Problem 1

# Data for Question 1

lung=read.table("http://statisticalhorizons.com/wp-content/uploads/LUNG.dat")
names(lung)=c("ID", "INSTIT", "TREAT", "DETECT", "CELL", "STAGE", "TUMOR", "LYMPH", "DISTANT", "OPERATED", "DUR", "SURV")
lung$SURV[lung$SURV==2]=0
lung_extract=lung[c('DUR', 'SURV')]
head(lung_extract, 10)
# a. Construct a survival table similar to the one in the lecture for the
# data.  You will show your work within the table – Please use R to obtain the
# survival table (5 Points)

# Load required library
library(survival)
## 
## Attaching package: 'survival'
## The following object is masked _by_ '.GlobalEnv':
## 
##     lung
# Create the Kaplan-Meier survival object
Kaplan.Meier = survfit(Surv(DUR, SURV) ~ 1, data = lung_extract, conf.type = "log-log")

# Get the median survival time
Kaplan.Meier
## Call: survfit(formula = Surv(DUR, SURV) ~ 1, data = lung_extract, conf.type = "log-log")
## 
##         n events median 0.95LCL 0.95UCL
## [1,] 1032    682   1095     934    1320
# Display the survival table
summary(Kaplan.Meier)
## Call: survfit(formula = Surv(DUR, SURV) ~ 1, data = lung_extract, conf.type = "log-log")
## 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     0   1032       4    0.996 0.00193        0.990        0.999
##     2   1027       1    0.995 0.00216        0.988        0.998
##     4   1026       1    0.994 0.00237        0.987        0.997
##     6   1025       1    0.993 0.00256        0.986        0.997
##     8   1023       1    0.992 0.00273        0.985        0.996
##    10   1022       1    0.991 0.00290        0.983        0.995
##    12   1021       1    0.990 0.00305        0.982        0.995
##    13   1020       1    0.989 0.00320        0.981        0.994
##    14   1019       2    0.987 0.00348        0.978        0.993
##    16   1017       3    0.984 0.00385        0.975        0.990
##    18   1014       3    0.982 0.00419        0.971        0.988
##    19   1011       1    0.981 0.00430        0.970        0.987
##    21   1010       2    0.979 0.00450        0.968        0.986
##    26   1008       1    0.978 0.00460        0.967        0.985
##    28   1007       1    0.977 0.00470        0.965        0.984
##    29   1006       1    0.976 0.00479        0.964        0.984
##    35   1005       3    0.973 0.00507        0.961        0.981
##    38   1002       3    0.970 0.00532        0.957        0.979
##    39    999       1    0.969 0.00540        0.956        0.978
##    41    998       2    0.967 0.00557        0.954        0.976
##    42    996       2    0.965 0.00572        0.952        0.975
##    43    994       3    0.962 0.00595        0.949        0.972
##    45    991       1    0.961 0.00602        0.947        0.971
##    46    990       2    0.959 0.00616        0.945        0.970
##    49    988       2    0.957 0.00630        0.943        0.968
##    50    986       1    0.956 0.00637        0.942        0.967
##    51    985       1    0.955 0.00643        0.941        0.966
##    60    983       1    0.954 0.00650        0.940        0.966
##    63    982       1    0.953 0.00657        0.939        0.965
##    64    981       1    0.952 0.00663        0.938        0.964
##    65    980       1    0.951 0.00670        0.936        0.963
##    67    979       2    0.950 0.00682        0.934        0.961
##    70    977       2    0.948 0.00694        0.932        0.960
##    72    975       1    0.947 0.00701        0.931        0.959
##    73    974       1    0.946 0.00707        0.930        0.958
##    75    973       1    0.945 0.00712        0.929        0.957
##    76    972       1    0.944 0.00718        0.928        0.956
##    77    971       1    0.943 0.00724        0.927        0.955
##    80    970       1    0.942 0.00730        0.926        0.954
##    86    969       1    0.941 0.00736        0.925        0.954
##    88    968       1    0.940 0.00741        0.923        0.953
##    89    966       1    0.939 0.00747        0.922        0.952
##    94    965       1    0.938 0.00752        0.921        0.951
##    96    963       1    0.937 0.00758        0.920        0.950
##    98    962       1    0.936 0.00763        0.919        0.949
##   102    960       1    0.935 0.00769        0.918        0.948
##   106    959       1    0.934 0.00774        0.917        0.948
##   108    958       1    0.933 0.00779        0.916        0.947
##   110    957       1    0.932 0.00785        0.915        0.946
##   113    955       1    0.931 0.00790        0.914        0.945
##   115    954       3    0.928 0.00805        0.911        0.942
##   117    951       1    0.927 0.00810        0.909        0.941
##   119    950       1    0.926 0.00815        0.908        0.941
##   120    949       2    0.924 0.00825        0.906        0.939
##   122    947       1    0.923 0.00830        0.905        0.938
##   123    946       1    0.922 0.00835        0.904        0.937
##   124    945       1    0.921 0.00840        0.903        0.936
##   125    944       2    0.919 0.00849        0.901        0.934
##   126    942       1    0.918 0.00854        0.900        0.934
##   127    941       3    0.915 0.00868        0.897        0.931
##   128    938       1    0.914 0.00872        0.896        0.930
##   131    937       1    0.913 0.00877        0.895        0.929
##   132    936       1    0.912 0.00881        0.894        0.928
##   134    935       1    0.912 0.00886        0.892        0.927
##   136    934       3    0.909 0.00899        0.889        0.925
##   140    931       1    0.908 0.00903        0.888        0.924
##   141    930       1    0.907 0.00907        0.887        0.923
##   144    929       1    0.906 0.00912        0.886        0.922
##   149    927       1    0.905 0.00916        0.885        0.921
##   150    926       1    0.904 0.00920        0.884        0.920
##   152    925       2    0.902 0.00928        0.882        0.918
##   153    923       3    0.899 0.00941        0.879        0.916
##   154    920       1    0.898 0.00945        0.878        0.915
##   155    919       2    0.896 0.00953        0.876        0.913
##   156    917       1    0.895 0.00957        0.875        0.912
##   161    916       2    0.893 0.00965        0.872        0.910
##   162    914       1    0.892 0.00968        0.871        0.909
##   163    913       2    0.890 0.00976        0.869        0.908
##   165    910       3    0.887 0.00987        0.866        0.905
##   166    907       1    0.886 0.00991        0.865        0.904
##   167    906       1    0.885 0.00995        0.864        0.903
##   169    905       1    0.884 0.00999        0.863        0.902
##   171    904       1    0.883 0.01002        0.862        0.901
##   173    902       2    0.881 0.01010        0.860        0.900
##   175    900       1    0.880 0.01013        0.859        0.899
##   182    899       2    0.878 0.01020        0.857        0.897
##   183    897       3    0.875 0.01031        0.854        0.894
##   184    894       2    0.873 0.01038        0.851        0.892
##   186    892       1    0.872 0.01041        0.850        0.891
##   187    891       1    0.871 0.01045        0.849        0.890
##   190    889       1    0.870 0.01048        0.848        0.890
##   192    888       1    0.869 0.01052        0.847        0.889
##   193    887       1    0.868 0.01055        0.846        0.888
##   194    886       1    0.868 0.01058        0.845        0.887
##   195    885       1    0.867 0.01062        0.844        0.886
##   196    884       1    0.866 0.01065        0.843        0.885
##   203    882       1    0.865 0.01068        0.842        0.884
##   204    881       1    0.864 0.01072        0.841        0.883
##   206    880       1    0.863 0.01075        0.840        0.882
##   207    879       1    0.862 0.01078        0.839        0.881
##   211    878       1    0.861 0.01081        0.838        0.880
##   212    877       2    0.859 0.01088        0.836        0.879
##   213    875       2    0.857 0.01094        0.834        0.877
##   216    871       1    0.856 0.01097        0.833        0.876
##   217    870       1    0.855 0.01100        0.832        0.875
##   220    869       1    0.854 0.01103        0.831        0.874
##   221    868       1    0.853 0.01107        0.830        0.873
##   225    867       1    0.852 0.01110        0.829        0.872
##   226    866       1    0.851 0.01113        0.828        0.871
##   227    864       1    0.850 0.01116        0.826        0.870
##   228    863       1    0.849 0.01119        0.825        0.869
##   230    862       1    0.848 0.01122        0.824        0.868
##   236    859       1    0.847 0.01125        0.823        0.868
##   237    858       1    0.846 0.01128        0.822        0.867
##   238    857       1    0.845 0.01131        0.821        0.866
##   239    856       1    0.844 0.01134        0.820        0.865
##   240    855       1    0.843 0.01137        0.819        0.864
##   241    854       2    0.841 0.01143        0.817        0.862
##   242    852       3    0.838 0.01151        0.814        0.859
##   243    849       1    0.837 0.01154        0.813        0.858
##   245    847       1    0.836 0.01157        0.812        0.857
##   248    846       2    0.834 0.01163        0.810        0.855
##   251    844       1    0.833 0.01166        0.809        0.855
##   253    842       1    0.832 0.01168        0.808        0.854
##   255    841       2    0.830 0.01174        0.806        0.852
##   256    839       1    0.829 0.01177        0.805        0.851
##   259    838       1    0.828 0.01179        0.804        0.850
##   260    837       2    0.826 0.01185        0.801        0.848
##   263    835       1    0.825 0.01188        0.800        0.847
##   264    834       1    0.824 0.01190        0.799        0.846
##   265    833       1    0.823 0.01193        0.798        0.845
##   266    832       1    0.822 0.01196        0.797        0.844
##   274    831       1    0.821 0.01198        0.796        0.843
##   276    830       1    0.820 0.01201        0.795        0.842
##   277    829       1    0.819 0.01204        0.794        0.841
##   279    828       2    0.817 0.01209        0.792        0.840
##   280    826       1    0.816 0.01211        0.791        0.839
##   281    825       1    0.815 0.01214        0.790        0.838
##   283    824       1    0.814 0.01216        0.789        0.837
##   284    823       1    0.813 0.01219        0.788        0.836
##   287    822       1    0.812 0.01222        0.787        0.835
##   294    821       1    0.811 0.01224        0.786        0.834
##   295    819       1    0.810 0.01227        0.785        0.833
##   296    818       1    0.809 0.01229        0.784        0.832
##   299    817       1    0.808 0.01232        0.783        0.831
##   300    815       2    0.806 0.01236        0.781        0.829
##   301    813       1    0.805 0.01239        0.780        0.828
##   303    812       1    0.804 0.01241        0.779        0.827
##   305    811       1    0.803 0.01244        0.778        0.826
##   306    810       1    0.802 0.01246        0.777        0.826
##   307    809       3    0.799 0.01253        0.773        0.823
##   311    806       1    0.798 0.01256        0.772        0.822
##   314    805       1    0.797 0.01258        0.771        0.821
##   315    804       1    0.796 0.01260        0.770        0.820
##   317    803       1    0.795 0.01263        0.769        0.819
##   318    802       1    0.794 0.01265        0.768        0.818
##   319    801       1    0.793 0.01267        0.767        0.817
##   321    799       1    0.792 0.01270        0.766        0.816
##   324    798       1    0.791 0.01272        0.765        0.815
##   326    797       1    0.790 0.01274        0.764        0.814
##   331    796       1    0.789 0.01276        0.763        0.813
##   333    795       1    0.788 0.01279        0.762        0.812
##   334    794       1    0.787 0.01281        0.761        0.811
##   335    793       3    0.784 0.01288        0.758        0.808
##   337    790       1    0.784 0.01290        0.757        0.808
##   338    789       1    0.783 0.01292        0.756        0.807
##   340    788       1    0.782 0.01294        0.755        0.806
##   342    787       1    0.781 0.01296        0.754        0.805
##   347    786       1    0.780 0.01298        0.753        0.804
##   349    785       1    0.779 0.01301        0.752        0.803
##   351    784       1    0.778 0.01303        0.751        0.802
##   356    783       1    0.777 0.01305        0.750        0.801
##   357    782       3    0.774 0.01311        0.747        0.798
##   360    778       1    0.773 0.01313        0.746        0.797
##   361    777       1    0.772 0.01315        0.745        0.796
##   365    776       2    0.770 0.01319        0.742        0.794
##   366    774       1    0.769 0.01321        0.741        0.793
##   368    771       2    0.767 0.01325        0.739        0.791
##   372    768       1    0.766 0.01328        0.738        0.790
##   373    767       1    0.765 0.01330        0.737        0.789
##   374    766       1    0.764 0.01332        0.736        0.789
##   375    765       1    0.763 0.01334        0.735        0.788
##   376    764       1    0.762 0.01336        0.734        0.787
##   379    763       2    0.760 0.01339        0.732        0.785
##   381    761       1    0.759 0.01341        0.731        0.784
##   382    760       1    0.758 0.01343        0.730        0.783
##   384    759       1    0.757 0.01345        0.729        0.782
##   386    758       1    0.756 0.01347        0.728        0.781
##   393    755       3    0.753 0.01353        0.725        0.778
##   395    752       1    0.752 0.01355        0.724        0.777
##   396    750       2    0.750 0.01359        0.722        0.775
##   397    748       1    0.749 0.01361        0.721        0.774
##   399    747       1    0.748 0.01362        0.720        0.773
##   400    746       2    0.746 0.01366        0.718        0.771
##   401    744       1    0.745 0.01368        0.717        0.770
##   403    743       1    0.744 0.01370        0.716        0.769
##   406    740       1    0.743 0.01372        0.715        0.768
##   408    739       1    0.742 0.01373        0.714        0.767
##   417    738       2    0.740 0.01377        0.711        0.765
##   418    736       1    0.739 0.01379        0.710        0.764
##   420    735       1    0.738 0.01381        0.709        0.764
##   422    734       1    0.737 0.01382        0.708        0.763
##   423    733       1    0.736 0.01384        0.707        0.762
##   424    731       1    0.735 0.01386        0.706        0.761
##   428    726       1    0.734 0.01388        0.705        0.760
##   430    725       1    0.733 0.01389        0.704        0.759
##   432    721       1    0.732 0.01391        0.703        0.758
##   433    720       1    0.731 0.01393        0.702        0.757
##   434    719       2    0.728 0.01396        0.700        0.755
##   436    717       1    0.727 0.01398        0.699        0.754
##   438    715       1    0.726 0.01400        0.698        0.753
##   439    713       1    0.725 0.01402        0.697        0.752
##   444    710       1    0.724 0.01403        0.696        0.751
##   446    709       1    0.723 0.01405        0.695        0.750
##   447    707       1    0.722 0.01407        0.694        0.749
##   450    705       1    0.721 0.01409        0.693        0.748
##   451    704       3    0.718 0.01414        0.689        0.745
##   455    701       1    0.717 0.01415        0.688        0.744
##   456    700       2    0.715 0.01419        0.686        0.742
##   457    698       2    0.713 0.01422        0.684        0.740
##   458    696       2    0.711 0.01425        0.682        0.738
##   461    694       1    0.710 0.01427        0.681        0.737
##   464    693       1    0.709 0.01429        0.680        0.736
##   465    692       1    0.708 0.01430        0.679        0.735
##   466    691       1    0.707 0.01432        0.678        0.734
##   470    689       1    0.706 0.01433        0.677        0.733
##   471    688       2    0.704 0.01437        0.675        0.731
##   475    685       1    0.703 0.01438        0.674        0.730
##   477    684       2    0.701 0.01441        0.672        0.728
##   478    681       1    0.700 0.01443        0.670        0.727
##   479    678       1    0.699 0.01444        0.669        0.726
##   480    677       1    0.698 0.01446        0.668        0.725
##   481    676       1    0.697 0.01448        0.667        0.724
##   487    674       1    0.696 0.01449        0.666        0.723
##   488    673       1    0.695 0.01451        0.665        0.722
##   489    672       1    0.694 0.01452        0.664        0.721
##   493    671       1    0.693 0.01454        0.663        0.720
##   495    669       1    0.692 0.01455        0.662        0.719
##   497    668       1    0.690 0.01457        0.661        0.718
##   498    667       1    0.689 0.01458        0.660        0.717
##   500    666       1    0.688 0.01460        0.659        0.716
##   502    665       1    0.687 0.01461        0.658        0.715
##   503    664       1    0.686 0.01463        0.657        0.714
##   504    663       1    0.685 0.01464        0.656        0.713
##   505    662       2    0.683 0.01467        0.654        0.711
##   508    658       1    0.682 0.01468        0.652        0.710
##   509    657       2    0.680 0.01471        0.650        0.708
##   512    655       1    0.679 0.01473        0.649        0.707
##   515    654       3    0.676 0.01477        0.646        0.704
##   517    651       1    0.675 0.01478        0.645        0.703
##   518    650       1    0.674 0.01479        0.644        0.702
##   522    649       2    0.672 0.01482        0.642        0.700
##   531    647       1    0.671 0.01484        0.641        0.699
##   535    646       1    0.670 0.01485        0.640        0.698
##   536    645       1    0.669 0.01486        0.639        0.697
##   542    643       1    0.668 0.01488        0.638        0.696
##   543    642       1    0.667 0.01489        0.637        0.695
##   544    641       3    0.664 0.01493        0.633        0.692
##   545    638       3    0.660 0.01497        0.630        0.689
##   554    635       1    0.659 0.01498        0.629        0.688
##   561    633       1    0.658 0.01499        0.628        0.687
##   563    631       1    0.657 0.01500        0.627        0.686
##   565    630       1    0.656 0.01502        0.626        0.685
##   573    629       1    0.655 0.01503        0.625        0.684
##   575    628       1    0.654 0.01504        0.624        0.683
##   577    626       1    0.653 0.01505        0.623        0.682
##   579    625       1    0.652 0.01506        0.622        0.681
##   582    622       1    0.651 0.01508        0.621        0.680
##   585    621       2    0.649 0.01510        0.618        0.678
##   590    618       1    0.648 0.01511        0.617        0.677
##   592    617       2    0.646 0.01514        0.615        0.675
##   593    615       1    0.645 0.01515        0.614        0.674
##   594    614       1    0.644 0.01516        0.613        0.672
##   596    613       1    0.643 0.01517        0.612        0.671
##   598    612       2    0.641 0.01519        0.610        0.669
##   599    610       1    0.639 0.01521        0.609        0.668
##   601    609       1    0.638 0.01522        0.608        0.667
##   602    608       1    0.637 0.01523        0.607        0.666
##   604    606       1    0.636 0.01524        0.606        0.665
##   608    605       1    0.635 0.01525        0.605        0.664
##   609    604       1    0.634 0.01526        0.603        0.663
##   612    603       1    0.633 0.01527        0.602        0.662
##   617    602       1    0.632 0.01528        0.601        0.661
##   623    601       1    0.631 0.01529        0.600        0.660
##   627    599       1    0.630 0.01530        0.599        0.659
##   631    598       2    0.628 0.01533        0.597        0.657
##   638    596       1    0.627 0.01534        0.596        0.656
##   640    595       1    0.626 0.01535        0.595        0.655
##   641    593       1    0.625 0.01536        0.594        0.654
##   645    592       1    0.624 0.01537        0.593        0.653
##   646    591       1    0.623 0.01538        0.592        0.652
##   648    590       1    0.622 0.01539        0.591        0.651
##   650    589       1    0.620 0.01540        0.590        0.650
##   651    588       2    0.618 0.01542        0.587        0.648
##   652    586       1    0.617 0.01543        0.586        0.647
##   655    585       1    0.616 0.01544        0.585        0.646
##   657    584       1    0.615 0.01545        0.584        0.645
##   662    583       1    0.614 0.01546        0.583        0.644
##   668    581       1    0.613 0.01547        0.582        0.643
##   669    580       1    0.612 0.01547        0.581        0.642
##   677    578       1    0.611 0.01548        0.580        0.641
##   684    577       1    0.610 0.01549        0.579        0.640
##   689    576       1    0.609 0.01550        0.578        0.638
##   690    575       2    0.607 0.01552        0.576        0.636
##   693    573       1    0.606 0.01553        0.575        0.635
##   694    572       3    0.603 0.01556        0.571        0.632
##   696    569       2    0.600 0.01557        0.569        0.630
##   698    567       2    0.598 0.01559        0.567        0.628
##   700    564       1    0.597 0.01560        0.566        0.627
##   717    561       1    0.596 0.01561        0.565        0.626
##   718    560       1    0.595 0.01562        0.564        0.625
##   719    559       1    0.594 0.01562        0.563        0.624
##   738    553       1    0.593 0.01563        0.562        0.623
##   743    549       1    0.592 0.01564        0.561        0.622
##   753    547       1    0.591 0.01565        0.559        0.621
##   755    545       1    0.590 0.01566        0.558        0.620
##   762    544       1    0.589 0.01567        0.557        0.619
##   764    543       1    0.588 0.01568        0.556        0.618
##   766    542       1    0.586 0.01568        0.555        0.616
##   768    541       1    0.585 0.01569        0.554        0.615
##   770    540       1    0.584 0.01570        0.553        0.614
##   771    538       1    0.583 0.01571        0.552        0.613
##   774    536       1    0.582 0.01572        0.551        0.612
##   775    535       1    0.581 0.01573        0.550        0.611
##   778    534       1    0.580 0.01573        0.548        0.610
##   779    533       1    0.579 0.01574        0.547        0.609
##   782    531       1    0.578 0.01575        0.546        0.608
##   793    528       1    0.577 0.01576        0.545        0.607
##   795    527       1    0.576 0.01577        0.544        0.606
##   796    525       1    0.574 0.01577        0.543        0.605
##   797    524       1    0.573 0.01578        0.542        0.604
##   800    523       1    0.572 0.01579        0.541        0.603
##   801    522       1    0.571 0.01580        0.540        0.601
##   804    521       1    0.570 0.01581        0.538        0.600
##   805    520       1    0.569 0.01581        0.537        0.599
##   807    519       1    0.568 0.01582        0.536        0.598
##   811    517       1    0.567 0.01583        0.535        0.597
##   813    514       2    0.565 0.01584        0.533        0.595
##   815    512       2    0.562 0.01586        0.531        0.593
##   816    510       1    0.561 0.01587        0.530        0.592
##   818    509       1    0.560 0.01587        0.528        0.591
##   819    507       1    0.559 0.01588        0.527        0.590
##   824    505       1    0.558 0.01589        0.526        0.588
##   826    504       1    0.557 0.01589        0.525        0.587
##   828    502       1    0.556 0.01590        0.524        0.586
##   836    500       1    0.555 0.01591        0.523        0.585
##   844    498       1    0.554 0.01591        0.522        0.584
##   847    496       2    0.551 0.01593        0.520        0.582
##   848    493       1    0.550 0.01594        0.518        0.581
##   849    492       1    0.549 0.01594        0.517        0.580
##   853    490       1    0.548 0.01595        0.516        0.579
##   856    489       2    0.546 0.01596        0.514        0.576
##   859    487       1    0.545 0.01597        0.513        0.575
##   876    485       1    0.543 0.01598        0.512        0.574
##   882    483       1    0.542 0.01598        0.510        0.573
##   886    481       2    0.540 0.01600        0.508        0.571
##   891    479       1    0.539 0.01600        0.507        0.570
##   895    478       2    0.537 0.01601        0.505        0.568
##   901    476       1    0.536 0.01602        0.504        0.566
##   909    475       1    0.534 0.01603        0.503        0.565
##   921    472       1    0.533 0.01603        0.501        0.564
##   926    471       1    0.532 0.01604        0.500        0.563
##   934    470       2    0.530 0.01605        0.498        0.561
##   951    466       1    0.529 0.01605        0.497        0.560
##   964    464       2    0.526 0.01607        0.495        0.557
##   974    459       2    0.524 0.01608        0.492        0.555
##   977    457       1    0.523 0.01608        0.491        0.554
##   984    455       1    0.522 0.01609        0.490        0.553
##   985    454       1    0.521 0.01609        0.489        0.552
##   991    453       1    0.520 0.01610        0.488        0.551
##   994    452       1    0.518 0.01611        0.486        0.549
##   996    451       1    0.517 0.01611        0.485        0.548
##   999    450       2    0.515 0.01612        0.483        0.546
##  1038    441       1    0.514 0.01613        0.482        0.545
##  1043    440       1    0.513 0.01613        0.481        0.544
##  1049    438       1    0.512 0.01614        0.479        0.543
##  1051    437       1    0.510 0.01614        0.478        0.541
##  1052    436       1    0.509 0.01615        0.477        0.540
##  1066    434       1    0.508 0.01615        0.476        0.539
##  1077    433       1    0.507 0.01616        0.475        0.538
##  1085    432       2    0.504 0.01617        0.472        0.536
##  1091    429       1    0.503 0.01617        0.471        0.535
##  1093    428       1    0.502 0.01618        0.470        0.533
##  1095    427       2    0.500 0.01619        0.468        0.531
##  1104    424       1    0.499 0.01619        0.466        0.530
##  1105    423       1    0.497 0.01620        0.465        0.529
##  1114    422       1    0.496 0.01620        0.464        0.528
##  1116    421       1    0.495 0.01621        0.463        0.526
##  1118    420       1    0.494 0.01621        0.462        0.525
##  1119    419       1    0.493 0.01622        0.461        0.524
##  1143    415       1    0.492 0.01622        0.459        0.523
##  1159    413       1    0.490 0.01622        0.458        0.522
##  1161    412       1    0.489 0.01623        0.457        0.520
##  1162    411       1    0.488 0.01623        0.456        0.519
##  1172    409       1    0.487 0.01624        0.455        0.518
##  1178    408       1    0.486 0.01624        0.453        0.517
##  1180    407       1    0.484 0.01624        0.452        0.516
##  1191    406       1    0.483 0.01625        0.451        0.515
##  1198    404       1    0.482 0.01625        0.450        0.513
##  1208    402       1    0.481 0.01626        0.449        0.512
##  1211    401       1    0.480 0.01626        0.447        0.511
##  1216    400       1    0.478 0.01626        0.446        0.510
##  1218    399       1    0.477 0.01627        0.445        0.509
##  1220    397       1    0.476 0.01627        0.444        0.507
##  1234    395       1    0.475 0.01627        0.443        0.506
##  1284    389       1    0.474 0.01628        0.441        0.505
##  1290    388       1    0.472 0.01628        0.440        0.504
##  1292    387       1    0.471 0.01628        0.439        0.503
##  1295    386       1    0.470 0.01629        0.438        0.501
##  1311    382       1    0.469 0.01629        0.436        0.500
##  1320    381       1    0.467 0.01629        0.435        0.499
##  1323    380       1    0.466 0.01630        0.434        0.498
##  1325    379       1    0.465 0.01630        0.433        0.497
##  1329    377       1    0.464 0.01630        0.431        0.495
##  1330    376       1    0.462 0.01631        0.430        0.494
##  1331    375       1    0.461 0.01631        0.429        0.493
##  1336    373       1    0.460 0.01631        0.428        0.492
##  1356    366       1    0.459 0.01632        0.427        0.490
##  1359    364       1    0.458 0.01632        0.425        0.489
##  1364    363       1    0.456 0.01633        0.424        0.488
##  1370    362       1    0.455 0.01633        0.423        0.487
##  1371    361       1    0.454 0.01633        0.421        0.485
##  1391    359       1    0.452 0.01634        0.420        0.484
##  1402    358       1    0.451 0.01634        0.419        0.483
##  1429    357       1    0.450 0.01634        0.418        0.482
##  1431    356       1    0.449 0.01634        0.416        0.480
##  1441    355       1    0.447 0.01635        0.415        0.479
##  1457    351       1    0.446 0.01635        0.414        0.478
##  1462    350       1    0.445 0.01635        0.413        0.477
##  1488    346       1    0.444 0.01636        0.411        0.475
##  1490    345       1    0.442 0.01636        0.410        0.474
##  1493    343       1    0.441 0.01636        0.409        0.473
##  1494    342       1    0.440 0.01637        0.407        0.471
##  1500    341       1    0.438 0.01637        0.406        0.470
##  1505    340       1    0.437 0.01637        0.405        0.469
##  1511    339       1    0.436 0.01637        0.404        0.468
##  1515    338       1    0.435 0.01638        0.402        0.466
##  1535    336       1    0.433 0.01638        0.401        0.465
##  1542    335       1    0.432 0.01638        0.400        0.464
##  1548    333       1    0.431 0.01638        0.398        0.463
##  1550    332       1    0.429 0.01638        0.397        0.461
##  1559    330       1    0.428 0.01639        0.396        0.460
##  1569    329       1    0.427 0.01639        0.394        0.459
##  1578    327       1    0.425 0.01639        0.393        0.457
##  1583    325       1    0.424 0.01639        0.392        0.456
##  1600    320       1    0.423 0.01639        0.391        0.455
##  1606    318       1    0.421 0.01640        0.389        0.453
##  1608    317       1    0.420 0.01640        0.388        0.452
##  1616    316       1    0.419 0.01640        0.387        0.451
##  1617    315       1    0.418 0.01640        0.385        0.449
##  1627    314       1    0.416 0.01640        0.384        0.448
##  1630    313       1    0.415 0.01640        0.383        0.447
##  1638    311       1    0.414 0.01641        0.381        0.445
##  1640    310       1    0.412 0.01641        0.380        0.444
##  1643    309       1    0.411 0.01641        0.379        0.443
##  1644    308       1    0.410 0.01641        0.377        0.441
##  1663    305       1    0.408 0.01641        0.376        0.440
##  1665    304       1    0.407 0.01641        0.375        0.439
##  1668    303       1    0.405 0.01641        0.373        0.437
##  1682    301       1    0.404 0.01641        0.372        0.436
##  1708    295       1    0.403 0.01641        0.371        0.435
##  1713    294       1    0.401 0.01641        0.369        0.433
##  1717    293       1    0.400 0.01642        0.368        0.432
##  1720    291       1    0.399 0.01642        0.366        0.431
##  1731    287       1    0.397 0.01642        0.365        0.429
##  1735    285       1    0.396 0.01642        0.364        0.428
##  1760    282       2    0.393 0.01642        0.361        0.425
##  1769    278       1    0.392 0.01642        0.359        0.424
##  1781    274       1    0.390 0.01643        0.358        0.422
##  1786    272       1    0.389 0.01643        0.357        0.421
##  1787    270       1    0.387 0.01643        0.355        0.419
##  1799    268       1    0.386 0.01643        0.354        0.418
##  1806    267       1    0.384 0.01644        0.352        0.417
##  1808    263       1    0.383 0.01644        0.351        0.415
##  1815    261       1    0.382 0.01644        0.349        0.414
##  1819    260       1    0.380 0.01644        0.348        0.412
##  1831    257       1    0.379 0.01644        0.346        0.411
##  1836    253       1    0.377 0.01645        0.345        0.409
##  1844    250       1    0.376 0.01645        0.343        0.408
##  1845    248       1    0.374 0.01645        0.342        0.406
##  1849    246       1    0.373 0.01646        0.340        0.405
##  1850    245       1    0.371 0.01646        0.339        0.403
##  1851    244       1    0.369 0.01646        0.337        0.402
##  1856    240       1    0.368 0.01647        0.336        0.400
##  1862    239       1    0.366 0.01647        0.334        0.399
##  1871    237       1    0.365 0.01647        0.333        0.397
##  1875    234       1    0.363 0.01647        0.331        0.396
##  1881    233       1    0.362 0.01648        0.330        0.394
##  1886    230       1    0.360 0.01648        0.328        0.392
##  1890    229       1    0.359 0.01648        0.326        0.391
##  1898    228       1    0.357 0.01649        0.325        0.389
##  1909    227       1    0.355 0.01649        0.323        0.388
##  1921    224       1    0.354 0.01649        0.322        0.386
##  1922    223       1    0.352 0.01649        0.320        0.385
##  1936    220       1    0.351 0.01650        0.318        0.383
##  1937    219       1    0.349 0.01650        0.317        0.381
##  1939    218       1    0.347 0.01650        0.315        0.380
##  1943    217       1    0.346 0.01650        0.314        0.378
##  1944    215       1    0.344 0.01650        0.312        0.377
##  1945    214       1    0.343 0.01650        0.310        0.375
##  1951    211       1    0.341 0.01651        0.309        0.373
##  1960    209       1    0.339 0.01651        0.307        0.372
##  1963    208       1    0.338 0.01651        0.306        0.370
##  1965    207       1    0.336 0.01651        0.304        0.369
##  1980    206       1    0.335 0.01651        0.302        0.367
##  1985    205       1    0.333 0.01651        0.301        0.365
##  1987    204       1    0.331 0.01651        0.299        0.364
##  1992    203       1    0.330 0.01651        0.297        0.362
##  2001    200       1    0.328 0.01651        0.296        0.360
##  2002    199       1    0.326 0.01651        0.294        0.359
##  2006    198       1    0.325 0.01651        0.293        0.357
##  2017    194       1    0.323 0.01650        0.291        0.355
##  2028    192       1    0.321 0.01650        0.289        0.354
##  2041    189       1    0.320 0.01650        0.288        0.352
##  2042    188       1    0.318 0.01650        0.286        0.350
##  2043    187       1    0.316 0.01650        0.284        0.349
##  2044    186       1    0.315 0.01650        0.282        0.347
##  2057    182       1    0.313 0.01650        0.281        0.345
##  2069    179       1    0.311 0.01650        0.279        0.344
##  2073    178       1    0.309 0.01650        0.277        0.342
##  2074    177       1    0.308 0.01650        0.276        0.340
##  2084    176       1    0.306 0.01650        0.274        0.338
##  2107    173       1    0.304 0.01650        0.272        0.337
##  2110    172       1    0.302 0.01650        0.270        0.335
##  2125    170       1    0.300 0.01649        0.269        0.333
##  2148    164       1    0.299 0.01650        0.267        0.331
##  2150    163       1    0.297 0.01650        0.265        0.329
##  2155    161       1    0.295 0.01650        0.263        0.328
##  2168    158       1    0.293 0.01650        0.261        0.326
##  2169    157       1    0.291 0.01650        0.259        0.324
##  2171    156       1    0.289 0.01650        0.257        0.322
##  2174    155       1    0.288 0.01650        0.256        0.320
##  2178    153       1    0.286 0.01649        0.254        0.318
##  2187    151       1    0.284 0.01649        0.252        0.316
##  2189    150       1    0.282 0.01649        0.250        0.315
##  2190    149       2    0.278 0.01649        0.246        0.311
##  2191    146       1    0.276 0.01648        0.244        0.309
##  2200    143       1    0.274 0.01648        0.242        0.307
##  2210    141       1    0.272 0.01648        0.240        0.305
##  2222    136       1    0.270 0.01648        0.238        0.303
##  2270    133       1    0.268 0.01648        0.236        0.301
##  2287    129       1    0.266 0.01648        0.234        0.299
##  2288    128       1    0.264 0.01648        0.232        0.297
##  2301    124       1    0.262 0.01649        0.230        0.295
##  2311    121       1    0.260 0.01649        0.228        0.293
##  2341    117       1    0.258 0.01650        0.226        0.290
##  2353    115       1    0.255 0.01651        0.224        0.288
##  2356    114       1    0.253 0.01651        0.221        0.286
##  2363    111       1    0.251 0.01652        0.219        0.284
##  2373    110       1    0.249 0.01653        0.217        0.281
##  2376    109       1    0.246 0.01653        0.215        0.279
##  2382    108       1    0.244 0.01654        0.212        0.277
##  2398    106       1    0.242 0.01654        0.210        0.275
##  2407    105       1    0.239 0.01654        0.208        0.272
##  2414    104       1    0.237 0.01654        0.205        0.270
##  2419    102       1    0.235 0.01654        0.203        0.268
##  2450     97       1    0.232 0.01655        0.201        0.265
##  2468     93       1    0.230 0.01656        0.198        0.263
##  2480     92       1    0.227 0.01657        0.196        0.260
##  2495     89       1    0.225 0.01657        0.193        0.258
##  2500     88       1    0.222 0.01658        0.191        0.255
##  2521     83       1    0.220 0.01660        0.188        0.253
##  2523     82       1    0.217 0.01661        0.185        0.250
##  2532     80       1    0.214 0.01662        0.183        0.248
##  2536     79       1    0.211 0.01663        0.180        0.245
##  2539     78       1    0.209 0.01664        0.177        0.242
##  2555     75       1    0.206 0.01665        0.174        0.239
##  2560     74       1    0.203 0.01665        0.172        0.237
##  2691     60       1    0.200 0.01672        0.168        0.233
##  2722     56       1    0.196 0.01679        0.164        0.230
##  2772     52       1    0.192 0.01689        0.161        0.227
##  2823     47       1    0.188 0.01702        0.156        0.223
##  2955     37       1    0.183 0.01730        0.151        0.218
##  3053     30       1    0.177 0.01777        0.144        0.213
##  3156     25       1    0.170 0.01842        0.136        0.208
# Kaplan-Meier Survival Model
# Model:
# The analysis uses the Kaplan-Meier non-parametric estimator to analyze
# survival data:
# survfit(Surv(DUR, SURV) ~ 1, data = lung_extract, conf.type = "log-log")
# Model Elements:
# Outcome variable: Survival time (DUR) and event indicator (SURV)
# Estimator: Product-limit (Kaplan-Meier) estimator
# Confidence interval method: Log-log transformation

# Assumptions:
# Independent observations: Each patient's survival time is independent of
# other patients
# Non-informative censoring: The censoring process is independent of the
# survival process
# Constant hazard between observed event times: The risk of event remains
# constant between observed times
# Equivalence of subjects: All subjects at risk at each time point have the
# same risk of the event.
# Metric               Value          
# Total observations   1032                     
   # Events (deaths)     682                      
   # Median survival  1095 days                
   # 95% CI for median 934 to 1320 days         

# Conclusion:
# Based on the Kaplan-Meier analysis:
# Median survival time is 1,095 days, with 95% CI from 934 to 1320 days.
# The 1-year survival probability is approximately 0.81 (estimated from time
# points near 365 days)
# The 2-year survival probability is approximately 0.65 (estimated from time
# points near 730 days)
# The survival probability decreases over time, as expected in a population
# with lung cancer
# The precision of estimates (confidence intervals) 
# b.    Plot a survival curve for the probabilities you generate in part a (5 Points)
# Load required library
library(survival)

# Create Kaplan-Meier survival object
Kaplan.Meier = survfit(Surv(DUR, SURV) ~ 1, data = lung_extract, conf.type = "log-log")

# Plot the survival curve
plot(Kaplan.Meier, 
     main = "Survival Curve - Kaplan Meier", 
     xaxt = "n", 
     xlab = "time(days)", 
     ylab = "Cumulative Survival")

# Add custom x-axis with appropriate intervals
axis(1, at = seq(0, 4000, by = 500), las = 2)

# Add grid for better readability
grid()

# Add confidence intervals if desired
lines(Kaplan.Meier$time, Kaplan.Meier$upper, type = "s", col = "red", lty = 2)
lines(Kaplan.Meier$time, Kaplan.Meier$lower, type = "s", col = "red", lty = 2)

# Add a legend
legend("topright", 
       legend = c("Survival curve", "95% Confidence Interval"), 
       col = c("black", "red"), 
       lty = c(1, 2), 
       lwd = c(1, 1))

# The survival curve shows:
# At time 0, survival probability is 100% (everyone is alive at the start)
# There's a steady decline in survival probability over the first 2,500 days
# By around 3,000 days, the survival probability plateaus at approximately 20%
# After the 3,000-day mark, the curve flattens, suggesting that patients who
# survive beyond this point have a relatively stable outlook
# The widening confidence interval toward the end indicates increased
# uncertainty in the estimates due to fewer remaining subjects

# This curve is specifically analyzing lung cancer mortality, where status=1
# indicates death from the disease and status=0 indicates the patient was
# either still alive or died from other causes (both treated as censoring in
# this analysis).
# The plot effectively communicates the long-term survival outlook for
# patients in this lung dataset, showing that approximately 20% of patients
# survive beyond 8-10 years (3,000 plus days).

Problem 2

2.You are studying three different new drugs that may help slow the progress of La Traviata disease which compels people to sing opera until they exhaust themselves and die. Do the following:

Data for part 2 of this exercise in the attached R script. Data format is Group#, time event (0=no event, 1=event)

# Data for Question 2

Traviata=data.frame(
group=c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3),
  
 time=c(681, 602, 996, 1162, 833, 477, 630, 596, 226, 699, 811, 530, 482, 367, 118, 83, 76, 104, 109, 72, 87, 162, 94, 30, 
    26, 22, 49, 74, 122, 86, 66, 92, 109, 255, 1, 107, 110, 232, 2569, 2506, 2409, 2218, 1857, 1829, 1562, 1470, 1363,
    1030, 1860, 1258, 2246, 1870, 1799, 1709, 1674, 1568, 1527, 1324, 1957, 1932, 1847, 1848, 1850, 1843, 1535, 1447,
    1384, 914, 2204, 1063, 481, 605, 641, 390, 288, 421, 1379, 1748, 486, 448, 272, 1074, 1381, 1410, 1353, 1480, 435, 
    248, 1704, 1411, 219, 606, 2640, 2430, 2252, 2140, 2133, 1738, 2631, 2524, 1845, 1936, 1845, 422, 162, 84, 100, 212, 
    47, 242, 456, 268, 318, 732, 467, 947, 390, 183, 105, 115, 164, 693, 120, 80, 677, 64, 168, 874, 616, 157, 625, 48, 
    273, 163, 376, 113, 363),
  
 event=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
)

# Convert group to factor and label it appropriately
Traviata$group <- factor(Traviata$group, levels = c(1, 2, 3), labels = c("Drug 1", "Drug 2", "Drug 3"))

# Print summary statistics by group
cat("Summary statistics by drug group:\n")
## Summary statistics by drug group:
summary_stats <- table(Traviata$group, Traviata$event)
colnames(summary_stats) <- c("Censored", "Events")
print(summary_stats)
##         
##          Censored Events
##   Drug 1       14     24
##   Drug 2       29     25
##   Drug 3       11     34
# Calculate total counts and event rates
group_counts <- table(Traviata$group)
event_rates <- summary_stats[, "Events"] / group_counts
cat("\nEvent rates by group:\n")
## 
## Event rates by group:
print(data.frame(Group = rownames(summary_stats), Count = group_counts, 
                 Events = summary_stats[, "Events"], 
                 EventRate = event_rates))
##         Group Count.Var1 Count.Freq Events EventRate.Var1 EventRate.Freq
## Drug 1 Drug 1     Drug 1         38     24         Drug 1      0.6315789
## Drug 2 Drug 2     Drug 2         54     25         Drug 2      0.4629630
## Drug 3 Drug 3     Drug 3         45     34         Drug 3      0.7555556
#  MODEL AND ASSUMPTIONS
# Kaplan-Meier model for survival analysis with the following assumptions
# Censoring is non-informative, censored patients have same survival
# prospects as those who continue
# Survival probabilities depend only on time since entry into study
# Patients recruited early and late in the study have similar survival
# prospects
# Events happen at the specified times
# Independence between observations
# Create survival object
surv_obj <- Surv(time = Traviata$time, event = Traviata$event)

# Fit Kaplan-Meier curves for each group
km_fit <- survfit(surv_obj ~ group, data = Traviata)
print(km_fit)
## Call: survfit(formula = surv_obj ~ group, data = Traviata)
## 
##               n events median 0.95LCL 0.95UCL
## group=Drug 1 38     24    114      94      NA
## group=Drug 2 54     25   2204    1411      NA
## group=Drug 3 45     34    376     212     693
# 3. MODEL ELEMENTS ANNOTATION
# Survival object (Surv): Time-to-event data with censoring indicator
# Kaplan-Meier estimator (survfit): Non-parametric method to estimate
# survival function
# Log-rank test (survdiff): Non-parametric test to compare survival distributions
# Pairwise comparisons: Specific tests between pairs of drugs
# Group factor: Treatment group (Drug 1, Drug 2, Drug 3)
# Time: Time until event or censoring (in days)
# Event: Binary indicator (1 = event occurred, 0 = censored)
# A. SURVIVAL PLOT FOR ALL THREE DRUGS
cat("\n--- 4A. SURVIVAL PLOT FOR ALL THREE DRUGS ---\n")
## 
## --- 4A. SURVIVAL PLOT FOR ALL THREE DRUGS ---
# Create survival plot
plot(km_fit, 
     main = "Kaplan-Meier Survival Curves for La Traviata Disease",
     xlab = "Time (days)", 
     ylab = "Survival Probability",
     col = c("blue", "red", "green"),
     lwd = 2)

# Add legend
legend("topright", 
       legend = c("Drug 1", "Drug 2", "Drug 3"),
       col = c("blue", "red", "green"),
       lwd = 2,
       title = "Treatment Group")

# Drug 2 (red line) shows the best survival outcomes:
# Maintains the highest survival probability throughout the observation period
# Has approximately 42% survival probability at the end of the study (around 2,500 days)
# Shows a more gradual decline in survival compared to the other treatments

# Drug 3 (green line) shows intermediate effectiveness:
# Initially performs better than Drug 1
# Ends with approximately 22% survival probability
# Shows a steep initial decline within the first 500 days

# Drug 1 (blue line) appears least effective:
# Shows the most rapid decline in survival probability within the first 300 days
# Plateaus at about 35% survival probability around 500 days
# Data collection for this group appears to end earlier (around 1,000 days)


# General timeline patterns:
# The first 500 days show the steepest decline for all treatment groups
# After about 1,000 days, the curves begin to plateau, suggesting lower
# mortality risk for patients who survive beyond this point

# This plot suggests Drug 2 would be the most promising treatment 
# option based on long-term survival outcomes for patients with La Traviata Disease.
#b. Test to see if overall there is an effect of any of the drugs on survival taken as a global set (25 Points).

#TEST FOR OVERALL EFFECT OF DRUGS ON SURVIVAL
cat("\n--- 4B. TEST FOR OVERALL EFFECT OF DRUGS ON SURVIVAL ---\n")
## 
## --- 4B. TEST FOR OVERALL EFFECT OF DRUGS ON SURVIVAL ---
# Null hypothesis (H0): There is no difference in survival between any of the drug groups
# Alternative hypothesis (H1): At least one drug has a different survival distribution

# Perform log-rank test
log_rank_test <- survdiff(surv_obj ~ group, data = Traviata)
cat("Log-rank test for differences in survival across all three drugs:\n")
## Log-rank test for differences in survival across all three drugs:
print(log_rank_test)
## Call:
## survdiff(formula = surv_obj ~ group, data = Traviata)
## 
##               N Observed Expected (O-E)^2/E (O-E)^2/V
## group=Drug 1 38       24     12.3     11.07     13.66
## group=Drug 2 54       25     46.0      9.58     22.50
## group=Drug 3 45       34     24.7      3.51      5.04
## 
##  Chisq= 25.7  on 2 degrees of freedom, p= 3e-06
# Calculate p-value
p_value <- 1 - pchisq(log_rank_test$chisq, df = length(levels(Traviata$group)) - 1)
cat("\nP-value:", format.pval(p_value, digits = 6), "\n")
## 
## P-value: 2.66883e-06
# Interpretation
alpha <- 0.05
cat("\nHypothesis Test:\n")
## 
## Hypothesis Test:
cat("H₀: Survival curves are equal across all 3 groups.\n")
## H₀: Survival curves are equal across all 3 groups.
cat("H₁: At least one survival curve is different.\n")
## H₁: At least one survival curve is different.
cat("Test statistic: χ² =", round(log_rank_test$chisq, 2), "with df =", length(levels(Traviata$group)) - 1, "\n")
## Test statistic: χ² = 25.67 with df = 2
cat("Decision rule: Reject H₀ if p-value <", alpha, "\n")
## Decision rule: Reject H₀ if p-value < 0.05
if(p_value < alpha) {
  cat("Result: Reject H₀ at alpha =", alpha, "\n")
  cat("Conclusion: There is a statistically significant difference in survival between at least two drug groups.\n")
} else {
  cat("Result: Fail to reject H₀ at alpha =", alpha, "\n")
  cat("Conclusion: There is no statistically significant difference in survival between the drug groups.\n")
}
## Result: Reject H₀ at alpha = 0.05 
## Conclusion: There is a statistically significant difference in survival between at least two drug groups.
# c.    Compare the survival curves for each of the three drugs with each other
# (three comparisons) and see if any if the curves are different from each
# other (10 Points).

# PAIRWISE COMPARISONS BETWEEN DRUGS
cat("\n--- 4C. PAIRWISE COMPARISONS BETWEEN DRUGS ---\n")
## 
## --- 4C. PAIRWISE COMPARISONS BETWEEN DRUGS ---
# Create subsets for pairwise comparisons
Traviata_1vs2 <- Traviata[Traviata$group %in% c("Drug 1", "Drug 2"), ]
Traviata_1vs3 <- Traviata[Traviata$group %in% c("Drug 1", "Drug 3"), ]
Traviata_2vs3 <- Traviata[Traviata$group %in% c("Drug 2", "Drug 3"), ]

# Set significance level and apply Bonferroni correction for multiple tests
alpha <- 0.05
alpha_corrected <- alpha / 3  # Bonferroni correction for 3 comparisons
cat("Using Bonferroni-corrected significance level:", alpha_corrected, "\n\n")
## Using Bonferroni-corrected significance level: 0.01666667
# 1. Drug 1 vs Drug 2
cat("--- Drug 1 vs Drug 2 ---\n")
## --- Drug 1 vs Drug 2 ---
# Create new survival object for this subset
surv_obj_1vs2 <- Surv(time = Traviata_1vs2$time, event = Traviata_1vs2$event)
# Perform log-rank test
drug1_vs_drug2 <- survdiff(surv_obj_1vs2 ~ group, data = Traviata_1vs2)
print(drug1_vs_drug2)
## Call:
## survdiff(formula = surv_obj_1vs2 ~ group, data = Traviata_1vs2)
## 
##               N Observed Expected (O-E)^2/E (O-E)^2/V
## group=Drug 1 38       24     10.3     18.29      26.1
## group=Drug 2 54       25     38.7      4.86      26.1
## 
##  Chisq= 26.1  on 1 degrees of freedom, p= 3e-07
p_value_1vs2 <- 1 - pchisq(drug1_vs_drug2$chisq, df = 1)
cat("P-value:", format.pval(p_value_1vs2, digits = 6), "\n")
## P-value: 3.27492e-07
cat("Significant at α =", alpha_corrected, ":", p_value_1vs2 < alpha_corrected, "\n\n")
## Significant at α = 0.01666667 : TRUE
# 2. Drug 1 vs Drug 3
cat("--- Drug 1 vs Drug 3 ---\n")
## --- Drug 1 vs Drug 3 ---
# Create new survival object for this subset
surv_obj_1vs3 <- Surv(time = Traviata_1vs3$time, event = Traviata_1vs3$event)
# Perform log-rank test
drug1_vs_drug3 <- survdiff(surv_obj_1vs3 ~ group, data = Traviata_1vs3)
print(drug1_vs_drug3)
## Call:
## survdiff(formula = surv_obj_1vs3 ~ group, data = Traviata_1vs3)
## 
##               N Observed Expected (O-E)^2/E (O-E)^2/V
## group=Drug 1 38       24     20.8     0.483     0.769
## group=Drug 3 45       34     37.2     0.271     0.769
## 
##  Chisq= 0.8  on 1 degrees of freedom, p= 0.4
p_value_1vs3 <- 1 - pchisq(drug1_vs_drug3$chisq, df = 1)
cat("P-value:", format.pval(p_value_1vs3, digits = 6), "\n")
## P-value: 0.380643
cat("Significant at α =", alpha_corrected, ":", p_value_1vs3 < alpha_corrected, "\n\n")
## Significant at α = 0.01666667 : FALSE
# 3. Drug 2 vs Drug 3
cat("--- Drug 2 vs Drug 3 ---\n")
## --- Drug 2 vs Drug 3 ---
# Create new survival object for this subset
surv_obj_2vs3 <- Surv(time = Traviata_2vs3$time, event = Traviata_2vs3$event)
# Perform log-rank test
drug2_vs_drug3 <- survdiff(surv_obj_2vs3 ~ group, data = Traviata_2vs3)
print(drug2_vs_drug3)
## Call:
## survdiff(formula = surv_obj_2vs3 ~ group, data = Traviata_2vs3)
## 
##               N Observed Expected (O-E)^2/E (O-E)^2/V
## group=Drug 2 54       25     39.7      5.42      16.9
## group=Drug 3 45       34     19.3     11.11      16.9
## 
##  Chisq= 16.9  on 1 degrees of freedom, p= 4e-05
p_value_2vs3 <- 1 - pchisq(drug2_vs_drug3$chisq, df = 1)
cat("P-value:", format.pval(p_value_2vs3, digits = 6), "\n")
## P-value: 4.03402e-05
cat("Significant at α =", alpha_corrected, ":", p_value_2vs3 < alpha_corrected, "\n\n")
## Significant at α = 0.01666667 : TRUE
# Summary table of pairwise comparisons
cat("--- Summary of Pairwise Comparisons ---\n")
## --- Summary of Pairwise Comparisons ---
comparison <- c("Drug 1 vs Drug 2", "Drug 1 vs Drug 3", "Drug 2 vs Drug 3")
chisq <- c(drug1_vs_drug2$chisq, drug1_vs_drug3$chisq, drug2_vs_drug3$chisq)
pvalue <- c(p_value_1vs2, p_value_1vs3, p_value_2vs3)
significant <- pvalue < alpha_corrected
results_table <- data.frame(Comparison = comparison, 
                           ChiSquare = round(chisq, 2),
                           P_Value = format.pval(pvalue, digits = 6),
                           Significant = significant)
print(results_table)
##         Comparison ChiSquare     P_Value Significant
## 1 Drug 1 vs Drug 2     26.08 3.27492e-07        TRUE
## 2 Drug 1 vs Drug 3      0.77    0.380643       FALSE
## 3 Drug 2 vs Drug 3     16.86 4.03402e-05        TRUE
# Conclusion
cat("\nConclusion:\n")
## 
## Conclusion:
if(all(significant)) {
  cat("All pairwise comparisons show significant differences in survival.\n")
} else if(!any(significant)) {
  cat("None of the pairwise comparisons show significant differences in survival.\n")
} else {
  sig_pairs <- comparison[significant]
  cat("The following comparisons show significant differences in survival:\n")
  for(i in sig_pairs) {
    cat("- ", i, "\n")
  }
}
## The following comparisons show significant differences in survival:
## -  Drug 1 vs Drug 2 
## -  Drug 2 vs Drug 3