load("data/ASGSGPR5.Rdata")
load("data/ASASGPR5.Rdata")
load("data/ASATURR5.Rdata")
load("data/ASGTURR5.Rdata")
library(haven)
library(dplyr)
library(tidyverse)
library(GGally)
library(psych)

Veri Setlerinin Kendi İçinde Birleşitirilmesi

tur <- bind_rows(ASATURR5, ASGTURR5)
sgpr<- bind_rows(ASASGPR5, ASGSGPR5)

Türkiye Veri Seti

pirls_tur<- tur %>% 
  select(IDCNTRY, IDSCHOOL, IDSTUD, TOTWGT,
    ASRREA01:ASRREA05, ASBG01, ASBG04, ASBG05A)

Türkiye Veri Seti Değişken Adlarının Türkçeye Çevirilmesi

pirls_tur1 <- pirls_tur%>% mutate(ulke= IDCNTRY, cinsiyet=ASBG01, teknolojik_imkan=ASBG05A, kitap_sayisi= ASBG04)
pirls_tur2<-pirls_tur1 %>%  mutate(cinsiyet = case_when(
    cinsiyet == 1 ~ "Erkek",
    cinsiyet == 2 ~ "Kadin",
    
    TRUE ~ NA_character_
  ), ulke= case_when(
    ulke==792~ "Turkiye",
     TRUE ~ NA_character_
  ))

Singapur Veri Seti

pirls_sgpr<- sgpr %>% 
  select(IDCNTRY, IDSCHOOL, IDSTUD, TOTWGT,
    ASRREA01:ASRREA05, ASBG01, ASBG04, ASBG05A)

Singapur Veri Seti Değişkenklerinin Adlarının Türkçeye Çevirilmesi

pirls_sgpr1 <- pirls_sgpr%>% mutate(ulke= IDCNTRY, cinsiyet=ASBG01, teknolojik_imkan=ASBG05A, kitap_sayisi= ASBG04)
pirls_sgpr2<-pirls_sgpr1 %>%  mutate(cinsiyet = case_when(
    cinsiyet == 1 ~ "Erkek",
    cinsiyet == 2 ~ "Kadin",
    
    TRUE ~ NA_character_
  ), ulke= case_when(
    ulke==702~ "Singapur",
     TRUE ~ NA_character_
  ))

Boş Verilerin Temizlenmesi

pirls_tur3<- na.omit(pirls_tur2)
pirls_sgpr3<- na.omit(pirls_sgpr2)
pirls_tur3 <- pirls_tur3 %>% 
  mutate(across(where(is.labelled), as.numeric))

pirls_sgpr3 <- pirls_sgpr3 %>% 
  mutate(across(where(is.labelled), as.numeric))

Veri Setine Yönelik İstatistiklerin İncelenmesi

describe(pirls_tur3 %>% select(cinsiyet, ulke, kitap_sayisi, teknolojik_imkan, ASRREA01, ASRREA02, ASRREA03, ASRREA04, ASRREA05))
##                  vars    n   mean    sd median trimmed   mad    min    max
## cinsiyet*           1 5820   1.50  0.50   2.00    1.50  0.00   1.00   2.00
## ulke*               2 5820   1.00  0.00   1.00    1.00  0.00   1.00   1.00
## kitap_sayisi        3 5820   2.76  1.11   3.00    2.71  1.48   1.00   5.00
## teknolojik_imkan    4 5820   1.28  0.45   1.00    1.22  0.00   1.00   2.00
## ASRREA01            5 5820 506.42 84.06 513.54  509.67 81.85 187.78 777.70
## ASRREA02            6 5820 505.30 84.64 511.00  508.91 82.47 126.61 779.79
## ASRREA03            7 5820 504.55 85.52 511.50  507.71 83.43 166.11 785.54
## ASRREA04            8 5820 503.76 84.08 509.39  506.98 82.19 191.64 756.25
## ASRREA05            9 5820 504.38 84.96 511.32  507.50 82.82 160.51 816.56
##                   range  skew kurtosis   se
## cinsiyet*          1.00 -0.01    -2.00 0.01
## ulke*              0.00   NaN      NaN 0.00
## kitap_sayisi       4.00  0.39    -0.40 0.01
## teknolojik_imkan   1.00  0.98    -1.04 0.01
## ASRREA01         589.93 -0.39     0.15 1.10
## ASRREA02         653.18 -0.43     0.31 1.11
## ASRREA03         619.43 -0.35     0.12 1.12
## ASRREA04         564.61 -0.38     0.17 1.10
## ASRREA05         656.05 -0.35     0.17 1.11
describe(pirls_sgpr3 %>% select(cinsiyet, ulke, kitap_sayisi, teknolojik_imkan, ASRREA01, ASRREA02, ASRREA03, ASRREA04, ASRREA05))
##                  vars    n   mean    sd median trimmed   mad    min    max
## cinsiyet*           1 6633   1.51  0.50   2.00    1.51  0.00   1.00   2.00
## ulke*               2 6633   1.00  0.00   1.00    1.00  0.00   1.00   1.00
## kitap_sayisi        3 6633   2.97  1.20   3.00    2.96  1.48   1.00   5.00
## teknolojik_imkan    4 6633   1.25  0.43   1.00    1.19  0.00   1.00   2.00
## ASRREA01            5 6633 584.31 85.29 594.60  589.72 77.52 203.34 830.63
## ASRREA02            6 6633 584.48 86.24 595.51  589.96 78.99 220.32 835.43
## ASRREA03            7 6633 582.75 85.77 592.70  588.14 77.52 236.20 829.98
## ASRREA04            8 6633 583.58 86.24 594.10  589.06 79.10 216.78 862.93
## ASRREA05            9 6633 582.75 85.44 594.05  588.23 76.79 182.15 855.14
##                   range  skew kurtosis   se
## cinsiyet*          1.00 -0.04    -2.00 0.01
## ulke*              0.00   NaN      NaN 0.00
## kitap_sayisi       4.00  0.10    -0.79 0.01
## teknolojik_imkan   1.00  1.15    -0.67 0.01
## ASRREA01         627.29 -0.65     0.60 1.05
## ASRREA02         615.12 -0.63     0.54 1.06
## ASRREA03         593.77 -0.62     0.56 1.05
## ASRREA04         646.15 -0.62     0.57 1.06
## ASRREA05         672.99 -0.65     0.61 1.05
library(psych)
ggpairs(pirls_tur3 %>% select(cinsiyet, ulke, kitap_sayisi, teknolojik_imkan, ASRREA01,))

ggpairs(pirls_sgpr3 %>% select(cinsiyet, ulke, kitap_sayisi, teknolojik_imkan, ASRREA01,))

Aykırı Değerler, Kaldıraç Etkisi ve Etkileşim Değerlerinin Hesaplanması

reg_tur <- lm(ASRREA01 ~ kitap_sayisi + teknolojik_imkan + cinsiyet, data = pirls_tur3)

reg_tur
## 
## Call:
## lm(formula = ASRREA01 ~ kitap_sayisi + teknolojik_imkan + cinsiyet, 
##     data = pirls_tur3)
## 
## Coefficients:
##      (Intercept)      kitap_sayisi  teknolojik_imkan     cinsiyetKadin  
##           487.37             20.72            -24.50            -13.63
pirls_tur3$std_resid <- rstandard(reg_tur)
pirls_tur3$leverage <- hatvalues(reg_tur)
pirls_tur3$cooksD <- cooks.distance(reg_tur)
head(pirls_tur3)
## # A tibble: 6 × 19
##   IDCNTRY IDSCHOOL   IDSTUD TOTWGT ASRREA01 ASRREA02 ASRREA03 ASRREA04 ASRREA05
##     <dbl>    <dbl>    <dbl>  <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>
## 1     792     5001 50010601   64.1     575.     557.     562.     574.     567.
## 2     792     5001 50010602   64.1     624.     613.     545.     504.     557.
## 3     792     5001 50010603   64.1     567.     569.     533.     530.     575.
## 4     792     5001 50010604   64.1     559.     607.     619.     537.     578.
## 5     792     5001 50010605   64.1     570.     570.     578.     581.     564.
## 6     792     5001 50010607   64.1     599.     595.     536.     546.     568.
## # ℹ 10 more variables: ASBG01 <dbl>, ASBG04 <dbl>, ASBG05A <dbl>, ulke <chr>,
## #   cinsiyet <chr>, teknolojik_imkan <dbl>, kitap_sayisi <dbl>,
## #   std_resid <dbl>, leverage <dbl>, cooksD <dbl>
library(ggfortify)
autoplot(reg_tur)

reg_sgpr<- lm(ASRREA01 ~ kitap_sayisi + teknolojik_imkan + cinsiyet, data = pirls_sgpr3)

reg_sgpr
## 
## Call:
## lm(formula = ASRREA01 ~ kitap_sayisi + teknolojik_imkan + cinsiyet, 
##     data = pirls_sgpr3)
## 
## Coefficients:
##      (Intercept)      kitap_sayisi  teknolojik_imkan     cinsiyetKadin  
##           549.85             20.92            -16.76            -13.26
pirls_sgpr3$std_resid <- rstandard(reg_sgpr)
pirls_sgpr3$leverage <- hatvalues(reg_sgpr)
pirls_sgpr3$cooksD <- cooks.distance(reg_sgpr)
head(pirls_sgpr3)
## # A tibble: 6 × 19
##   IDCNTRY IDSCHOOL   IDSTUD TOTWGT ASRREA01 ASRREA02 ASRREA03 ASRREA04 ASRREA05
##     <dbl>    <dbl>    <dbl>  <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>
## 1     702     5001 50010201   4.85     499.     487.     487.     468.     520.
## 2     702     5001 50010202   4.85     579.     651.     631.     644.     625.
## 3     702     5001 50010203   4.85     604.     618.     591.     590.     620.
## 4     702     5001 50010204   4.85     542.     498.     490.     539.     537.
## 5     702     5001 50010205   4.85     531.     540.     549.     557.     540.
## 6     702     5001 50010206   4.85     540.     576.     598.     559.     538.
## # ℹ 10 more variables: ASBG01 <dbl>, ASBG04 <dbl>, ASBG05A <dbl>, ulke <chr>,
## #   cinsiyet <chr>, teknolojik_imkan <dbl>, kitap_sayisi <dbl>,
## #   std_resid <dbl>, leverage <dbl>, cooksD <dbl>
library(ggfortify)


autoplot(reg_sgpr)

Moderasyon Analizinin Yapılması

moderation_tur <- lm(kitap_sayisi~teknolojik_imkan*cinsiyet, data = pirls_tur3)
summary(moderation_tur)
## 
## Call:
## lm(formula = kitap_sayisi ~ teknolojik_imkan * cinsiyet, data = pirls_tur3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.92429 -0.85953  0.07571  0.60175  2.60175 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     3.45032    0.06125  56.335   <2e-16 ***
## teknolojik_imkan               -0.52603    0.04530 -11.613   <2e-16 ***
## cinsiyetKadin                  -0.19251    0.08640  -2.228   0.0259 *  
## teknolojik_imkan:cinsiyetKadin  0.12776    0.06372   2.005   0.0450 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.091 on 5816 degrees of freedom
## Multiple R-squared:  0.03567,    Adjusted R-squared:  0.03517 
## F-statistic:  71.7 on 3 and 5816 DF,  p-value: < 2.2e-16

Türkiye

library(mediation)

med_1 <- lm(kitap_sayisi ~ teknolojik_imkan, data = pirls_tur3)
med_2 <- lm(ASRREA01 ~ teknolojik_imkan + kitap_sayisi, data = pirls_tur3)

med_tur <- mediate(
  model.m = med_1,
  model.y = med_2,
  sims = 1000,
  boot = TRUE,
  treat = "teknolojik_imkan",
  mediator = "kitap_sayisi"
)

summary(med_tur)
## 
## Causal Mediation Analysis 
## 
## Nonparametric Bootstrap Confidence Intervals with the Percentile Method
## 
##                 Estimate 95% CI Lower 95% CI Upper   p-value    
## ACME            -9.60383    -11.23016     -8.18166 < 2.2e-16 ***
## ADE            -24.58231    -28.99407    -19.47280 < 2.2e-16 ***
## Total Effect   -34.18615    -38.64404    -28.94849 < 2.2e-16 ***
## Prop. Mediated   0.28093      0.23518      0.34276 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 5820 
## 
## 
## Simulations: 1000

Singapur

moderation_sgpr <- lm(kitap_sayisi~teknolojik_imkan*cinsiyet, data = pirls_sgpr3)
summary(moderation_sgpr)
## 
## Call:
## lm(formula = kitap_sayisi ~ teknolojik_imkan * cinsiyet, data = pirls_sgpr3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.07539 -0.96676  0.03324  0.92461  2.19912 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     3.30811    0.06477  51.071  < 2e-16 ***
## teknolojik_imkan               -0.23272    0.04981  -4.672 3.05e-06 ***
## cinsiyetKadin                  -0.17547    0.08997  -1.950   0.0512 .  
## teknolojik_imkan:cinsiyetKadin  0.06684    0.06810   0.981   0.3264    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.197 on 6629 degrees of freedom
## Multiple R-squared:  0.006904,   Adjusted R-squared:  0.006455 
## F-statistic: 15.36 on 3 and 6629 DF,  p-value: 5.866e-10
library(mediation)

med_1 <- lm(kitap_sayisi ~ teknolojik_imkan, data = pirls_tur3)
med_2 <- lm(ASRREA01 ~ teknolojik_imkan + kitap_sayisi, data = pirls_tur3)

med_sgpr <- mediate(
  model.m = med_1,
  model.y = med_2,
  sims = 1000,
  boot = TRUE,
  treat = "teknolojik_imkan",
  mediator = "kitap_sayisi"
)

summary(med_sgpr)
## 
## Causal Mediation Analysis 
## 
## Nonparametric Bootstrap Confidence Intervals with the Percentile Method
## 
##                 Estimate 95% CI Lower 95% CI Upper   p-value    
## ACME            -9.60383    -11.11628     -8.14691 < 2.2e-16 ***
## ADE            -24.58231    -29.21187    -19.94505 < 2.2e-16 ***
## Total Effect   -34.18615    -38.96404    -29.48468 < 2.2e-16 ***
## Prop. Mediated   0.28093      0.23170      0.33304 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 5820 
## 
## 
## Simulations: 1000