmb2xsb3dpbmcgZ3JhcGgsIHRoZSBiYXJzIHNob3cgdGhlIGF2ZXJhZ2UgcHJvcG9ydGlvbiBvZiBhY2NlcHRhYmxlIHJlc3BvbnNlcyBwZXIgZ3JvdXAuIFRoZSBmaWd1cmUgaW5kaWNhdGVzIHRoYXQgdGhlIGZvdXIgZ3JvdXBzIHJlc3BvbmRlZCBkaWZmZXJlbnRseSB0byB0aGUgY29uZGl0aW9ucy4NCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkocmVhZHhsKQ0KDQoNCk9TRiA8LSBPU0YgJT4lDQogYXJyYW5nZShncm91cCkNCg0KZGF0X3N1bW1hcnkgPC0gT1NGICU+JQ0KZ3JvdXBfYnkoZ3JvdXAsIGNsYXVzZSwgZ2FwKSAlPiUNCnN1bW1hcmlzZShtZWFuX2FjY2VwdCA9IG1lYW4oanVkZ21lbnQsIG5hLnJtID0gVFJVRSkpDQoNCmRhdF9zdW1tYXJ5JGdyb3VwIDwtIGZhY3RvcihkYXRfc3VtbWFyeSRncm91cCwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBsZXZlbHMgPSBjKCJMMV9hZHVsdHMiLCAiTDJfYWR1bHRzIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiTDFfY2hpbGRyZW4iLCAiTDJfY2hpbGRyZW4iKSkNCg0KZ2dwbG90KGRhdF9zdW1tYXJ5LCBhZXMoeCA9IGdhcCwgeSA9IG1lYW5fYWNjZXB0LCBmaWxsID0gY2xhdXNlKSkgKw0KICBnZW9tX2NvbChwb3NpdGlvbiA9ICJkb2RnZSIpICsNCiAgZmFjZXRfd3JhcCh+IGdyb3VwLCBucm93PTIpICsNCiAgbGFicygNCiAgICB0aXRsZSA9ICJBY2NlcHRhYmlsaXR5IEFjcm9zcyBHcm91cHMiLA0KICAgIHggPSAiR2FwIENvbmRpdGlvbiIsDQogICAgeSA9ICJNZWFuIEFjY2VwdGFiaWxpdHkiDQogICkNCg0KDQoNCmBgYA0KQWxsIGZvdXIgZ3JvdXBzIHNob3cgZGlmZmVyZW5jZXMgYWNyb3NzIHRoZSBjb25kaXRpb25zLkwxIGdyb3VwcyBkaWZmZXIgZnJvbSBMMiBncm91cHMNCg0KYGBge3J9DQpnZ3Bsb3QoT1NGLCBhZXMoeCA9IGZhY3RvcihqdWRnbWVudCksIGZpbGwgPSBjbGF1c2UpKSArDQogIGdlb21fYmFyKHBvc2l0aW9uID0gImRvZGdlIikgKw0KICBmYWNldF9ncmlkKGdyb3VwIH4gZ2FwKSArDQogIGxhYnMoDQogICAgdGl0bGUgPSAiUHJvcG9ydGlvbiBvZiBBY2NlcHRhYmxlICgxKSB2cy4gVW5hY2NlcHRhYmxlICgwKSBKdWRnbWVudHMiLA0KICAgIHggPSAiSnVkZ21lbnQiLA0KICAgIHkgPSAiQ291bnQiDQogICkNCmBgYA0KDQoNCmBgYHtyfQ0KT1NGICU+JQ0KZ3JvdXBfYnkoZ3JvdXAsIGdhcCkgJT4lDQogIHN1bW1hcmlzZShtZWFuX2p1ZGdlID0gbWVhbihqdWRnbWVudCwgbmEucm0gPSBUUlVFKSkgJT4lDQogIGdncGxvdChhZXMoeCA9IGdhcCwgeSA9IG1lYW5fanVkZ2UsIGdyb3VwID0gZ3JvdXAsIGNvbG9yID0gZ3JvdXApKSArDQogIGdlb21fbGluZSgpICsNCiAgZ2VvbV9wb2ludChzaXplID0gMykgKw0KICBsYWJzKHRpdGxlID0gIkludGVyYWN0aW9uOiBHcm91cCDDlyBHYXAiLA0KICAgICAgIHggPSAiR2FwIFR5cGUiLA0KICAgICAgIHkgPSAiTWVhbiBKdWRnbWVudCIpDQoNCmBgYA0KDQo=