Beekhuizen 2017: Semantic functions of prepositions

Using the OpenSubtitles database, I collected instances of the Spanish prepositions por and para, as well as the corresponding subtitles in English, and coded them by function. Here is the distribution of functions for the two prepositions. TBD: insert list of semantic functions

For each of these English concepts, here is the distribution as to when they’re realized with ‘por’ and when with ‘para’.

t %>% group_by(translated.to) %>% filter(n() > 1) %>%
  ggplot(aes(y=translated.to, fill=spanish.prep.found)) +
  geom_bar(position="fill") + 
  labs(x="Percent Realization", y="English Translation") +
  scale_fill_discrete(name="Spanish Preposition")

Here is a scatterplot of all the data together.

ggplot(t, aes(code,translated_to, color=spanish_prep_found)) + geom_count() +
  labs(x="Semantic Function", y="English Translation") +
  scale_fill_discrete(name="Spanish Preposition") +
  guides(x=guide_axis(angle=90))

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpCZWVraHVpemVuIDIwMTc6IFNlbWFudGljIGZ1bmN0aW9ucyBvZiBwcmVwb3NpdGlvbnMNCg0KYGBge3IgaW5jbHVkZT1GQUxTRX0NCmxpYnJhcnkoZW50cm9weSkNCmxpYnJhcnkodGlkeXZlcnNlKQ0Kc2V0d2QoIkM6L1VzZXJzL0xlbm92by9Eb2N1bWVudHMvTVNVL05MUC9weXRob24gZm9yIGZpbmFsIikNCg0KZGF0YSA9IHJlYWQuY3N2KCdkYXRhL2Rldl9zZXQudHN2Jywgc2VwID0gJ1x0Jywgc3RyaXAud2hpdGUgPSBUUlVFLGZpbGVFbmNvZGluZz0ibGF0aW4xIikNCnQgPSBkYXRhICU+JSANCiAgZmlsdGVyKCEoY29kZSAlaW4lIGMoJ1BVPycsJ0VSUicsICdQT1IgRElPUycsICdQT1IgRkFWT1InLCAnQU1CSUcnKSkpICU+JQ0KICBmaWx0ZXIoISh0cmFuc2xhdGVkX3RvICVpbiUgYygnRElTVFJBTlMnLCAnRVJST1InLCAnRVJSJywgJ05PTkUnKSkpDQoNCmBgYA0KVXNpbmcgdGhlIE9wZW5TdWJ0aXRsZXMgZGF0YWJhc2UsIEkgY29sbGVjdGVkIGluc3RhbmNlcyBvZiB0aGUgU3BhbmlzaCBwcmVwb3NpdGlvbnMgcG9yIGFuZCBwYXJhLCBhcyB3ZWxsIGFzIHRoZSBjb3JyZXNwb25kaW5nIHN1YnRpdGxlcyBpbiBFbmdsaXNoLCBhbmQgY29kZWQgdGhlbSBieSBmdW5jdGlvbi4gSGVyZSBpcyB0aGUgZGlzdHJpYnV0aW9uIG9mIGZ1bmN0aW9ucyBmb3IgdGhlIHR3byBwcmVwb3NpdGlvbnMuDQpUQkQ6IGluc2VydCBsaXN0IG9mIHNlbWFudGljIGZ1bmN0aW9ucw0KYGBge3J9DQp0ICU+JSBnZ3Bsb3QoYWVzKHg9Y29kZSkpICsgZ2VvbV9iYXIoKSArIGZhY2V0X2dyaWQofiBzcGFuaXNoLnByZXAuZm91bmQsIHNjYWxlcz0iZnJlZSIpICsNCiAgbGFicyh4PSJTZW1hbnRpYyBGdW5jdGlvbiIpDQpgYGANCg0KRm9yIGVhY2ggb2YgdGhlc2UgRW5nbGlzaCBjb25jZXB0cywgaGVyZSBpcyB0aGUgZGlzdHJpYnV0aW9uIGFzIHRvIHdoZW4gdGhleSdyZSByZWFsaXplZCB3aXRoICdwb3InIGFuZCB3aGVuIHdpdGggJ3BhcmEnLg0KYGBge3J9DQp0ICU+JSBncm91cF9ieSh0cmFuc2xhdGVkX3RvKSAlPiUgZmlsdGVyKG4oKSA+IDEpICU+JQ0KICBnZ3Bsb3QoYWVzKHk9dHJhbnNsYXRlZF90bywgZmlsbD1zcGFuaXNoX3ByZXBfZm91bmQpKSArDQogIGdlb21fYmFyKHBvc2l0aW9uPSJmaWxsIikgKyANCiAgbGFicyh4PSJQZXJjZW50IFJlYWxpemF0aW9uIiwgeT0iRW5nbGlzaCBUcmFuc2xhdGlvbiIpICsNCiAgc2NhbGVfZmlsbF9kaXNjcmV0ZShuYW1lPSJTcGFuaXNoIFByZXBvc2l0aW9uIikNCmBgYA0KDQpIZXJlIGlzIGEgc2NhdHRlcnBsb3Qgb2YgYWxsIHRoZSBkYXRhIHRvZ2V0aGVyLg0KYGBge3J9DQpnZ3Bsb3QodCwgYWVzKGNvZGUsdHJhbnNsYXRlZF90bywgY29sb3I9c3BhbmlzaF9wcmVwX2ZvdW5kKSkgKyBnZW9tX2NvdW50KCkgKw0KICBsYWJzKHg9IlNlbWFudGljIEZ1bmN0aW9uIiwgeT0iRW5nbGlzaCBUcmFuc2xhdGlvbiIpICsNCiAgc2NhbGVfZmlsbF9kaXNjcmV0ZShuYW1lPSJTcGFuaXNoIFByZXBvc2l0aW9uIikgKw0KICBndWlkZXMoeD1ndWlkZV9heGlzKGFuZ2xlPTkwKSkNCmBgYA0KDQo=