Beekhuizen 2017: Semantic functions of prepositions
Using the OpenSubtitles database, I collected instances of the
Spanish prepositions por and para, as well as the corresponding
subtitles in English, and coded them by function. Here is the
distribution of functions for the two prepositions. TBD: insert list of
semantic functions

For each of these English concepts, here is the distribution as to
when they’re realized with ‘por’ and when with ‘para’.
t %>% group_by(translated.to) %>% filter(n() > 1) %>%
ggplot(aes(y=translated.to, fill=spanish.prep.found)) +
geom_bar(position="fill") +
labs(x="Percent Realization", y="English Translation") +
scale_fill_discrete(name="Spanish Preposition")

Here is a scatterplot of all the data together.
ggplot(t, aes(code,translated_to, color=spanish_prep_found)) + geom_count() +
labs(x="Semantic Function", y="English Translation") +
scale_fill_discrete(name="Spanish Preposition") +
guides(x=guide_axis(angle=90))

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpCZWVraHVpemVuIDIwMTc6IFNlbWFudGljIGZ1bmN0aW9ucyBvZiBwcmVwb3NpdGlvbnMNCg0KYGBge3IgaW5jbHVkZT1GQUxTRX0NCmxpYnJhcnkoZW50cm9weSkNCmxpYnJhcnkodGlkeXZlcnNlKQ0Kc2V0d2QoIkM6L1VzZXJzL0xlbm92by9Eb2N1bWVudHMvTVNVL05MUC9weXRob24gZm9yIGZpbmFsIikNCg0KZGF0YSA9IHJlYWQuY3N2KCdkYXRhL2Rldl9zZXQudHN2Jywgc2VwID0gJ1x0Jywgc3RyaXAud2hpdGUgPSBUUlVFLGZpbGVFbmNvZGluZz0ibGF0aW4xIikNCnQgPSBkYXRhICU+JSANCiAgZmlsdGVyKCEoY29kZSAlaW4lIGMoJ1BVPycsJ0VSUicsICdQT1IgRElPUycsICdQT1IgRkFWT1InLCAnQU1CSUcnKSkpICU+JQ0KICBmaWx0ZXIoISh0cmFuc2xhdGVkX3RvICVpbiUgYygnRElTVFJBTlMnLCAnRVJST1InLCAnRVJSJywgJ05PTkUnKSkpDQoNCmBgYA0KVXNpbmcgdGhlIE9wZW5TdWJ0aXRsZXMgZGF0YWJhc2UsIEkgY29sbGVjdGVkIGluc3RhbmNlcyBvZiB0aGUgU3BhbmlzaCBwcmVwb3NpdGlvbnMgcG9yIGFuZCBwYXJhLCBhcyB3ZWxsIGFzIHRoZSBjb3JyZXNwb25kaW5nIHN1YnRpdGxlcyBpbiBFbmdsaXNoLCBhbmQgY29kZWQgdGhlbSBieSBmdW5jdGlvbi4gSGVyZSBpcyB0aGUgZGlzdHJpYnV0aW9uIG9mIGZ1bmN0aW9ucyBmb3IgdGhlIHR3byBwcmVwb3NpdGlvbnMuDQpUQkQ6IGluc2VydCBsaXN0IG9mIHNlbWFudGljIGZ1bmN0aW9ucw0KYGBge3J9DQp0ICU+JSBnZ3Bsb3QoYWVzKHg9Y29kZSkpICsgZ2VvbV9iYXIoKSArIGZhY2V0X2dyaWQofiBzcGFuaXNoLnByZXAuZm91bmQsIHNjYWxlcz0iZnJlZSIpICsNCiAgbGFicyh4PSJTZW1hbnRpYyBGdW5jdGlvbiIpDQpgYGANCg0KRm9yIGVhY2ggb2YgdGhlc2UgRW5nbGlzaCBjb25jZXB0cywgaGVyZSBpcyB0aGUgZGlzdHJpYnV0aW9uIGFzIHRvIHdoZW4gdGhleSdyZSByZWFsaXplZCB3aXRoICdwb3InIGFuZCB3aGVuIHdpdGggJ3BhcmEnLg0KYGBge3J9DQp0ICU+JSBncm91cF9ieSh0cmFuc2xhdGVkX3RvKSAlPiUgZmlsdGVyKG4oKSA+IDEpICU+JQ0KICBnZ3Bsb3QoYWVzKHk9dHJhbnNsYXRlZF90bywgZmlsbD1zcGFuaXNoX3ByZXBfZm91bmQpKSArDQogIGdlb21fYmFyKHBvc2l0aW9uPSJmaWxsIikgKyANCiAgbGFicyh4PSJQZXJjZW50IFJlYWxpemF0aW9uIiwgeT0iRW5nbGlzaCBUcmFuc2xhdGlvbiIpICsNCiAgc2NhbGVfZmlsbF9kaXNjcmV0ZShuYW1lPSJTcGFuaXNoIFByZXBvc2l0aW9uIikNCmBgYA0KDQpIZXJlIGlzIGEgc2NhdHRlcnBsb3Qgb2YgYWxsIHRoZSBkYXRhIHRvZ2V0aGVyLg0KYGBge3J9DQpnZ3Bsb3QodCwgYWVzKGNvZGUsdHJhbnNsYXRlZF90bywgY29sb3I9c3BhbmlzaF9wcmVwX2ZvdW5kKSkgKyBnZW9tX2NvdW50KCkgKw0KICBsYWJzKHg9IlNlbWFudGljIEZ1bmN0aW9uIiwgeT0iRW5nbGlzaCBUcmFuc2xhdGlvbiIpICsNCiAgc2NhbGVfZmlsbF9kaXNjcmV0ZShuYW1lPSJTcGFuaXNoIFByZXBvc2l0aW9uIikgKw0KICBndWlkZXMoeD1ndWlkZV9heGlzKGFuZ2xlPTkwKSkNCmBgYA0KDQo=