Declaración de variables

año <- 2019:2025
pib <- c(1.25, -8.21, 4.82, 3.90, 3.20, 1.40, 0.90)
fbk <- c(-4.91, -17.18, 12.41, 3.50, 3.00, 3.50, 2.50)
consumo <- c(0.8, -11.1, 7.2, 5.2, 3.5, 1.8, 1.5)
inf<- c(3.99, 3.52, 5.58, 7.80, 5.50, 3.80, 3.80)
des<- c(3.50, 4.65, 4.20, 3.30, 3.10, 3.00, 3.00)
export <- c(2.3, -8.9, 18.5, 9.5, 2.6, 1.2, 1.8)
salarios <- c(1.7, -0.5, 2.7, -0.3, 1.2, 0.5, 0.8)
informal<- c(56.2, 56.5, 55.6, 55.1, 55.8, 54.9, 55.0)
gini<- c(0.451, 0.434, 0.426, 0.423, 0.420, 0.419, 0.418)
balcom <- c(-0.10, -0.95, -0.20, 0.10, 0.30, -0.10, 0.60)
int<- c(7.84, 5.62, 4.58, 8.00, 7.50, 7.25, 7.25)
gasto<- c(1.10, 6.02, 8.28, 10.50, 10.80, 11.00, 11.00)

Creación de tabla para analisis de variables

#Creacion de tabla con los datos
macro_mx <- data.frame(
  año,
  pib,
  fbk,
  consumo,
  inf,
  des,
  export,
  salarios,
  informal,
  gini,
  balcom,
  int,
  gasto
)

Correlacion de variables

cor(macro_mx[,-1], use = "pairwise.complete.obs")
##                 pib         fbk    consumo         inf          des      export
## pib       1.0000000  0.92434875  0.9954105  0.60805282 -0.567277500  0.84886789
## fbk       0.9243487  1.00000000  0.9513533  0.49073790 -0.448921109  0.87990231
## consumo   0.9954105  0.95135333  1.0000000  0.60975976 -0.530212188  0.88238563
## inf       0.6080528  0.49073790  0.6097598  1.00000000 -0.136694154  0.63742286
## des      -0.5672775 -0.44892111 -0.5302122 -0.13669415  1.000000000 -0.08251291
## export    0.8488679  0.87990231  0.8823856  0.63742286 -0.082512909  1.00000000
## salarios  0.5831646  0.60533506  0.5878142 -0.03179607  0.006249633  0.65602058
## informal -0.5801268 -0.68267496 -0.6117677 -0.29382761  0.710692100 -0.39601788
## gini     -0.2984826 -0.51505372 -0.3383709 -0.26641250  0.423727941 -0.19368384
## balcom    0.7006099  0.62909684  0.6860184  0.26048767 -0.858435601  0.35079561
## int       0.2351729 -0.05051713  0.1677934  0.17793408 -0.790341353 -0.23841947
## gasto     0.3290977  0.51256446  0.3630936  0.33805718 -0.472523992  0.19515711
##              salarios    informal        gini     balcom         int
## pib       0.583164583 -0.58012676 -0.29848260  0.7006099  0.23517289
## fbk       0.605335065 -0.68267496 -0.51505372  0.6290968 -0.05051713
## consumo   0.587814215 -0.61176770 -0.33837088  0.6860184  0.16779338
## inf      -0.031796066 -0.29382761 -0.26641250  0.2604877  0.17793408
## des       0.006249633  0.71069210  0.42372794 -0.8584356 -0.79034135
## export    0.656020580 -0.39601788 -0.19368384  0.3507956 -0.23841947
## salarios  1.000000000  0.05206584  0.18222450  0.2551050 -0.34542088
## informal  0.052065836  1.00000000  0.73613962 -0.6663025 -0.31190401
## gini      0.182224500  0.73613962  1.00000000 -0.4626328  0.01603595
## balcom    0.255104951 -0.66630247 -0.46263282  1.0000000  0.55177517
## int      -0.345420881 -0.31190401  0.01603595  0.5517752  1.00000000
## gasto    -0.233492284 -0.75818715 -0.99364311  0.4862418  0.07162353
##                gasto
## pib       0.32909768
## fbk       0.51256446
## consumo   0.36309363
## inf       0.33805718
## des      -0.47252399
## export    0.19515711
## salarios -0.23349228
## informal -0.75818715
## gini     -0.99364311
## balcom    0.48624184
## int       0.07162353
## gasto     1.00000000
# Seleccionamos solo las variables numéricas (sin el año)
vars_cor <- macro_mx[ , -1]

# Matriz de correlaciones de Pearson
cor_mat <- cor(vars_cor, use = "pairwise.complete.obs", method = "pearson")

Matriz de correlaciones

library(corrplot)
## corrplot 0.95 loaded
library(GGally)
## Cargando paquete requerido: ggplot2
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
ggpairs(vars_cor, lower = list(continuous = "smooth"), 
        diag = list(continuous = "bar"), axisLabels = "none")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

Grafo de correlaciones

library(qgraph)

vars_cor <- macro_mx[, -1]
cor_mat  <- cor(vars_cor, use = "pairwise.complete.obs")
qgraph(
  cor_mat,
  layout = "spring",
  minimum = 0.3,         # mostrar correlaciones mayores a 0.3
  edge.color = "black",
  labels = colnames(vars_cor),
  color = "white",
  vsize = 7
)