Data preperation all studies

Author

Julius Fenn, Richard Bergs

1 Notes

2 global variables

Define your global variables (e.g., to reduce run time):

createRawFiles <- TRUE

3 functions

########################################
# from JATOS to table
########################################
### argss:
# dataset = dat_secondPostCAM
# listvars = vec_ques
# notNumeric = vec_notNumeric
# verbose = TRUE


questionnairetype <- function(dataset,
                              listvars = ques_mixed,
                              notNumeric = vec_notNumeric,
                              verbose=FALSE){

  datasetques <- data.frame(ID = unique(dataset$ID))

  for(c in 1:length(listvars)){
    if(verbose){
      print(c)
    }

    if(any(colnames(dataset) == listvars[c])){
      if(verbose){
        print(listvars[c])
      }

      ## tmp IDs
      tmpid <- dataset$ID[!is.na(dataset[, listvars[c]])]
      ## tmp value variable
      tmpvalue <- dataset[, listvars[c]][!is.na(dataset[, listvars[c]])]
      datasetques[listvars[c]]  <- NA

      if(listvars[c] %in% notNumeric){
        datasetques[datasetques$ID %in% tmpid, listvars[c]] <- tmpvalue
      }else if(is.list(tmpvalue)){
        tmpvalue_tmp <- unique(tmpvalue)
        tmpvalue <- c()
        counter = 1
        for(i in 1:length(tmpvalue_tmp)){
          if(!is.null(tmpvalue_tmp[[i]])){
            tmpvalue[counter] <- paste0(tmpvalue_tmp[[i]], collapse = " - ")
            counter = counter + 1
          }
        }
        datasetques[datasetques$ID %in% tmpid, listvars[c]] <- tmpvalue
      }else{
        datasetques[datasetques$ID %in% tmpid, listvars[c]] <- as.numeric(tmpvalue)
      }
    }
  }
  return(datasetques)
}

4 load packages

### load packages
require(pacman)
p_load('tidyverse', 'jsonlite',
       'stargazer',  'DT', 'psych',
       'writexl')
# devtools::install_github("samuelae/associatoR")

5 create raw data files

if(createRawFiles){
  # Define root paths
  source_root <- "data"
  output_dir <- "outputs/raw"
  
  
  # Define studies with paths
  studies <- list(
    study = file.path(source_root)
  )
  
  # Loop over each study
  for (study_name in names(studies)) {
    study_path <- studies[[study_name]]
    
    # Get folders matching pattern "study_result*"
    tmp_folders <- list.files(study_path, pattern = "^study_result.*", full.names = TRUE)
    
    results <- list()
    
    for (folder in tmp_folders) {
      # Look for a single subdirectory inside the folder
      inner_folders <- list.files(folder, full.names = TRUE)
      
      if (length(inner_folders) == 1) {
        data_file <- file.path(inner_folders[1], "data.txt")
        
        if (file.exists(data_file)) {
          # Load and store the JSON data
          tmp <- fromJSON(data_file)
          results[[length(results) + 1]] <- tmp
        }
      }
    }
    
    # Save as RDS
    saveRDS(results, file = file.path(output_dir, paste0(study_name, ".rds")))
    
    # Optionally also save as JSON Lines (.jsonl)
    json_lines <- map_chr(results, ~ toJSON(.x, auto_unbox = TRUE))
    writeLines(json_lines, con = file.path(output_dir, paste0(study_name, ".jsonl")))
  }
  print("Raw files have been created in this run!")
}else{
  print("Raw files have been created in previous run!")
}
[1] "Raw files have been created in this run!"

6 prepare data questionnaires

6.1 study 1

load data:

output_dir <- "outputs/raw"

# Load the RDS files into a named list
study <- readRDS(file.path(output_dir, "study.rds"))

# Combine into single data.frame
suppressMessages({
  dat <- bind_rows(study)
})

rm(study)

counter variable:

dat$ID <- cumsum(dat$sender == "Greetings" & !is.na(dat$sender))

table(dat$ID)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
  2   2  41  43   2   2  43  43  43  43   2  43   2  43  43  43  43  43   2  43 
 21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40 
 43  43  43  43  43  43   2  43  43   2  43  43  43   2  43  43   2  43  43  43 
 41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60 
 43   2  43  43  43   2  43  43   2  43  43  43  43  43  43  43  43  43  43  43 
 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
 43  43   2  43  43  43   2   2  43  43  43  43   2  43  43   2   2  43   2   2 
 81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 
 43  43  43   2  43  43  43  43  43  43  43  43   2   2  43   2  43   2  43  43 
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 
 43  43   2  43  43  43   2   2  43  43  43  43   2  43  43  43   2  43  43   2 
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 
 43   2  43   2   2  43   2  43  43  43  43   2   2  43  43  43  43  43  43   2 
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 
 43  43  43   2  43  43  43  43  43  43  43  43  43   2  43  43   2  43  43  43 
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
  2  43  43  43  43  43  43  43  43   2   2  43  43  43  43  43  43  43  43  43 
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 
 43  43   2   2  43  43  43  43  43  43  43  43  43  43  43  43  43   2  43   2 
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
 43  43  43  43  43   2  43  43  43  43   2  43  43  43  43  43  43  43  43  43 
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 
 43  43  43  43  43   2  43  43  43  43  43  43   2  43  43  43   2  43  43  43 
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 
 43  43   2  43  43  43  43  43   2  43   2  43  43  43  43  43  43  43  43  43 
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 
 43  43  43  43  43  43  43  43  43   2  43  43   2  43  43  43  43   2  43  43 
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 
 43  43  43  43  43  43  43  43  43   2   2   2  43  43  43  43  43  43  43  43 
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 
 43  43   2  43   2  43  43  43  43  43  43  43  43   2  43   2  43  43  43  43 
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 
 43  43  43  43  43  43  43  43   2  43  43  43  43   2  43  43  43  43  43  43 
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 
 43  43   2  43  43  43  43  43   2  43  43  43  43   2  43  43  43  43  43  43 
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 
 43  43  43   2  43  43  43  43  43  43   2  43  43  43   2  43  43  43  43  43 
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 
 43  43  43  43  43  43  43  43  43   2  43  43  43  43  43  43  43  43  43  43 
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 
 43  43  43  43  43  43  43  43  43  43  43  43  43  43  43  43   2  43   2  43 
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 
 41   2  43  43  43   2  43  43  43  43  43  43   2   2   2  43  43  43  43  43 
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 
  2  43  43  43  43  43  43  43   2  43  43   2  43  43  43  43  43  43   2   2 
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 
 43  43  43   2   2   2  43  43  43  43  43   2  43  43  43  43  43  43  43  43 
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 
 43  43  43  43  43  43  43  43  43  43  43  43   2  43   2  43  43  43   2  43 
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 
 43  43  43  43  43  43  43  43  43  43  43   2  43  43  43   2  43  43  43  41 
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 
 43   2  43  43  43  43  43  43  41  43   2   2   2  43   2  43  43  43  43  43 
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 
 43  43  43  43  43  43  43  43   2   2  43  43  43  43   2  43  43  43  43  43 
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 
 43  43  43  43  43  43  43  43  43   2  43  43  43  43  43  43  43  43   2  43 
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 
 43  43  43  43  43  43  43  43  43  43  43  43  43  43  43 
tmp <- dat %>%
  group_by(ID) %>%
  summarise(N = n())
table(tmp$N)

  2  41  43 
108   4 483 

filter:

# IDs, die zu nicht-NULL gehören
tmp_ids <- dat$ID[!sapply(dat$sucsessfulAssociations, is.null)]

# die nicht-NULL Dataframes
tmp_cleaned <- dat$sucsessfulAssociations[!sapply(dat$sucsessfulAssociations, is.null)]

# alles zu einem Dataframe zusammenkleben + IDs
all_cols <- Reduce(union, lapply(tmp_cleaned, names))

tmp_cleaned2 <- lapply(tmp_cleaned, function(d) {
    missing <- setdiff(all_cols, names(d))
    for (m in missing) d[[m]] <- NA
    d[all_cols]  # reorder consistently
})

tmp_df <- do.call(rbind, Map(function(d, id) cbind(ID = id, d),
                             tmp_cleaned2, tmp_ids))
nrow(tmp_df)
[1] 14521
tmp <- tmp_df %>%
  group_by(ID) %>%
  summarise(N = n())
table(tmp$N)

 25  26  27  28  29  30 
  4   5   3   5  30 440 
tmp_df <- tmp_df[tmp_df$ID %in% names(table(tmp_df$ID))[table(tmp_df$ID) == 30],]
nrow(tmp_df)
[1] 13200
nrow(dat)
[1] 21149
dat <- dat[dat$ID %in% tmp_df$ID, ]
nrow(dat)
[1] 18912
tmp <- dat %>%
  group_by(ID) %>%
  summarise(N = n())
table(tmp$N)

 41  43 
  4 436 
# sum(table(dat$ID) != max(table(dat$ID)))
# sum(table(dat$ID) == max(table(dat$ID)))
# 
# 
# length(unique(dat$ID))
# dat <-
#   dat[dat$ID %in% names(table(dat$ID))[table(dat$ID) == max(table(dat$ID))], ]
# length(unique(dat$ID))

questionnaire:

some elements are lists:

colnames(dat)[sapply(dat, is.list)]
[1] "url"                      "meta"                    
[3] "unsucsessfulAssociations" "sucsessfulAssociations"  
[5] "para_defocuscount"       

add meta manually and remove it:

meta_df <- dat$meta[, c("language", "screen_width", "screen_height", "userAgent")]
dat <- bind_cols(dat, meta_df)
New names:
• `...7` -> `...60`
rm(meta_df)
dat$meta <- NULL

create questionnaire:

colnames(dat)
 [1] "url"                              "sender"                          
 [3] "sender_type"                      "sender_id"                       
 [5] "...6"                             "ended_on"                        
 [7] "duration"                         "time_run"                        
 [9] "time_render"                      "time_show"                       
[11] "time_end"                         "time_commit"                     
[13] "timestamp"                        "time_switch"                     
[15] "PROLIFIC_PID"                     "study_condition"                 
[17] "dummy_informedconsent"            "not_needed2"                     
[19] "cue"                              "cue_coding"                      
[21] "R1"                               "R2"                              
[23] "R3"                               "R4"                              
[25] "R5"                               "para_countclicks"                
[27] "CourtDecision-AR4"                "CourtDecision-AR3"               
[29] "CourtDecision-AR2"                "CourtDecision-AR5"               
[31] "CourtDecision-AR1"                "not_needed"                      
[33] "cue_second"                       "cue_coding_second"               
[35] "unsucsessfulAssociations"         "sucsessfulAssociations"          
[37] "AIAS-3"                           "AIAS-2"                          
[39] "AIAS-4"                           "AIAS-1"                          
[41] "PUR-1"                            "PUR-2"                           
[43] "attCheck"                         "PTTA-1"                          
[45] "PTTA-5r"                          "PTTA-6"                          
[47] "PTTA-2r"                          "PTTA-3"                          
[49] "PTTA-4r"                          "sociodemo_age"                   
[51] "sociodemo_gender"                 "lrscale"                         
[53] "rlgdgr"                           "feedback_conscientiousCompletion"
[55] "feedback_attentionCheck"          "feedback_technicalprobs"         
[57] "feedback_technicalprobsText"      "para_defocuscount"               
[59] "...60"                            "Diagnostic-AR2"                  
[61] "Diagnostic-AR4"                   "Diagnostic-AR3"                  
[63] "Diagnostic-AR1"                   "Diagnostic-AR5"                  
[65] "AutonomousWeapons-AR5"            "AutonomousWeapons-AR1"           
[67] "AutonomousWeapons-AR3"            "AutonomousWeapons-AR4"           
[69] "AutonomousWeapons-AR2"            "PersonnelSelection-AR3"          
[71] "PersonnelSelection-AR2"           "PersonnelSelection-AR1"          
[73] "PersonnelSelection-AR5"           "PersonnelSelection-AR4"          
[75] "Migration-AR5"                    "Migration-AR2"                   
[77] "Migration-AR1"                    "Migration-AR3"                   
[79] "Migration-AR4"                    "Grading-AR1"                     
[81] "Grading-AR5"                      "Grading-AR3"                     
[83] "Grading-AR4"                      "Grading-AR2"                     
[85] "CriticalInfrastructure-AR1"       "CriticalInfrastructure-AR3"      
[87] "CriticalInfrastructure-AR4"       "CriticalInfrastructure-AR5"      
[89] "CriticalInfrastructure-AR2"       "ID"                              
[91] "language"                         "screen_width"                    
[93] "screen_height"                    "userAgent"                       
vec_notNumeric <- c("PROLIFIC_PID",
                    
                    "study_condition",
                    
                     "sociodemo_gender", 
                    
                    "feedback_attentionCheck", "feedback_technicalprobs", "feedback_technicalprobsText",
                    
                    "language", "screen_width", "screen_height", "userAgent")

### get survey
vec_ques <- c("PROLIFIC_PID",
              "dummy_informedconsent",
              "sociodemo_age", "lrscale", "rlgdgr",
              "feedback_conscientiousCompletion",
              "commCheck", "attCheck", "feedback_conscientiousCompletion",
                    str_subset(string = colnames(dat), pattern = "^PUR"),
                    str_subset(string = colnames(dat), pattern = "^AIAS"),
                    str_subset(string = colnames(dat), pattern = "^PTTA"),

              vec_notNumeric)



ques_study <- questionnairetype(
  dataset = dat,
  listvars = vec_ques,
  notNumeric = vec_notNumeric,
  verbose = FALSE
)

dim(ques_study)
[1] 440  29

6.1.1 reverse code items

psych::cor.plot(r = cor(ques_study[,str_subset(string = colnames(ques_study), pattern = "^PUR")]))

psych::cor.plot(r = cor(ques_study[,str_subset(string = colnames(ques_study), pattern = "^AIAS")]))

psych::cor.plot(r = cor(ques_study[,str_subset(string = colnames(ques_study), pattern = "^PTTA")]))

setwd("outputs/questionnaire")

saveRDS(ques_study, file = paste0("ques_study", ".rds"))
writexl::write_xlsx(x = ques_study, path = paste0("ques_study", ".xlsx"))

7 prepare data associations

colnames(dat)[sapply(dat, is.list)]
[1] "url"                      "unsucsessfulAssociations"
[3] "sucsessfulAssociations"   "para_defocuscount"       

Function:

# association_list = sucsessfulAssociations
# metadata_df = ques_study
process_association_data <- function(association_list, metadata_df) {
  # Initialize output data frame
  output_df <- data.frame(
    participant_id = character(),
    study_condition = character(),
    gender = character(),
    age = integer(),
    cue = character(),
    response = character(),
    response_position = integer(),
    response_level = integer(),
    timestamp = character(),
    time_diff_sec = numeric(),
    stringsAsFactors = FALSE
  )
  
  # Loop through all participants
  for (i in seq_along(association_list)) {
    
    # Get associations
    assoc <- association_list[[i]]
    assoc_L1 <- assoc[1:5, ]
    assoc_L2 <- assoc[6:nrow(assoc), ]
    
    # Get participant metadata
    meta <- metadata_df[i, ]
    pid <- meta$PROLIFIC_PID
    study_condition <- meta$study_condition
    gender <- meta$sociodemo_gender
    age <- meta$sociodemo_age 

    if(nrow(assoc_L1) != 5){
      cat("assoc_L1 not 5 for:", pid, "\n")
    }
    if(nrow(assoc_L2) != 25){
      cat("assoc_L2 not 25 but", nrow(assoc_L2), "for:", pid, "\n")
    }
    
    # --- Level 1: responses ---
    df_level1 <- data.frame(
      participant_id = pid,
      study_condition = study_condition,
      gender = gender,
      age = age,
      cue = assoc_L1$cue,
      # valence = assoc_L1$valence,
      response = assoc_L1$response,
      response_position = seq_along(assoc_L1$cue),
      response_level = 1,
      timestamp = assoc_L1$timestamp,
      stringsAsFactors = FALSE
    )
    
    # --- Level 2: responses ---
    df_level2 <- data.frame(
 participant_id = pid,
      study_condition = study_condition,
      gender = gender,
      age = age,
      cue = assoc_L2$cue,
      # valence = assoc_L2$valence,
      response = assoc_L2$response,
      response_position = as.numeric(ave(assoc_L2$cue, assoc_L2$cue, FUN = seq_along)), #rep(1:5, times = 5)
      response_level = 2,
      timestamp = assoc_L2$timestamp,
      stringsAsFactors = FALSE
    )
    
    # Combine both levels
    combined <- rbind(df_level1, df_level2)
    
    # Convert timestamp and calculate time difference from first response
    combined$timestamp <- as.POSIXct(combined$timestamp, format = "%Y-%m-%dT%H:%M:%OSZ", tz = "UTC")
    combined$time_diff_sec <- as.numeric(difftime(combined$timestamp, combined$timestamp[1], units = "secs"))
    
    # Append to final output
    output_df <- rbind(output_df, combined)
  }
  
  return(output_df)
}

7.1 study 2 - BMI high

sucsessfulAssociations <- dat$sucsessfulAssociations[!sapply(dat$sucsessfulAssociations, is.null)]

ass_study <- process_association_data(
  association_list = sucsessfulAssociations,
  metadata_df = ques_study
)

dim(ass_study)
[1] 13200    10
DT::datatable(data = ass_study)
Warning in instance$preRenderHook(instance): It seems your data is too big for
client-side DataTables. You may consider server-side processing:
https://rstudio.github.io/DT/server.html
table(ass_study$study_condition)

     AutonomousWeapons          CourtDecision CriticalInfrastructure 
                  2190                   1830                   1350 
            Diagnostic                Grading              Migration 
                  2730                   1560                   2010 
    PersonnelSelection 
                  1530 
tmp <- ass_study$study_condition[ass_study$response_position == 1 & ass_study$response_level == 1]
table(tmp)
tmp
     AutonomousWeapons          CourtDecision CriticalInfrastructure 
                    73                     61                     45 
            Diagnostic                Grading              Migration 
                    91                     52                     67 
    PersonnelSelection 
                    51 
setwd("outputs/associations")

# Save RDS
saveRDS(ass_study, file = "ass_study.rds")

# Save CSV
write.csv(ass_study, file = "ass_study.csv", row.names = FALSE)

# Save XLSX using writexl
writexl::write_xlsx(ass_study, path = "ass_study.xlsx")