knitr::opts_chunk$set(echo = TRUE)

pacman::p_load(tidyverse, corrplot)

Load data

Average Patch Area

Merge by Event_ID

Calculate summary statistics

summary_stats <- landscape_data %>%
  summarise(across(where(is.numeric), list(
    mean = ~ mean(. , na.rm = TRUE),
    median = ~ median(. , na.rm = TRUE),
    sd = ~ sd(. , na.rm = TRUE),
    min = ~ min(. , na.rm = TRUE),
    max = ~ max(. , na.rm = TRUE)
  )))

print(summary_stats)
##    pdsi_mean pdsi_median  pdsi_sd  pdsi_min pdsi_max spei14d_mean
## 1 -0.3599167   0.2688552 2.681008 -5.899099 5.863457    0.2037359
##   spei14d_median spei14d_sd spei14d_min spei14d_max spei180d_mean
## 1      0.3205397  0.9283891       -2.09        2.09     -0.125025
##   spei180d_median spei180d_sd spei180d_min spei180d_max spei1y_mean
## 1      -0.1254383   0.8477341        -2.09         2.09  -0.1789367
##   spei1y_median spei1y_sd spei1y_min spei1y_max spei270d_mean spei270d_median
## 1   -0.02575891  1.108422      -2.09       2.09    -0.1684722      -0.1183271
##   spei270d_sd spei270d_min spei270d_max spei2y_mean spei2y_median spei2y_sd
## 1   0.9708147        -2.09         2.09  0.06857145     0.3255986  1.220175
##   spei2y_min spei2y_max spei30d_mean spei30d_median spei30d_sd spei30d_min
## 1      -2.09       2.09     0.260008      0.1695088  0.9048348   -1.790708
##   spei30d_max spei5y_mean spei5y_median spei5y_sd spei5y_min spei5y_max
## 1        2.09  -0.2197807    -0.1623561  1.237284      -2.09       2.09
##   spei90d_mean spei90d_median spei90d_sd spei90d_min spei90d_max spi14d_mean
## 1    0.2075299      0.2692704  0.9079209       -2.09        2.09   0.2220055
##   spi14d_median spi14d_sd spi14d_min spi14d_max spi180d_mean spi180d_median
## 1          0.32 0.9190697      -2.09       2.09 -0.002874279     -0.0511599
##   spi180d_sd spi180d_min spi180d_max spi1y_mean spi1y_median spi1y_sd spi1y_min
## 1  0.8455267       -2.09        2.09 0.02964591   0.06660732 1.031893     -2.09
##   spi1y_max spi270d_mean spi270d_median spi270d_sd spi270d_min spi270d_max
## 1      2.09   0.02564172   -0.008201311  0.9353455       -2.09        2.09
##   spi2y_mean spi2y_median spi2y_sd spi2y_min spi2y_max spi30d_mean
## 1  0.4744977    0.7861455 1.308336     -2.09      2.09   0.3034413
##   spi30d_median spi30d_sd spi30d_min spi30d_max spi5y_mean spi5y_median
## 1     0.2384823 0.9068001      -2.09       2.09  0.3804803    0.4821031
##   spi5y_sd spi5y_min spi5y_max spi90d_mean spi90d_median spi90d_sd spi90d_min
## 1 1.321891     -2.09      2.09   0.2486588          0.24 0.9155388      -2.09
##   spi90d_max pr_mea_10b_2a_mean pr_mea_10b_2a_median pr_mea_10b_2a_sd
## 1       2.09           4.732668             3.880046         3.467268
##   pr_mea_10b_2a_min pr_mea_10b_2a_max pr_mea_30b_2a_mean pr_mea_30b_2a_median
## 1                 0          21.31102           4.788989             4.332431
##   pr_mea_30b_2a_sd pr_mea_30b_2a_min pr_mea_30b_2a_max pr_mea_3b_2a_mean
## 1         2.456749         0.5782809           14.1435          3.259559
##   pr_mea_3b_2a_median pr_mea_3b_2a_sd pr_mea_3b_2a_min pr_mea_3b_2a_max
## 1            1.437276         4.43453                0         23.00936
##   pr_mea_60b_2a_mean pr_mea_60b_2a_median pr_mea_60b_2a_sd pr_mea_60b_2a_min
## 1           4.579697             4.288874         1.852612         0.3249302
##   pr_mea_60b_2a_max pr_min_10b_2a_mean pr_min_10b_2a_median pr_min_10b_2a_sd
## 1          10.65813                  0                    0                0
##   pr_min_10b_2a_min pr_min_10b_2a_max pr_min_3b_2a_mean pr_min_3b_2a_median
## 1                 0                 0      0.0001098136                   0
##   pr_min_3b_2a_sd pr_min_3b_2a_min pr_min_3b_2a_max pr_max_10b_2a_mean
## 1     0.002547107                0        0.0590797           34.82171
##   pr_max_10b_2a_median pr_max_10b_2a_sd pr_max_10b_2a_min pr_max_10b_2a_max
## 1             29.59049         26.76302                 0          239.0739
##   pr_max_3b_2a_mean pr_max_3b_2a_median pr_max_3b_2a_sd pr_max_3b_2a_min
## 1          15.13923            6.368025        20.09473                0
##   pr_max_3b_2a_max rmax_mea_10b_2a_mean rmax_mea_10b_2a_median
## 1         119.9697             88.23523               88.80728
##   rmax_mea_10b_2a_sd rmax_mea_10b_2a_min rmax_mea_10b_2a_max
## 1            6.12554            68.10906                 100
##   rmax_mea_30b_2a_mean rmax_mea_30b_2a_median rmax_mea_30b_2a_sd
## 1             88.58769                88.6224           5.220087
##   rmax_mea_30b_2a_min rmax_mea_30b_2a_max rmax_mea_3b_2a_mean
## 1            70.07817                 100            87.77636
##   rmax_mea_3b_2a_median rmax_mea_3b_2a_sd rmax_mea_3b_2a_min rmax_mea_3b_2a_max
## 1              88.52968          7.236055           65.54641                100
##   rmax_mea_60b_2a_mean rmax_mea_60b_2a_median rmax_mea_60b_2a_sd
## 1             88.90707               89.05737           4.757408
##   rmax_mea_60b_2a_min rmax_mea_60b_2a_max rmax_min_10b_2a_mean
## 1            74.61429                 100             69.96705
##   rmax_min_10b_2a_median rmax_min_10b_2a_sd rmax_min_10b_2a_min
## 1               71.47769           12.34934            29.47213
##   rmax_min_10b_2a_max rmax_min_3b_2a_mean rmax_min_3b_2a_median
## 1                 100            74.88419              75.49963
##   rmax_min_3b_2a_sd rmax_min_3b_2a_min rmax_min_3b_2a_max rmax_max_10b_2a_mean
## 1          12.26437            35.1689                100             99.70517
##   rmax_max_10b_2a_median rmax_max_10b_2a_sd rmax_max_10b_2a_min
## 1                    100           1.454214            85.56358
##   rmax_max_10b_2a_max rmax_max_3b_2a_mean rmax_max_3b_2a_median
## 1                 100              98.701                   100
##   rmax_max_3b_2a_sd rmax_max_3b_2a_min rmax_max_3b_2a_max rmin_mea_10b_2a_mean
## 1          3.791596           76.61992                100             42.28933
##   rmin_mea_10b_2a_median rmin_mea_10b_2a_sd rmin_mea_10b_2a_min
## 1               42.20062           5.577738            27.42905
##   rmin_mea_10b_2a_max rmin_mea_30b_2a_mean rmin_mea_30b_2a_median
## 1            56.95044             43.40041               43.56962
##   rmin_mea_30b_2a_sd rmin_mea_30b_2a_min rmin_mea_30b_2a_max
## 1           4.509959            29.13995             55.1321
##   rmin_mea_3b_2a_mean rmin_mea_3b_2a_median rmin_mea_3b_2a_sd
## 1            39.77063              39.53829          6.471502
##   rmin_mea_3b_2a_min rmin_mea_3b_2a_max rmin_mea_60b_2a_mean
## 1           23.86665            58.7238             43.54926
##   rmin_mea_60b_2a_median rmin_mea_60b_2a_sd rmin_mea_60b_2a_min
## 1               43.61111           4.270308            29.24137
##   rmin_mea_60b_2a_max rmin_min_10b_2a_mean rmin_min_10b_2a_median
## 1            55.66244             23.74194                22.9643
##   rmin_min_10b_2a_sd rmin_min_10b_2a_min rmin_min_10b_2a_max
## 1           5.937247            10.26206            51.68152
##   rmin_min_3b_2a_mean rmin_min_3b_2a_median rmin_min_3b_2a_sd
## 1            26.59307              25.27299          7.206319
##   rmin_min_3b_2a_min rmin_min_3b_2a_max sph_mea_10b_2a_mean
## 1           11.95675           52.28375         0.007653576
##   sph_mea_10b_2a_median sph_mea_10b_2a_sd sph_mea_10b_2a_min sph_mea_10b_2a_max
## 1           0.006752732        0.00293852        0.001967333         0.01814355
##   sph_mea_30b_2a_mean sph_mea_30b_2a_median sph_mea_30b_2a_sd
## 1         0.007440227           0.006574975       0.002801613
##   sph_mea_30b_2a_min sph_mea_30b_2a_max sph_mea_3b_2a_mean sph_mea_3b_2a_median
## 1        0.002823028         0.01764952        0.007580031          0.006768285
##   sph_mea_3b_2a_sd sph_mea_3b_2a_min sph_mea_3b_2a_max sph_mea_60b_2a_mean
## 1      0.003122416       0.001705448        0.01827759         0.007227465
##   sph_mea_60b_2a_median sph_mea_60b_2a_sd sph_mea_60b_2a_min sph_mea_60b_2a_max
## 1           0.006531673       0.002736804        0.003229654         0.01726668
##   sph_min_10b_2a_mean sph_min_10b_2a_median sph_min_10b_2a_sd
## 1         0.004301202            0.00332981       0.003054488
##   sph_min_10b_2a_min sph_min_10b_2a_max sph_min_3b_2a_mean sph_min_3b_2a_median
## 1       0.0007070945         0.01705508        0.005250919          0.003911634
##   sph_min_3b_2a_sd sph_min_3b_2a_min sph_min_3b_2a_max sph_max_10b_2a_mean
## 1      0.003445389      0.0007070945        0.01794008          0.01112127
##   sph_max_10b_2a_median sph_max_10b_2a_sd sph_max_10b_2a_min sph_max_10b_2a_max
## 1            0.01081909       0.002640614        0.003247659         0.01995011
##   sph_max_3b_2a_mean sph_max_3b_2a_median sph_max_3b_2a_sd sph_max_3b_2a_min
## 1         0.01014943          0.009906003      0.002862549       0.002847102
##   sph_max_3b_2a_max tmmn_mea_10b_2a_mean tmmn_mea_10b_2a_median
## 1        0.01924896             281.6689               280.4419
##   tmmn_mea_10b_2a_sd tmmn_mea_10b_2a_min tmmn_mea_10b_2a_max
## 1            5.56779            264.7726            296.1371
##   tmmn_mea_30b_2a_mean tmmn_mea_30b_2a_median tmmn_mea_30b_2a_sd
## 1             281.0072               279.5928           5.355219
##   tmmn_mea_30b_2a_min tmmn_mea_30b_2a_max tmmn_mea_3b_2a_mean
## 1            267.6162            295.7887            281.6726
##   tmmn_mea_3b_2a_median tmmn_mea_3b_2a_sd tmmn_mea_3b_2a_min tmmn_mea_3b_2a_max
## 1              280.7001          6.127101           262.8201           296.3324
##   tmmn_mea_60b_2a_mean tmmn_mea_60b_2a_median tmmn_mea_60b_2a_sd
## 1             280.3463               279.2794           5.318464
##   tmmn_mea_60b_2a_min tmmn_mea_60b_2a_max tmmn_min_10b_2a_mean
## 1            268.6414            295.4697             275.0812
##   tmmn_min_10b_2a_median tmmn_min_10b_2a_sd tmmn_min_10b_2a_min
## 1               273.2266           6.637331            258.3731
##   tmmn_min_10b_2a_max tmmn_min_3b_2a_mean tmmn_min_3b_2a_median
## 1            294.8076            277.1857              275.3799
##   tmmn_min_3b_2a_sd tmmn_min_3b_2a_min tmmn_min_3b_2a_max tmmn_max_10b_2a_mean
## 1          7.141209           258.5395             295.48              289.173
##   tmmn_max_10b_2a_median tmmn_max_10b_2a_sd tmmn_max_10b_2a_min
## 1                289.369           4.329191            269.7141
##   tmmn_max_10b_2a_max tmmn_max_3b_2a_mean tmmn_max_3b_2a_median
## 1            299.0814            287.1116              287.5672
##   tmmn_max_3b_2a_sd tmmn_max_3b_2a_min tmmn_max_3b_2a_max tmmx_mea_10b_2a_mean
## 1          5.255876           266.7256           298.3554             294.9858
##   tmmx_mea_10b_2a_median tmmx_mea_10b_2a_sd tmmx_mea_10b_2a_min
## 1               294.0294           5.278401            278.5314
##   tmmx_mea_10b_2a_max tmmx_mea_30b_2a_mean tmmx_mea_30b_2a_median
## 1            308.8758             294.0947               292.8225
##   tmmx_mea_30b_2a_sd tmmx_mea_30b_2a_min tmmx_mea_30b_2a_max
## 1           5.225253            279.9703            307.4257
##   tmmx_mea_3b_2a_mean tmmx_mea_3b_2a_median tmmx_mea_3b_2a_sd
## 1            295.5929              294.9098           5.65091
##   tmmx_mea_3b_2a_min tmmx_mea_3b_2a_max tmmx_mea_60b_2a_mean
## 1           276.3737           308.3988             293.4551
##   tmmx_mea_60b_2a_median tmmx_mea_60b_2a_sd tmmx_mea_60b_2a_min
## 1               292.2049           5.174505            282.4822
##   tmmx_mea_60b_2a_max tmmx_max_10b_2a_mean tmmx_max_10b_2a_median
## 1            308.1923             300.4984               300.3807
##   tmmx_max_10b_2a_sd tmmx_max_10b_2a_min tmmx_max_10b_2a_max
## 1           3.829843             289.122            312.1503
##   tmmx_max_3b_2a_mean tmmx_max_3b_2a_median tmmx_max_3b_2a_sd
## 1            299.6449              299.6801          4.327047
##   tmmx_max_3b_2a_min tmmx_max_3b_2a_max vs_mea_10b_2a_mean vs_mea_10b_2a_median
## 1           285.2613           310.6641           4.079252             4.084951
##   vs_mea_10b_2a_sd vs_mea_10b_2a_min vs_mea_10b_2a_max vs_mea_30b_2a_mean
## 1        0.7027316          2.265388           6.67108           4.120741
##   vs_mea_30b_2a_median vs_mea_30b_2a_sd vs_mea_30b_2a_min vs_mea_30b_2a_max
## 1             4.114615        0.5716684          2.728416          6.112424
##   vs_mea_3b_2a_mean vs_mea_3b_2a_median vs_mea_3b_2a_sd vs_mea_3b_2a_min
## 1          4.040674            4.013902       0.8934823         1.951263
##   vs_mea_3b_2a_max vs_mea_60b_2a_mean vs_mea_60b_2a_median vs_mea_60b_2a_sd
## 1         7.387479           4.123269             4.090839        0.5169873
##   vs_mea_60b_2a_min vs_mea_60b_2a_max vs_min_10b_2a_mean vs_min_10b_2a_median
## 1          2.923642          6.137538           2.118568             2.081612
##   vs_min_10b_2a_sd vs_min_10b_2a_min vs_min_10b_2a_max vs_min_3b_2a_mean
## 1        0.5642987         0.8274577           4.46375          2.585341
##   vs_min_3b_2a_median vs_min_3b_2a_sd vs_min_3b_2a_min vs_min_3b_2a_max
## 1             2.49724       0.7618914        0.9838564         5.969936
##   vs_max_10b_2a_mean vs_max_10b_2a_median vs_max_10b_2a_sd vs_max_10b_2a_min
## 1           6.711807             6.685305         1.296436               3.4
##   vs_max_10b_2a_max vs_max_3b_2a_mean vs_max_3b_2a_median vs_max_3b_2a_sd
## 1          10.69493          5.828259            5.759595        1.455649
##   vs_max_3b_2a_min vs_max_3b_2a_max vpd_mea_10b_2a_mean vpd_mea_10b_2a_median
## 1              2.4         9.993147           0.7876164              0.726543
##   vpd_mea_10b_2a_sd vpd_mea_10b_2a_min vpd_mea_10b_2a_max vpd_mea_30b_2a_mean
## 1         0.2667036          0.3322241           2.032805            0.735588
##   vpd_mea_30b_2a_median vpd_mea_30b_2a_sd vpd_mea_30b_2a_min vpd_mea_30b_2a_max
## 1             0.6566733         0.2485392          0.3027342           1.762618
##   vpd_mea_3b_2a_mean vpd_mea_3b_2a_median vpd_mea_3b_2a_sd vpd_mea_3b_2a_min
## 1          0.8492466            0.7900907        0.2980896         0.2893181
##   vpd_mea_3b_2a_max vpd_mea_60b_2a_mean vpd_mea_60b_2a_median vpd_mea_60b_2a_sd
## 1          1.957924           0.7044305             0.6207395         0.2406388
##   vpd_mea_60b_2a_min vpd_mea_60b_2a_max vpd_min_10b_2a_mean
## 1          0.3162898           1.679713           0.2485974
##   vpd_min_10b_2a_median vpd_min_10b_2a_sd vpd_min_10b_2a_min vpd_min_10b_2a_max
## 1             0.1805203         0.2747079                  0           1.184225
##   vpd_min_3b_2a_mean vpd_min_3b_2a_median vpd_min_3b_2a_sd vpd_min_3b_2a_min
## 1          0.4543642            0.3928609        0.3404282                 0
##   vpd_min_3b_2a_max vpd_max_10b_2a_mean vpd_max_10b_2a_median vpd_max_10b_2a_sd
## 1          1.796383            1.223061              1.194304         0.3224995
##   vpd_max_10b_2a_min vpd_max_10b_2a_max vpd_max_3b_2a_mean vpd_max_3b_2a_median
## 1           0.669692           2.751387           1.159002             1.137252
##   vpd_max_3b_2a_sd vpd_max_3b_2a_min vpd_max_3b_2a_max fm100_mea_10b_2a_mean
## 1        0.3264871         0.4677894          2.288866               16.2603
##   fm100_mea_10b_2a_median fm100_mea_10b_2a_sd fm100_mea_10b_2a_min
## 1                16.35414            1.970553             9.769252
##   fm100_mea_10b_2a_max fm100_mea_30b_2a_mean fm100_mea_30b_2a_median
## 1             21.22487              16.68759                16.63842
##   fm100_mea_30b_2a_sd fm100_mea_30b_2a_min fm100_mea_30b_2a_max
## 1            1.578056             11.15595             20.23679
##   fm100_mea_3b_2a_mean fm100_mea_3b_2a_median fm100_mea_3b_2a_sd
## 1             15.57212               15.58793            2.19139
##   fm100_mea_3b_2a_min fm100_mea_3b_2a_max fm100_mea_60b_2a_mean
## 1            8.620042            21.70424              16.89758
##   fm100_mea_60b_2a_median fm100_mea_60b_2a_sd fm100_mea_60b_2a_min
## 1                16.88815             1.40697             12.73033
##   fm100_mea_60b_2a_max fm100_min_10b_2a_mean fm100_min_10b_2a_median
## 1             19.88094              12.84751                12.83039
##   fm100_min_10b_2a_sd fm100_min_10b_2a_min fm100_min_10b_2a_max
## 1            2.159424             7.379346             18.88703
##   fm100_min_3b_2a_mean fm100_min_3b_2a_median fm100_min_3b_2a_sd
## 1             13.58032               13.51758           2.399672
##   fm100_min_3b_2a_min fm100_min_3b_2a_max fm100_max_10b_2a_mean
## 1            7.379346            19.54961              20.03896
##   fm100_max_10b_2a_median fm100_max_10b_2a_sd fm100_max_10b_2a_min
## 1                19.83793             2.80031             12.03396
##   fm100_max_10b_2a_max fm100_max_3b_2a_mean fm100_max_3b_2a_median
## 1             29.81515             17.98424               18.07479
##   fm100_max_3b_2a_sd fm100_max_3b_2a_min fm100_max_3b_2a_max
## 1           2.531316            9.832138            25.52204
##   fm1000_mea_10b_2a_mean fm1000_mea_10b_2a_median fm1000_mea_10b_2a_sd
## 1               19.28703                 19.22302             2.082588
##   fm1000_mea_10b_2a_min fm1000_mea_10b_2a_max fm1000_mea_30b_2a_mean
## 1              12.79748              25.85296               19.36555
##   fm1000_mea_30b_2a_median fm1000_mea_30b_2a_sd fm1000_mea_30b_2a_min
## 1                 19.29167             1.897126              13.81275
##   fm1000_mea_30b_2a_max fm1000_mea_3b_2a_mean fm1000_mea_3b_2a_median
## 1              25.21617              19.05514                19.08296
##   fm1000_mea_3b_2a_sd fm1000_mea_3b_2a_min fm1000_mea_3b_2a_max
## 1            2.072723             12.07045             25.32849
##   fm1000_mea_60b_2a_mean fm1000_mea_60b_2a_median fm1000_mea_60b_2a_sd
## 1               19.42119                 19.39396             1.736419
##   fm1000_mea_60b_2a_min fm1000_mea_60b_2a_max fm1000_min_10b_2a_mean
## 1              14.82581              24.31303               18.12215
##   fm1000_min_10b_2a_median fm1000_min_10b_2a_sd fm1000_min_10b_2a_min
## 1                 18.11747             1.909311              11.72913
##   fm1000_min_10b_2a_max fm1000_min_3b_2a_mean fm1000_min_3b_2a_median
## 1              23.68843              18.43912                18.48773
##   fm1000_min_3b_2a_sd fm1000_min_3b_2a_min fm1000_min_3b_2a_max
## 1            2.009027             11.72913             24.42028
##   fm1000_max_10b_2a_mean fm1000_max_10b_2a_median fm1000_max_10b_2a_sd
## 1               20.36082                 20.16348             2.272142
##   fm1000_max_10b_2a_min fm1000_max_10b_2a_max fm1000_max_3b_2a_mean
## 1              13.84999              27.93917              19.70381
##   fm1000_max_3b_2a_median fm1000_max_3b_2a_sd fm1000_max_3b_2a_min
## 1                19.71212            2.200708             12.65498
##   fm1000_max_3b_2a_max mean_hydro_dist_m_mean mean_hydro_dist_m_median
## 1             25.94421               232.4729                 164.3632
##   mean_hydro_dist_m_sd mean_hydro_dist_m_min mean_hydro_dist_m_max
## 1             363.5123                     0              4072.445
##   NDVI_pre_15d_mean NDVI_pre_15d_median NDVI_pre_15d_sd NDVI_pre_15d_min
## 1         0.4302939           0.5355763       0.3003415       -0.4611636
##   NDVI_pre_15d_max NDVI_pre_30d_mean NDVI_pre_30d_median NDVI_pre_30d_sd
## 1        0.8426029         0.4200856           0.4895688       0.2632214
##   NDVI_pre_30d_min NDVI_pre_30d_max NDVI_pre_90d_mean NDVI_pre_90d_median
## 1        -0.499292        0.8372057         0.4120643           0.4219792
##   NDVI_pre_90d_sd NDVI_pre_90d_min NDVI_pre_90d_max NDVI_pre_365d_mean
## 1       0.1464083       -0.1465647        0.7117205          0.4442853
##   NDVI_pre_365d_median NDVI_pre_365d_sd NDVI_pre_365d_min NDVI_pre_365d_max
## 1            0.4429133       0.07769519         0.2265425         0.6507905
##   prop_afg_mean prop_afg_median prop_afg_sd prop_afg_min prop_afg_max
## 1      1.180895        1.062644   0.7335937   0.06613699     5.192193
##   prop_pfg_mean prop_pfg_median prop_pfg_sd prop_pfg_min prop_pfg_max
## 1       10.5362        6.782803    9.693333    0.8723725      48.4635
##   prop_ltr_mean prop_ltr_median prop_ltr_sd prop_ltr_min prop_ltr_max
## 1      3.191337        2.731527    1.561306     1.195251     12.98313
##   prop_shr_mean prop_shr_median prop_shr_sd prop_shr_min prop_shr_max
## 1      2.862949         2.41904    1.961696   0.09857416     10.84572
##   prop_tre_mean prop_tre_median prop_tre_sd prop_tre_min prop_tre_max
## 1      73.71314        79.15552    17.08212     18.01823     95.61133
##   prop_bgr_mean prop_bgr_median prop_bgr_sd prop_bgr_min prop_bgr_max
## 1     0.6841915        0.370909   0.9497217   0.01537329     8.326838
##   road_dens_km_km2_mean road_dens_km_km2_median road_dens_km_km2_sd
## 1              1.314771                1.221218           0.7009972
##   road_dens_km_km2_min road_dens_km_km2_max nearest_road_m_mean
## 1                    0             4.410981            24.10246
##   nearest_road_m_median nearest_road_m_sd nearest_road_m_min nearest_road_m_max
## 1                     0          298.9739                  0           6032.637
##   awhc_median_mean awhc_median_median awhc_median_sd awhc_median_min
## 1         23.52599            24.5106         6.7101        8.889027
##   awhc_median_max awhc_p25_mean awhc_p25_median awhc_p25_sd awhc_p25_min
## 1        41.77842      21.92767        22.55109    6.478802     7.372674
##   awhc_p25_max awhc_p50_mean awhc_p50_median awhc_p50_sd awhc_p50_min
## 1     41.34819      23.52599         24.5106      6.7101     8.889027
##   awhc_p50_max awhc_p75_mean awhc_p75_median awhc_p75_sd awhc_p75_min
## 1     41.77842      25.34057        26.61167    7.367642     9.311114
##   awhc_p75_max soil_order_1_mean soil_order_1_median soil_order_1_sd
## 1     50.64624          7.973978                  10        3.247585
##   soil_order_1_min soil_order_1_max soil_order_2_mean soil_order_2_median
## 1                1               11          6.048701                   6
##   soil_order_2_sd soil_order_2_min soil_order_2_max soil_order_3_mean
## 1        3.517416                1               11          7.054422
##   soil_order_3_median soil_order_3_sd soil_order_3_min soil_order_3_max
## 1                   7        2.849615                1               11
##   soil_order_4_mean soil_order_4_median soil_order_4_sd soil_order_4_min
## 1          6.634615                   7        2.679105                1
##   soil_order_4_max soil_order_5_mean soil_order_5_median soil_order_5_sd
## 1               10          6.285714                   7        2.399634
##   soil_order_5_min soil_order_5_max soil_order_6_mean soil_order_6_median
## 1                1               10              4.75                   4
##   soil_order_6_sd soil_order_6_min soil_order_6_max soil_prop_1_mean
## 1             4.5                1               10         0.852411
##   soil_prop_1_median soil_prop_1_sd soil_prop_1_min soil_prop_1_max
## 1          0.9706775      0.1867124       0.2794779               1
##   soil_prop_2_mean soil_prop_2_median soil_prop_2_sd soil_prop_2_min
## 1        0.2069069          0.2031078      0.1403831     0.000338922
##   soil_prop_2_max soil_prop_3_mean soil_prop_3_median soil_prop_3_sd
## 1       0.4931074       0.08290437         0.07710038     0.06716546
##   soil_prop_3_min soil_prop_3_max soil_prop_4_mean soil_prop_4_median
## 1        4.36e-05       0.2731617       0.05687486         0.04071773
##   soil_prop_4_sd soil_prop_4_min soil_prop_4_max soil_prop_5_mean
## 1     0.04984649        6.19e-05       0.1937328       0.03374479
##   soil_prop_5_median soil_prop_5_sd soil_prop_5_min soil_prop_5_max
## 1         0.01749306      0.0363652        6.27e-05       0.1109726
##   soil_prop_6_mean soil_prop_6_median soil_prop_6_sd soil_prop_6_min
## 1        0.0146803        0.004581416     0.02324717     0.000334924
##   soil_prop_6_max mean_TRI_mean mean_TRI_median mean_TRI_sd mean_TRI_min
## 1      0.04922343      1.718281         1.43975   0.7440539     0.711785
##   mean_TRI_max mean_aspect_mean mean_aspect_median mean_aspect_sd
## 1      5.18048         163.7689           164.1521       13.16548
##   mean_aspect_min mean_aspect_max mean_elevation_mean mean_elevation_median
## 1         53.5444        204.6582            80.51354               66.6482
##   mean_elevation_sd mean_elevation_min mean_elevation_max mean_slope_mean
## 1          75.98927           6.546088           403.9803        4.115614
##   mean_slope_median mean_slope_sd mean_slope_min mean_slope_max
## 1          3.481571      1.771083        1.60971       12.89983

Histograms

numeric_vars <- names(landscape_data)[sapply(landscape_data, is.numeric)]

for (v in numeric_vars) {
  hist(landscape_data[[v]],
       main = paste("Histogram of", v),
       xlab = v)
}

Soil Data Analysis

Remove columns

Correlation

soil_numeric_data <- soil[sapply(soil, is.numeric)]

soil_cor_mat <- cor(soil_numeric_data, use = "pairwise.complete.obs")

corrplot(soil_cor_mat, method = "color", tl.cex = 0.6)

threshold <- 0.70

soil_high_corr <- which(abs(soil_cor_mat) > threshold, arr.ind = TRUE)

soil_high_corr_pairs <- soil_high_corr[soil_high_corr[,1] < soil_high_corr[,2], ]

soil_flagged <- data.frame(
  Var1 = rownames(soil_cor_mat)[soil_high_corr_pairs[,1]],
  Var2 = colnames(soil_cor_mat)[soil_high_corr_pairs[,2]],
  Correlation = soil_cor_mat[soil_high_corr_pairs]
)

# Sort by absolute correlation
soil_flagged <- soil_flagged[order(abs(soil_flagged$Correlation), decreasing = TRUE), ]
soil_flagged
## [1] Var1        Var2        Correlation
## <0 rows> (or 0-length row.names)

Topographic Data Analysis

Remove columns

topo <- topo %>%
  select(-c(mean_slope))

Correlation

topo_numeric_data <- topo[sapply(topo, is.numeric)]

topo_cor_mat <- cor(topo_numeric_data, use = "pairwise.complete.obs")

corrplot(topo_cor_mat, method = "color", tl.cex = 0.6)

threshold <- 0.70

topo_high_corr <- which(abs(topo_cor_mat) > threshold, arr.ind = TRUE)

topo_high_corr_pairs <- topo_high_corr[topo_high_corr[,1] < topo_high_corr[,2], ]

topo_flagged <- data.frame(
  Var1 = rownames(topo_cor_mat)[topo_high_corr_pairs[,1]],
  Var2 = colnames(topo_cor_mat)[topo_high_corr_pairs[,2]],
  Correlation = topo_cor_mat[topo_high_corr_pairs]
)

# Sort by absolute correlation
topo_flagged <- topo_flagged[order(abs(topo_flagged$Correlation), decreasing = TRUE), ]
topo_flagged
## [1] Var1        Var2        Correlation
## <0 rows> (or 0-length row.names)

Roads Data Analysis

Correlation

roads_numeric_data <- roads[sapply(roads, is.numeric)]

roads_cor_mat <- cor(roads_numeric_data, use = "pairwise.complete.obs")

corrplot(roads_cor_mat, method = "color", tl.cex = 0.6)

threshold <- 0.70

roads_high_corr <- which(abs(roads_cor_mat) > threshold, arr.ind = TRUE)
roads_high_corr_pairs <- roads_high_corr[roads_high_corr[,1] < roads_high_corr[,2], ]

roads_flagged <- data.frame(
  Var1 = rownames(roads_cor_mat)[roads_high_corr_pairs[,1]],
  Var2 = colnames(roads_cor_mat)[roads_high_corr_pairs[,2]],
  Correlation = roads_cor_mat[roads_high_corr_pairs]
)

# Sort by absolute correlation
roads_flagged <- roads_flagged[order(abs(roads_flagged$Correlation), decreasing = TRUE), ]
roads_flagged
## [1] Var1        Var2        Correlation
## <0 rows> (or 0-length row.names)

Weather Data Analysis

Correlation

weather_numeric_data <- weather[sapply(weather, is.numeric)]

weather_cor_mat <- cor(weather_numeric_data, use = "pairwise.complete.obs")
## Warning in cor(weather_numeric_data, use = "pairwise.complete.obs"): the
## standard deviation is zero
corrplot(weather_cor_mat, method = "color", tl.cex = 0.6)

threshold <- 0.70

weather_high_corr <- which(abs(weather_cor_mat) > threshold, arr.ind = TRUE)
weather_high_corr_pairs <- weather_high_corr[weather_high_corr[,1] < weather_high_corr[,2], ]

weather_flagged <- data.frame(
  Var1 = rownames(weather_cor_mat)[weather_high_corr_pairs[,1]],
  Var2 = colnames(weather_cor_mat)[weather_high_corr_pairs[,2]],
  Correlation = weather_cor_mat[weather_high_corr_pairs]
)

# Sort by absolute correlation
weather_flagged <- weather_flagged[order(abs(weather_flagged$Correlation), decreasing = TRUE), ]
weather_flagged
##                  Var1              Var2 Correlation
## 373  fm1000_mea_3b_2a  fm1000_min_3b_2a   0.9894293
## 391  fm1000_mea_3b_2a  fm1000_max_3b_2a   0.9875930
## 379 fm1000_mea_10b_2a fm1000_max_10b_2a   0.9829320
## 363 fm1000_mea_10b_2a fm1000_min_10b_2a   0.9719438
## 78     sph_mea_60b_2a   tmmn_mea_60b_2a   0.9690158
## 58     sph_mea_30b_2a   tmmn_mea_30b_2a   0.9664825
## 192   tmmn_mea_60b_2a   tmmx_mea_60b_2a   0.9662954
## 156   tmmn_mea_30b_2a   tmmx_mea_30b_2a   0.9646534
## 389 fm1000_mea_10b_2a  fm1000_max_3b_2a   0.9641997
## 352 fm1000_mea_10b_2a  fm1000_mea_3b_2a   0.9635573
## 394  fm1000_min_3b_2a  fm1000_max_3b_2a   0.9633409
## 196   tmmx_mea_30b_2a   tmmx_mea_60b_2a   0.9603508
## 306    vpd_mea_30b_2a    vpd_mea_60b_2a   0.9600977
## 23     sph_mea_30b_2a    sph_mea_60b_2a   0.9597833
## 107    tmmn_mea_3b_2a    tmmn_min_3b_2a   0.9596759
## 84    tmmn_mea_30b_2a   tmmn_mea_60b_2a   0.9585122
## 19     sph_mea_10b_2a    sph_mea_30b_2a   0.9569295
## 49     sph_mea_10b_2a   tmmn_mea_10b_2a   0.9569245
## 33      sph_mea_3b_2a     sph_min_3b_2a   0.9561220
## 375 fm1000_min_10b_2a  fm1000_min_3b_2a   0.9557129
## 371 fm1000_mea_10b_2a  fm1000_min_3b_2a   0.9533064
## 139   tmmn_mea_10b_2a   tmmx_mea_10b_2a   0.9530429
## 357 fm1000_mea_30b_2a fm1000_mea_60b_2a   0.9525601
## 4        pr_mea_3b_2a      pr_max_3b_2a   0.9513430
## 365  fm1000_mea_3b_2a fm1000_min_10b_2a   0.9501264
## 68      sph_mea_3b_2a    tmmn_mea_3b_2a   0.9474363
## 76     sph_mea_30b_2a   tmmn_mea_60b_2a   0.9468704
## 395 fm1000_max_10b_2a  fm1000_max_3b_2a   0.9467734
## 233    tmmx_mea_3b_2a    tmmx_max_3b_2a   0.9458941
## 173    tmmn_mea_3b_2a    tmmx_mea_3b_2a   0.9451515
## 65    tmmn_mea_10b_2a   tmmn_mea_30b_2a   0.9448676
## 20     sph_mea_10b_2a     sph_mea_3b_2a   0.9444910
## 163   tmmx_mea_10b_2a   tmmx_mea_30b_2a   0.9439311
## 94    tmmn_mea_10b_2a   tmmn_min_10b_2a   0.9432278
## 214   tmmx_mea_10b_2a   tmmx_max_10b_2a   0.9407082
## 86     sph_mea_10b_2a   tmmn_min_10b_2a   0.9398296
## 26     sph_mea_10b_2a    sph_min_10b_2a   0.9396314
## 235   tmmx_max_10b_2a    tmmx_max_3b_2a   0.9393962
## 184    sph_mea_60b_2a   tmmx_mea_60b_2a   0.9388149
## 57     sph_mea_10b_2a   tmmn_mea_30b_2a   0.9382470
## 90     sph_min_10b_2a   tmmn_min_10b_2a   0.9374985
## 381  fm1000_mea_3b_2a fm1000_max_10b_2a   0.9352116
## 102     sph_min_3b_2a    tmmn_min_3b_2a   0.9340989
## 393 fm1000_min_10b_2a  fm1000_max_3b_2a   0.9339807
## 73    tmmn_mea_10b_2a    tmmn_mea_3b_2a   0.9335877
## 179   tmmx_mea_10b_2a    tmmx_mea_3b_2a   0.9326106
## 383 fm1000_min_10b_2a fm1000_max_10b_2a   0.9317723
## 330    vpd_max_10b_2a     vpd_max_3b_2a   0.9317461
## 190   tmmn_mea_30b_2a   tmmx_mea_60b_2a   0.9316269
## 148    sph_mea_30b_2a   tmmx_mea_30b_2a   0.9309797
## 360  fm100_mea_30b_2a fm1000_min_10b_2a   0.9300733
## 100     sph_mea_3b_2a    tmmn_min_3b_2a   0.9291383
## 36     sph_mea_10b_2a    sph_max_10b_2a   0.9252910
## 158   tmmn_mea_60b_2a   tmmx_mea_30b_2a   0.9239583
## 302   tmmx_mea_60b_2a    vpd_mea_60b_2a   0.9238437
## 239     vs_mea_30b_2a     vs_mea_60b_2a   0.9234509
## 44      sph_mea_3b_2a     sph_max_3b_2a   0.9227199
## 270   tmmx_mea_30b_2a    vpd_mea_30b_2a   0.9212339
## 275    vpd_mea_10b_2a    vpd_mea_30b_2a   0.9211954
## 182    sph_mea_30b_2a   tmmx_mea_60b_2a   0.9207762
## 384  fm1000_min_3b_2a fm1000_max_10b_2a   0.9202933
## 51      sph_mea_3b_2a   tmmn_mea_10b_2a   0.9199737
## 300   tmmx_mea_30b_2a    vpd_mea_60b_2a   0.9194764
## 342  fm100_mea_30b_2a fm1000_mea_10b_2a   0.9191197
## 176    tmmn_min_3b_2a    tmmx_mea_3b_2a   0.9173452
## 155   tmmn_mea_10b_2a   tmmx_mea_30b_2a   0.9172704
## 63     sph_max_10b_2a   tmmn_mea_30b_2a   0.9162646
## 329     vpd_mea_3b_2a     vpd_max_3b_2a   0.9159700
## 37     sph_mea_30b_2a    sph_max_10b_2a   0.9158938
## 347 fm1000_mea_10b_2a fm1000_mea_30b_2a   0.9156861
## 105   tmmn_mea_10b_2a    tmmn_min_3b_2a   0.9156805
## 35     sph_min_10b_2a     sph_min_3b_2a   0.9152757
## 368  fm100_mea_30b_2a  fm1000_min_3b_2a   0.9131906
## 60     sph_mea_60b_2a   tmmn_mea_30b_2a   0.9118933
## 9     rmax_mea_30b_2a   rmax_mea_60b_2a   0.9111825
## 355  fm100_mea_60b_2a fm1000_mea_60b_2a   0.9107708
## 333  fm100_mea_30b_2a  fm100_mea_60b_2a   0.9093508
## 109   tmmn_min_10b_2a    tmmn_min_3b_2a   0.9089397
## 88      sph_mea_3b_2a   tmmn_min_10b_2a   0.9086415
## 147    sph_mea_10b_2a   tmmx_mea_30b_2a   0.9080406
## 349  fm100_mea_30b_2a  fm1000_mea_3b_2a   0.9077918
## 31     sph_mea_10b_2a     sph_min_3b_2a   0.9077118
## 131    sph_mea_10b_2a   tmmx_mea_10b_2a   0.9073875
## 364 fm1000_mea_30b_2a fm1000_min_10b_2a   0.9071070
## 231   tmmx_mea_10b_2a    tmmx_max_3b_2a   0.9066937
## 95    tmmn_mea_30b_2a   tmmn_min_10b_2a   0.9062478
## 216    tmmx_mea_3b_2a   tmmx_max_10b_2a   0.9052978
## 55     sph_max_10b_2a   tmmn_mea_10b_2a   0.9051315
## 140   tmmn_mea_30b_2a   tmmx_mea_10b_2a   0.9051152
## 284    vpd_mea_10b_2a     vpd_mea_3b_2a   0.9049749
## 380 fm1000_mea_30b_2a fm1000_max_10b_2a   0.9049159
## 346  fm100_mea_60b_2a fm1000_mea_30b_2a   0.9049024
## 269   tmmx_mea_10b_2a    vpd_mea_30b_2a   0.9031032
## 143   tmmn_min_10b_2a   tmmx_mea_10b_2a   0.9019048
## 28      sph_mea_3b_2a    sph_min_10b_2a   0.9017672
## 250   tmmx_mea_10b_2a    vpd_mea_10b_2a   0.9002833
## 27     sph_mea_30b_2a    sph_min_10b_2a   0.8999904
## 141    tmmn_mea_3b_2a   tmmx_mea_10b_2a   0.8975320
## 50     sph_mea_30b_2a   tmmn_mea_10b_2a   0.8951168
## 70      sph_min_3b_2a    tmmn_mea_3b_2a   0.8938383
## 206   tmmn_mea_10b_2a   tmmx_max_10b_2a   0.8926984
## 386  fm100_mea_30b_2a  fm1000_max_3b_2a   0.8916617
## 335   fm100_mea_3b_2a   fm100_min_3b_2a   0.8914984
## 166     sph_mea_3b_2a    tmmx_mea_3b_2a   0.8901480
## 171   tmmn_mea_10b_2a    tmmx_mea_3b_2a   0.8890554
## 96     tmmn_mea_3b_2a   tmmn_min_10b_2a   0.8886765
## 48     sph_max_10b_2a     sph_max_3b_2a   0.8886375
## 281    tmmx_mea_3b_2a     vpd_mea_3b_2a   0.8881590
## 87     sph_mea_30b_2a   tmmn_min_10b_2a   0.8880322
## 227    tmmn_mea_3b_2a    tmmx_max_3b_2a   0.8873400
## 144    tmmn_min_3b_2a   tmmx_mea_10b_2a   0.8866730
## 91      sph_min_3b_2a   tmmn_min_10b_2a   0.8866610
## 72      sph_max_3b_2a    tmmn_mea_3b_2a   0.8852183
## 320    vpd_mea_10b_2a    vpd_max_10b_2a   0.8842729
## 215   tmmx_mea_30b_2a   tmmx_max_10b_2a   0.8841178
## 124     sph_max_3b_2a    tmmn_max_3b_2a   0.8829050
## 21     sph_mea_30b_2a     sph_mea_3b_2a   0.8818872
## 6     rmax_mea_10b_2a    rmax_mea_3b_2a   0.8818556
## 17    rmin_mea_30b_2a   rmin_mea_60b_2a   0.8818304
## 150    sph_mea_60b_2a   tmmx_mea_30b_2a   0.8818134
## 42     sph_mea_10b_2a     sph_max_3b_2a   0.8815223
## 345  fm100_mea_30b_2a fm1000_mea_30b_2a   0.8793358
## 5     rmax_mea_10b_2a   rmax_mea_30b_2a   0.8791767
## 376  fm100_mea_30b_2a fm1000_max_10b_2a   0.8784834
## 127    tmmn_mea_3b_2a    tmmn_max_3b_2a   0.8771035
## 133     sph_mea_3b_2a   tmmx_mea_10b_2a   0.8770338
## 56      sph_max_3b_2a   tmmn_mea_10b_2a   0.8769701
## 75     sph_mea_10b_2a   tmmn_mea_60b_2a   0.8764173
## 98     sph_mea_10b_2a    tmmn_min_3b_2a   0.8756823
## 159   tmmn_min_10b_2a   tmmx_mea_30b_2a   0.8755021
## 59      sph_mea_3b_2a   tmmn_mea_30b_2a   0.8746892
## 66     sph_mea_10b_2a    tmmn_mea_3b_2a   0.8733965
## 22     sph_mea_10b_2a    sph_mea_60b_2a   0.8729098
## 180   tmmx_mea_30b_2a    tmmx_mea_3b_2a   0.8705283
## 299   tmmx_mea_10b_2a    vpd_mea_60b_2a   0.8705133
## 153    sph_max_10b_2a   tmmx_mea_30b_2a   0.8702798
## 113    sph_max_10b_2a   tmmn_max_10b_2a   0.8678517
## 81     sph_max_10b_2a   tmmn_mea_60b_2a   0.8673197
## 195   tmmx_mea_10b_2a   tmmx_mea_60b_2a   0.8672687
## 54      sph_min_3b_2a   tmmn_mea_10b_2a   0.8666482
## 53     sph_min_10b_2a   tmmn_mea_10b_2a   0.8652713
## 272   tmmx_mea_60b_2a    vpd_mea_30b_2a   0.8643248
## 273   tmmx_max_10b_2a    vpd_mea_30b_2a   0.8643160
## 322     vpd_mea_3b_2a    vpd_max_10b_2a   0.8643149
## 181    sph_mea_10b_2a   tmmx_mea_60b_2a   0.8639424
## 92     sph_max_10b_2a   tmmn_min_10b_2a   0.8627743
## 83    tmmn_mea_10b_2a   tmmn_mea_60b_2a   0.8601025
## 3       pr_mea_10b_2a     pr_max_10b_2a   0.8595644
## 208    tmmn_mea_3b_2a   tmmx_max_10b_2a   0.8594083
## 38      sph_mea_3b_2a    sph_max_10b_2a   0.8588708
## 132    sph_mea_30b_2a   tmmx_mea_10b_2a   0.8573646
## 74    tmmn_mea_30b_2a    tmmn_mea_3b_2a   0.8568347
## 390 fm1000_mea_30b_2a  fm1000_max_3b_2a   0.8557827
## 61     sph_min_10b_2a   tmmn_mea_30b_2a   0.8554889
## 115   tmmn_mea_10b_2a   tmmn_max_10b_2a   0.8553204
## 254   tmmx_max_10b_2a    vpd_mea_10b_2a   0.8538452
## 93      sph_max_3b_2a   tmmn_min_10b_2a   0.8536833
## 149     sph_mea_3b_2a   tmmx_mea_30b_2a   0.8536109
## 225   tmmn_mea_10b_2a    tmmx_max_3b_2a   0.8534962
## 198    sph_mea_10b_2a   tmmx_max_10b_2a   0.8533260
## 175   tmmn_min_10b_2a    tmmx_mea_3b_2a   0.8519583
## 361  fm100_mea_60b_2a fm1000_min_10b_2a   0.8517614
## 353 fm1000_mea_30b_2a  fm1000_mea_3b_2a   0.8517165
## 14     rmax_mea_3b_2a    rmax_min_3b_2a   0.8511814
## 294   tmmn_mea_30b_2a    vpd_mea_60b_2a   0.8509620
## 252    tmmx_mea_3b_2a    vpd_mea_10b_2a   0.8507761
## 39     sph_mea_60b_2a    sph_max_10b_2a   0.8505092
## 106   tmmn_mea_30b_2a    tmmn_min_3b_2a   0.8469643
## 340   fm100_mea_3b_2a   fm100_max_3b_2a   0.8469356
## 283    tmmx_max_3b_2a     vpd_mea_3b_2a   0.8466466
## 32     sph_mea_30b_2a     sph_min_3b_2a   0.8465549
## 137    sph_max_10b_2a   tmmx_mea_10b_2a   0.8464548
## 64      sph_max_3b_2a   tmmn_mea_30b_2a   0.8462062
## 189   tmmn_mea_10b_2a   tmmx_mea_60b_2a   0.8460951
## 229    tmmn_min_3b_2a    tmmx_max_3b_2a   0.8457355
## 168     sph_min_3b_2a    tmmx_mea_3b_2a   0.8454285
## 296   tmmn_mea_60b_2a    vpd_mea_60b_2a   0.8454101
## 271    tmmx_mea_3b_2a    vpd_mea_30b_2a   0.8447972
## 305    vpd_mea_10b_2a    vpd_mea_60b_2a   0.8440298
## 327    vpd_mea_10b_2a     vpd_max_3b_2a   0.8428709
## 220     sph_mea_3b_2a    tmmx_max_3b_2a   0.8427024
## 372 fm1000_mea_30b_2a  fm1000_min_3b_2a   0.8425714
## 264   tmmn_mea_30b_2a    vpd_mea_30b_2a   0.8413219
## 200     sph_mea_3b_2a   tmmx_max_10b_2a   0.8405840
## 343  fm100_mea_60b_2a fm1000_mea_10b_2a   0.8405249
## 157    tmmn_mea_3b_2a   tmmx_mea_30b_2a   0.8404856
## 356 fm1000_mea_10b_2a fm1000_mea_60b_2a   0.8392754
## 43     sph_mea_30b_2a     sph_max_3b_2a   0.8377781
## 236     vs_mea_10b_2a     vs_mea_30b_2a   0.8355896
## 210   tmmn_min_10b_2a   tmmx_max_10b_2a   0.8347312
## 388  fm100_max_10b_2a  fm1000_max_3b_2a   0.8347246
## 160    tmmn_min_3b_2a   tmmx_mea_30b_2a   0.8344214
## 164    sph_mea_10b_2a    tmmx_mea_3b_2a   0.8344079
## 285    vpd_mea_30b_2a     vpd_mea_3b_2a   0.8341865
## 207   tmmn_mea_30b_2a   tmmx_max_10b_2a   0.8339247
## 187    sph_max_10b_2a   tmmx_mea_60b_2a   0.8337180
## 382 fm1000_mea_60b_2a fm1000_max_10b_2a   0.8336899
## 243      vs_mea_3b_2a      vs_max_3b_2a   0.8336697
## 255    tmmx_max_3b_2a    vpd_mea_10b_2a   0.8333428
## 211    tmmn_min_3b_2a   tmmx_max_10b_2a   0.8329770
## 101    sph_min_10b_2a    tmmn_min_3b_2a   0.8329694
## 232   tmmx_mea_30b_2a    tmmx_max_3b_2a   0.8328023
## 263   tmmn_mea_10b_2a    vpd_mea_30b_2a   0.8326027
## 366 fm1000_mea_60b_2a fm1000_min_10b_2a   0.8301086
## 337  fm100_mea_10b_2a  fm100_max_10b_2a   0.8295130
## 136     sph_min_3b_2a   tmmx_mea_10b_2a   0.8288415
## 172   tmmn_mea_30b_2a    tmmx_mea_3b_2a   0.8280160
## 62      sph_min_3b_2a   tmmn_mea_30b_2a   0.8277873
## 97    tmmn_mea_60b_2a   tmmn_min_10b_2a   0.8275733
## 104     sph_max_3b_2a    tmmn_min_3b_2a   0.8251112
## 318   tmmx_max_10b_2a    vpd_max_10b_2a   0.8245280
## 2       pr_mea_30b_2a     pr_mea_60b_2a   0.8241044
## 303   tmmx_max_10b_2a    vpd_mea_60b_2a   0.8239619
## 142   tmmn_mea_60b_2a   tmmx_mea_10b_2a   0.8239193
## 274    tmmx_max_3b_2a    vpd_mea_30b_2a   0.8226579
## 130   tmmn_max_10b_2a    tmmn_max_3b_2a   0.8214656
## 40     sph_min_10b_2a    sph_max_10b_2a   0.8210164
## 351  fm100_max_10b_2a  fm1000_mea_3b_2a   0.8194656
## 151    sph_min_10b_2a   tmmx_mea_30b_2a   0.8193626
## 138     sph_max_3b_2a   tmmx_mea_10b_2a   0.8190688
## 170     sph_max_3b_2a    tmmx_mea_3b_2a   0.8186731
## 326    tmmx_max_3b_2a     vpd_max_3b_2a   0.8182077
## 287    sph_mea_30b_2a    vpd_mea_60b_2a   0.8176210
## 336  fm100_min_10b_2a   fm100_min_3b_2a   0.8174036
## 367  fm100_mea_10b_2a  fm1000_min_3b_2a   0.8167881
## 279   tmmx_mea_10b_2a     vpd_mea_3b_2a   0.8161704
## 135    sph_min_10b_2a   tmmx_mea_10b_2a   0.8161292
## 71     sph_max_10b_2a    tmmn_mea_3b_2a   0.8160966
## 251   tmmx_mea_30b_2a    vpd_mea_10b_2a   0.8160650
## 15    rmax_min_10b_2a    rmax_min_3b_2a   0.8160204
## 348  fm100_mea_10b_2a  fm1000_mea_3b_2a   0.8152304
## 350  fm100_mea_60b_2a  fm1000_mea_3b_2a   0.8145604
## 46     sph_min_10b_2a     sph_max_3b_2a   0.8143213
## 47      sph_min_3b_2a     sph_max_3b_2a   0.8137141
## 29     sph_mea_60b_2a    sph_min_10b_2a   0.8123372
## 204    sph_max_10b_2a   tmmx_max_10b_2a   0.8114789
## 293   tmmn_mea_10b_2a    vpd_mea_60b_2a   0.8114770
## 228   tmmn_min_10b_2a    tmmx_max_3b_2a   0.8114444
## 193   tmmn_min_10b_2a   tmmx_mea_60b_2a   0.8111608
## 319    tmmx_max_3b_2a    vpd_max_10b_2a   0.8109923
## 378  fm100_max_10b_2a fm1000_max_10b_2a   0.8104962
## 152     sph_min_3b_2a   tmmx_mea_30b_2a   0.8104490
## 224     sph_max_3b_2a    tmmx_max_3b_2a   0.8104002
## 377  fm100_mea_60b_2a fm1000_max_10b_2a   0.8101348
## 125   tmmn_mea_10b_2a    tmmn_max_3b_2a   0.8101142
## 116   tmmn_mea_30b_2a   tmmn_max_10b_2a   0.8098734
## 122     sph_mea_3b_2a    tmmn_max_3b_2a   0.8090359
## 344  fm100_max_10b_2a fm1000_mea_10b_2a   0.8081441
## 369  fm100_mea_60b_2a  fm1000_min_3b_2a   0.8076377
## 154     sph_max_3b_2a   tmmx_mea_30b_2a   0.8067012
## 286    sph_mea_10b_2a    vpd_mea_60b_2a   0.8050192
## 324    tmmx_mea_3b_2a     vpd_max_3b_2a   0.8050185
## 314     vpd_mea_3b_2a     vpd_min_3b_2a   0.8049575
## 218    sph_mea_10b_2a    tmmx_max_3b_2a   0.8044754
## 387  fm100_mea_60b_2a  fm1000_max_3b_2a   0.8041111
## 217   tmmx_mea_60b_2a   tmmx_max_10b_2a   0.8036604
## 69     sph_min_10b_2a    tmmn_mea_3b_2a   0.8036209
## 282   tmmx_max_10b_2a     vpd_mea_3b_2a   0.8034870
## 178    tmmn_max_3b_2a    tmmx_mea_3b_2a   0.8034373
## 99     sph_mea_30b_2a    tmmn_min_3b_2a   0.8022643
## 77      sph_mea_3b_2a   tmmn_mea_60b_2a   0.8019133
## 79     sph_min_10b_2a   tmmn_mea_60b_2a   0.8009040
## 354  fm100_mea_30b_2a fm1000_mea_60b_2a   0.8008961
## 267   tmmn_min_10b_2a    vpd_mea_30b_2a   0.8008744
## 52     sph_mea_60b_2a   tmmn_mea_10b_2a   0.8005852
## 205     sph_max_3b_2a   tmmx_max_10b_2a   0.8003790
## 321    vpd_mea_30b_2a    vpd_max_10b_2a   0.8000642
## 301    tmmx_mea_3b_2a    vpd_mea_60b_2a   0.7995666
## 245   tmmn_mea_10b_2a    vpd_mea_10b_2a   0.7990491
## 237     vs_mea_10b_2a      vs_mea_3b_2a   0.7990366
## 18    rmin_min_10b_2a    rmin_min_3b_2a   0.7988210
## 370  fm100_max_10b_2a  fm1000_min_3b_2a   0.7968714
## 183     sph_mea_3b_2a   tmmx_mea_60b_2a   0.7966613
## 114     sph_max_3b_2a   tmmn_max_10b_2a   0.7964401
## 67     sph_mea_30b_2a    tmmn_mea_3b_2a   0.7963096
## 10    rmax_mea_10b_2a   rmax_min_10b_2a   0.7955371
## 289    sph_mea_60b_2a    vpd_mea_60b_2a   0.7946201
## 199    sph_mea_30b_2a   tmmx_max_10b_2a   0.7932728
## 297   tmmn_min_10b_2a    vpd_mea_60b_2a   0.7924448
## 89     sph_mea_60b_2a   tmmn_min_10b_2a   0.7915948
## 103    sph_max_10b_2a    tmmn_min_3b_2a   0.7908986
## 385  fm100_mea_10b_2a  fm1000_max_3b_2a   0.7900129
## 265    tmmn_mea_3b_2a    vpd_mea_30b_2a   0.7884929
## 256    sph_mea_10b_2a    vpd_mea_30b_2a   0.7878817
## 268    tmmn_min_3b_2a    vpd_mea_30b_2a   0.7873127
## 317    tmmx_mea_3b_2a    vpd_max_10b_2a   0.7864357
## 185    sph_min_10b_2a   tmmx_mea_60b_2a   0.7856143
## 110    sph_mea_10b_2a   tmmn_max_10b_2a   0.7853490
## 197    tmmx_mea_3b_2a   tmmx_mea_60b_2a   0.7852296
## 24      sph_mea_3b_2a    sph_mea_60b_2a   0.7849454
## 266   tmmn_mea_60b_2a    vpd_mea_30b_2a   0.7847490
## 241     vs_mea_10b_2a     vs_max_10b_2a   0.7843498
## 230    tmmn_max_3b_2a    tmmx_max_3b_2a   0.7842433
## 226   tmmn_mea_30b_2a    tmmx_max_3b_2a   0.7828473
## 203     sph_min_3b_2a   tmmx_max_10b_2a   0.7817465
## 247    tmmn_mea_3b_2a    vpd_mea_10b_2a   0.7816098
## 316   tmmx_mea_10b_2a    vpd_max_10b_2a   0.7810091
## 41      sph_min_3b_2a    sph_max_10b_2a   0.7792104
## 117    tmmn_mea_3b_2a   tmmn_max_10b_2a   0.7788492
## 82      sph_max_3b_2a   tmmn_mea_60b_2a   0.7783472
## 222     sph_min_3b_2a    tmmx_max_3b_2a   0.7782739
## 392 fm1000_mea_60b_2a  fm1000_max_3b_2a   0.7782317
## 257    sph_mea_30b_2a    vpd_mea_30b_2a   0.7769749
## 277    tmmn_mea_3b_2a     vpd_mea_3b_2a   0.7768379
## 249    tmmn_min_3b_2a    vpd_mea_10b_2a   0.7761715
## 8     rmax_mea_10b_2a   rmax_mea_60b_2a   0.7760584
## 304    tmmx_max_3b_2a    vpd_mea_60b_2a   0.7754155
## 165    sph_mea_30b_2a    tmmx_mea_3b_2a   0.7744047
## 134    sph_mea_60b_2a   tmmx_mea_10b_2a   0.7735775
## 358  fm1000_mea_3b_2a fm1000_mea_60b_2a   0.7731031
## 145   tmmn_max_10b_2a   tmmx_mea_10b_2a   0.7728859
## 7     rmax_mea_30b_2a    rmax_mea_3b_2a   0.7727621
## 325   tmmx_max_10b_2a     vpd_max_3b_2a   0.7719813
## 278    tmmn_min_3b_2a     vpd_mea_3b_2a   0.7702945
## 288     sph_mea_3b_2a    vpd_mea_60b_2a   0.7700474
## 169    sph_max_10b_2a    tmmx_mea_3b_2a   0.7676273
## 238     vs_mea_10b_2a     vs_mea_60b_2a   0.7672088
## 258     sph_mea_3b_2a    vpd_mea_30b_2a   0.7659762
## 331  fm100_mea_10b_2a  fm100_mea_30b_2a   0.7636262
## 85     tmmn_mea_3b_2a   tmmn_mea_60b_2a   0.7630096
## 129    tmmn_min_3b_2a    tmmn_max_3b_2a   0.7624753
## 240      vs_mea_3b_2a      vs_min_3b_2a   0.7624698
## 167    sph_min_10b_2a    tmmx_mea_3b_2a   0.7610778
## 290    sph_min_10b_2a    vpd_mea_60b_2a   0.7606277
## 374 fm1000_mea_60b_2a  fm1000_min_3b_2a   0.7602377
## 298    tmmn_min_3b_2a    vpd_mea_60b_2a   0.7566183
## 191    tmmn_mea_3b_2a   tmmx_mea_60b_2a   0.7565302
## 186     sph_min_3b_2a   tmmx_mea_60b_2a   0.7564029
## 202    sph_min_10b_2a   tmmx_max_10b_2a   0.7551722
## 80      sph_min_3b_2a   tmmn_mea_60b_2a   0.7545809
## 362  fm100_max_10b_2a fm1000_min_10b_2a   0.7544689
## 13    rmax_mea_10b_2a    rmax_min_3b_2a   0.7542812
## 328    vpd_mea_30b_2a     vpd_max_3b_2a   0.7538760
## 248   tmmn_min_10b_2a    vpd_mea_10b_2a   0.7537701
## 291     sph_min_3b_2a    vpd_mea_60b_2a   0.7534378
## 332  fm100_mea_10b_2a   fm100_mea_3b_2a   0.7525933
## 108   tmmn_mea_60b_2a    tmmn_min_3b_2a   0.7519949
## 45     sph_mea_60b_2a     sph_max_3b_2a   0.7517904
## 188     sph_max_3b_2a   tmmx_mea_60b_2a   0.7514673
## 194    tmmn_min_3b_2a   tmmx_mea_60b_2a   0.7513228
## 295    tmmn_mea_3b_2a    vpd_mea_60b_2a   0.7509624
## 209   tmmn_mea_60b_2a   tmmx_max_10b_2a   0.7496166
## 126   tmmn_mea_30b_2a    tmmn_max_3b_2a   0.7487218
## 161   tmmn_max_10b_2a   tmmx_mea_30b_2a   0.7485015
## 339  fm100_mea_10b_2a   fm100_max_3b_2a   0.7480004
## 123    sph_max_10b_2a    tmmn_max_3b_2a   0.7473826
## 119   tmmn_min_10b_2a   tmmn_max_10b_2a   0.7466314
## 146    tmmn_max_3b_2a   tmmx_mea_10b_2a   0.7455049
## 223    sph_max_10b_2a    tmmx_max_3b_2a   0.7454624
## 212   tmmn_max_10b_2a   tmmx_max_10b_2a   0.7454285
## 234   tmmx_mea_60b_2a    tmmx_max_3b_2a   0.7454020
## 261     sph_min_3b_2a    vpd_mea_30b_2a   0.7449614
## 307     vpd_mea_3b_2a    vpd_mea_60b_2a   0.7443110
## 359  fm100_mea_10b_2a fm1000_min_10b_2a   0.7439155
## 34     sph_mea_60b_2a     sph_min_3b_2a   0.7430221
## 111    sph_mea_30b_2a   tmmn_max_10b_2a   0.7424322
## 16    rmin_mea_10b_2a   rmin_mea_30b_2a   0.7422024
## 280   tmmx_mea_30b_2a     vpd_mea_3b_2a   0.7403596
## 128   tmmn_min_10b_2a    tmmn_max_3b_2a   0.7403052
## 174   tmmn_mea_60b_2a    tmmx_mea_3b_2a   0.7401437
## 246   tmmn_mea_30b_2a    vpd_mea_10b_2a   0.7398622
## 242     vs_mea_30b_2a     vs_max_10b_2a   0.7394763
## 292    sph_max_10b_2a    vpd_mea_60b_2a   0.7382368
## 213    tmmn_max_3b_2a   tmmx_max_10b_2a   0.7365864
## 219    sph_mea_30b_2a    tmmx_max_3b_2a   0.7363737
## 112     sph_mea_3b_2a   tmmn_max_10b_2a   0.7353093
## 323   tmmx_mea_10b_2a     vpd_max_3b_2a   0.7349118
## 118   tmmn_mea_60b_2a   tmmn_max_10b_2a   0.7341556
## 334   fm100_mea_3b_2a  fm100_min_10b_2a   0.7340848
## 30     rmin_min_3b_2a     sph_min_3b_2a   0.7328930
## 341  fm100_mea_10b_2a fm1000_mea_10b_2a   0.7328532
## 260    sph_min_10b_2a    vpd_mea_30b_2a   0.7328024
## 121    sph_mea_10b_2a    tmmn_max_3b_2a   0.7322526
## 338  fm100_mea_30b_2a  fm100_max_10b_2a   0.7315318
## 308    vpd_mea_10b_2a    vpd_min_10b_2a   0.7303579
## 253   tmmx_mea_60b_2a    vpd_mea_10b_2a   0.7302923
## 11    rmax_mea_30b_2a   rmax_min_10b_2a   0.7258649
## 221    sph_min_10b_2a    tmmx_max_3b_2a   0.7257265
## 276   tmmn_mea_10b_2a     vpd_mea_3b_2a   0.7232915
## 262    sph_max_10b_2a    vpd_mea_30b_2a   0.7219168
## 25    rmin_min_10b_2a    sph_min_10b_2a   0.7167212
## 259    sph_mea_60b_2a    vpd_mea_30b_2a   0.7166580
## 177   tmmn_max_10b_2a    tmmx_mea_3b_2a   0.7119584
## 311    tmmx_mea_3b_2a     vpd_min_3b_2a   0.7109865
## 309    vpd_mea_30b_2a    vpd_min_10b_2a   0.7087527
## 312    vpd_mea_10b_2a     vpd_min_3b_2a   0.7086487
## 120    tmmn_min_3b_2a   tmmn_max_10b_2a   0.7085530
## 1       pr_mea_10b_2a     pr_mea_30b_2a   0.7080461
## 201    sph_mea_60b_2a   tmmx_max_10b_2a   0.7076918
## 12     rmax_mea_3b_2a   rmax_min_10b_2a   0.7073449
## 315    tmmn_mea_3b_2a    vpd_max_10b_2a   0.7071848
## 162    tmmn_max_3b_2a   tmmx_mea_30b_2a   0.7061560
## 244     sph_mea_3b_2a    vpd_mea_10b_2a   0.7038500
## 313    vpd_mea_30b_2a     vpd_min_3b_2a   0.7009173
## 310    vpd_mea_60b_2a    vpd_min_10b_2a   0.7004817

Drought Data Analysis

Correlation

drought_numeric_data <- drought[sapply(drought, is.numeric)]

drought_cor_mat <- cor(drought_numeric_data, use = "pairwise.complete.obs")

corrplot(drought_cor_mat, method = "color", tl.cex = 0.6)

threshold <- 0.70

drought_high_corr <- which(abs(drought_cor_mat) > threshold, arr.ind = TRUE)
drought_high_corr_pairs <- drought_high_corr[drought_high_corr[,1] < drought_high_corr[,2], ]

drought_flagged <- data.frame(
  Var1 = rownames(drought_cor_mat)[drought_high_corr_pairs[,1]],
  Var2 = colnames(drought_cor_mat)[drought_high_corr_pairs[,2]],
  Correlation = drought_cor_mat[drought_high_corr_pairs]
)

# Sort by absolute correlation
drought_flagged <- drought_flagged[order(abs(drought_flagged$Correlation), decreasing = TRUE), ]
drought_flagged
##        Var1     Var2 Correlation
## 44  spei90d   spi90d   0.9772039
## 35   spei2y    spi2y   0.9759757
## 21   spei1y    spi1y   0.9672280
## 38  spei30d   spi30d   0.9564792
## 14  spei14d   spi14d   0.9506904
## 16 spei180d  spi180d   0.9504171
## 41   spei5y    spi5y   0.9496125
## 28 spei270d  spi270d   0.9424413
## 22 spei270d    spi1y   0.9189033
## 19     pdsi    spi1y   0.9181572
## 2      pdsi   spei1y   0.9150541
## 6    spei1y spei270d   0.9106080
## 4      pdsi spei270d   0.8917144
## 31    spi1y  spi270d   0.8814242
## 25     pdsi  spi270d   0.8399088
## 7      pdsi   spei2y   0.8393836
## 32     pdsi    spi2y   0.8346379
## 42    spi2y    spi5y   0.8326091
## 40   spei2y    spi5y   0.8220077
## 11   spei2y   spei5y   0.8190439
## 27   spei1y  spi270d   0.8125203
## 36   spei5y    spi2y   0.8088976
## 5  spei180d spei270d   0.8045463
## 26 spei180d  spi270d   0.8043149
## 30  spi180d  spi270d   0.8037294
## 1      pdsi spei180d   0.8025228
## 45  spi180d   spi90d   0.7968319
## 12 spei180d  spei90d   0.7959434
## 18  spei90d  spi180d   0.7951290
## 20 spei180d    spi1y   0.7891033
## 37    spi1y    spi2y   0.7620473
## 23   spei2y    spi1y   0.7604021
## 43 spei180d   spi90d   0.7562671
## 3  spei180d   spei1y   0.7547638
## 8    spei1y   spei2y   0.7470112
## 33   spei1y    spi2y   0.7434680
## 39     pdsi    spi5y   0.7387218
## 29  spei90d  spi270d   0.7349395
## 17 spei270d  spi180d   0.7347740
## 15     pdsi  spi180d   0.7329061
## 24  spi180d    spi1y   0.7284065
## 46  spi270d   spi90d   0.7243975
## 13 spei270d  spei90d   0.7146572
## 9  spei270d   spei2y   0.7085060
## 10     pdsi   spei5y   0.7007206
## 34 spei270d    spi2y   0.7005646

Rap Data Analysis

Correlation

rap_numeric_data <- rap[sapply(rap, is.numeric)]

rap_cor_mat <- cor(rap_numeric_data, use = "pairwise.complete.obs")

corrplot(rap_cor_mat, method = "color", tl.cex = 0.6)

threshold <- 0.70

rap_high_corr <- which(abs(rap_cor_mat) > threshold, arr.ind = TRUE)
rap_high_corr_pairs <- rap_high_corr[rap_high_corr[,1] < rap_high_corr[,2], ]

rap_flagged <- data.frame(
  Var1 = rownames(rap_cor_mat)[rap_high_corr_pairs[,1]],
  Var2 = colnames(rap_cor_mat)[rap_high_corr_pairs[,2]],
  Correlation = rap_cor_mat[rap_high_corr_pairs]
)

# Sort by absolute correlation
rap_flagged <- rap_flagged[order(abs(rap_flagged$Correlation), decreasing = TRUE), ]
rap_flagged
##       Var1     Var2 Correlation
## 3 prop_pfg prop_tre  -0.8798649
## 6 prop_ltr prop_bgr   0.8669045
## 7 prop_tre prop_bgr  -0.7701901
## 1 prop_afg prop_ltr   0.7518690
## 4 prop_ltr prop_tre  -0.7402682
## 2 prop_afg prop_tre  -0.7324994
## 5 prop_afg prop_bgr   0.7003461

Hydro Dist Data Analysis

Correlation

hydroDist_numeric_data <- hydroDist[sapply(hydroDist, is.numeric)]

hydroDist_cor_mat <- cor(hydroDist_numeric_data, use = "pairwise.complete.obs")

corrplot(hydroDist_cor_mat, method = "color", tl.cex = 0.6)

threshold <- 0.70

hydroDist_high_corr <- which(abs(hydroDist_cor_mat) > threshold, arr.ind = TRUE)
hydroDist_high_corr_pairs <- hydroDist_high_corr[hydroDist_high_corr[,1] < hydroDist_high_corr[,2], ]

hydroDist_flagged <- data.frame(
  Var1 = rownames(hydroDist_cor_mat)[hydroDist_high_corr_pairs[,1]],
  Var2 = colnames(hydroDist_cor_mat)[hydroDist_high_corr_pairs[,2]],
  Correlation = hydroDist_cor_mat[hydroDist_high_corr_pairs]
)

# Sort by absolute correlation
hydroDist_flagged <- hydroDist_flagged[order(abs(hydroDist_flagged$Correlation), decreasing = TRUE), ]
hydroDist_flagged
## [1] Var1        Var2        Correlation
## <0 rows> (or 0-length row.names)