library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plm':
##
## between, lag, lead
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# Compute transitions si on en besoin
names(alldat)
## [1] "v2.idmen" "cluster" "enf" "length" "educ" "activ"
## [7] "probl" "satisf" "sep" "sex" "id" "wave"
library(dplyr)
library(tidyr)
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:texreg':
##
## extract
## The following objects are masked from 'package:Matrix':
##
## expand, pack, unpack
alldat2 <- alldat %>%
arrange(v2.idmen, wave) %>%
group_by(v2.idmen) %>%
mutate(
transition = if_else(cluster != lag(cluster), 1, 0, missing = 0)
) %>%
summarise(
n_transitions = sum(transition),
.groups = "drop"
)
alldat <- alldat %>%
left_join(alldat2, by = "v2.idmen")
m0 <- lmer(probl~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
##
## Group | ICC
## -------------------
## id:v2.idmen | 0.041
## v2.idmen | 0.277
m1 <- lmer(probl~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
#m1b <- lmer(probl~cluster+sex+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
#m1c <- lmer(probl~cluster+cluster*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m2 <- lmer(probl~relevel(cluster,ref="compagnonnage")+sex+factor(wave)+length+educ+enf+activ+n_transitions+(1|v2.idmen/id), data=alldat)
#fm1 <- plm(probl~cluster+sex+factor(wave), index="id", model="within", data=alldat)
#fm2 <- plm(probl~cluster+sex+factor(wave)+length+educ+enf+activ+n_transitions, index="id", model="within", data=alldat)
#htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2))
htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 2"=m2))
| Multilevel 0 | Multilevel 1 | Multilevel 2 | |
|---|---|---|---|
| (Intercept) | 1.60*** | 1.08*** | 0.66* |
| (0.07) | (0.19) | (0.29) | |
| relevel(cluster, ref = “compagnonnage”)parallele | 0.80*** | 0.78*** | |
| (0.14) | (0.15) | ||
| relevel(cluster, ref = “compagnonnage”)association | 0.80*** | 0.76*** | |
| (0.16) | (0.16) | ||
| relevel(cluster, ref = “compagnonnage”)cocon | 0.38** | 0.34** | |
| (0.12) | (0.13) | ||
| relevel(cluster, ref = “compagnonnage”)bastion | 0.18 | 0.13 | |
| (0.13) | (0.13) | ||
| sexh | -0.33*** | -0.42*** | |
| (0.08) | (0.10) | ||
| factor(wave)2 | 1.32*** | 1.31*** | |
| (0.09) | (0.09) | ||
| factor(wave)3 | 1.23*** | 1.24*** | |
| (0.09) | (0.10) | ||
| length | -0.03*** | -0.02** | |
| (0.01) | (0.01) | ||
| educprof_school | 0.02 | ||
| (0.11) | |||
| educuniversity | 0.11 | ||
| (0.14) | |||
| enfenfants_oui | 0.49* | ||
| (0.20) | |||
| activ25-75% | 0.07 | ||
| (0.12) | |||
| activ>=80% | 0.21 | ||
| (0.12) | |||
| n_transitions | -0.08 | ||
| (0.10) | |||
| AIC | 8713.47 | 8449.40 | 8364.58 |
| BIC | 8735.99 | 8516.96 | 8465.67 |
| Log Likelihood | -4352.74 | -4212.70 | -4164.29 |
| Num. obs. | 2058 | 2058 | 2030 |
| Num. groups: id:v2.idmen | 686 | 686 | 686 |
| Num. groups: v2.idmen | 343 | 343 | 343 |
| Var: id:v2.idmen (Intercept) | 0.19 | 0.31 | 0.33 |
| Var: v2.idmen (Intercept) | 1.28 | 1.06 | 1.06 |
| Var: Residual | 3.15 | 2.65 | 2.65 |
| ***p < 0.001; **p < 0.01; *p < 0.05 | |||
m0 <- lmer(satisf~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
##
## Group | ICC
## -------------------
## id:v2.idmen | 0.088
## v2.idmen | 0.310
m0g <- glmer(satisf~1+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa"))
print(icc(m0g, by_group = TRUE))
## # ICC by Group
##
## Group | ICC
## -------------------
## id:v2.idmen | 0.061
## v2.idmen | 0.438
#m1 <- lmer(satisf~cluster+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
#m1b <- lmer(satisf~cluster+sex+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
#m1c <- lmer(satisf~cluster+cluster*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
#m2 <- lmer(satisf~cluster+sex+factor(wave)+length+educ+enf+activ+n_transitions+(1|v2.idmen/id), data=alldat)
m1g <- glmer(satisf~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun=100000)))
m2g <- glmer(satisf~relevel(cluster,ref="compagnonnage")+sex+factor(wave)+length+educ+enf+activ+n_transitions+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun=100000)))
#fm1 <- plm(satisf~cluster+sex+factor(wave), index="id", model="within", data=alldat)
#fm2 <- plm(satisf~cluster+sex+factor(wave)+length+educ+enf+activ+n_transitions, index="id", model="within", data=alldat)
#htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
htmlreg(list("Multilevel 0"=m0, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
| Multilevel 0 | Logistic 0 | Logistic 1 | Logistic 2 | |
|---|---|---|---|---|
| (Intercept) | 0.52*** | 0.10 | -0.34 | -0.89* |
| (0.02) | (0.11) | (0.29) | (0.44) | |
| relevel(cluster, ref = “compagnonnage”)parallele | 0.68** | 0.69** | ||
| (0.22) | (0.22) | |||
| relevel(cluster, ref = “compagnonnage”)association | 0.88*** | 0.83*** | ||
| (0.24) | (0.24) | |||
| relevel(cluster, ref = “compagnonnage”)cocon | 0.60** | 0.52** | ||
| (0.19) | (0.19) | |||
| relevel(cluster, ref = “compagnonnage”)bastion | 0.44* | 0.40* | ||
| (0.20) | (0.20) | |||
| sexh | -0.29* | -0.34* | ||
| (0.12) | (0.15) | |||
| factor(wave)2 | 0.30* | 0.28* | ||
| (0.14) | (0.14) | |||
| factor(wave)3 | 0.39** | 0.39** | ||
| (0.14) | (0.15) | |||
| length | -0.00 | -0.00 | ||
| (0.01) | (0.01) | |||
| educprof_school | -0.20 | |||
| (0.16) | ||||
| educuniversity | -0.08 | |||
| (0.21) | ||||
| enfenfants_oui | 0.54 | |||
| (0.31) | ||||
| activ25-75% | 0.16 | |||
| (0.18) | ||||
| activ>=80% | 0.25 | |||
| (0.18) | ||||
| n_transitions | 0.02 | |||
| (0.15) | ||||
| AIC | 2598.46 | 2504.63 | 2491.54 | 2467.29 |
| BIC | 2620.97 | 2521.52 | 2553.45 | 2562.76 |
| Log Likelihood | -1295.23 | -1249.32 | -1234.77 | -1216.64 |
| Num. obs. | 2057 | 2057 | 2057 | 2030 |
| Num. groups: id:v2.idmen | 686 | 686 | 686 | 686 |
| Num. groups: v2.idmen | 343 | 343 | 343 | 343 |
| Var: id:v2.idmen (Intercept) | 0.02 | 0.40 | 0.39 | 0.39 |
| Var: v2.idmen (Intercept) | 0.08 | 2.88 | 2.72 | 2.69 |
| Var: Residual | 0.15 | |||
| ***p < 0.001; **p < 0.01; *p < 0.05 | ||||
m0 <- lmer(sep~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
##
## Group | ICC
## -------------------
## id:v2.idmen | 0.163
## v2.idmen | 0.309
m0g <- glmer(sep~1+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa"))
print(icc(m0g, by_group = TRUE))
## # ICC by Group
##
## Group | ICC
## -------------------
## id:v2.idmen | 0.169
## v2.idmen | 0.483
#m1 <- lmer(sep~cluster+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
#m1b <- lmer(sep~cluster+sex+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
#m1c <- lmer(sep~cluster+cluster*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
#m2 <- lmer(sep~cluster+sex+factor(wave)+length+educ+enf+activ+n_transitions+(1|v2.idmen/id), data=alldat)
m1g <- glmer(sep~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun=100000)))
m2g <- glmer(sep~relevel(cluster,ref="compagnonnage")+sex+factor(wave)+length+educ+enf+activ+n_transitions+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun=100000)))
# <- plm(sep~cluster+sex+factor(wave), index="id", model="within", data=alldat)
#fm2 <- plm(sep~cluster+sex+factor(wave)+length+educ+enf+activ+n_transitions, index="id", model="within", data=alldat)
#htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
htmlreg(list("Multilevel 0"=m0, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
| Multilevel 0 | Logistic 0 | Logistic 1 | Logistic 2 | |
|---|---|---|---|---|
| (Intercept) | 0.26*** | -2.05*** | -1.51*** | -3.03*** |
| (0.02) | (0.19) | (0.40) | (0.62) | |
| relevel(cluster, ref = “compagnonnage”)parallele | 0.46 | 0.51 | ||
| (0.28) | (0.28) | |||
| relevel(cluster, ref = “compagnonnage”)association | 0.54 | 0.45 | ||
| (0.29) | (0.30) | |||
| relevel(cluster, ref = “compagnonnage”)cocon | 0.45 | 0.40 | ||
| (0.24) | (0.25) | |||
| relevel(cluster, ref = “compagnonnage”)bastion | -0.31 | -0.37 | ||
| (0.27) | (0.28) | |||
| sexh | -0.96*** | -1.09*** | ||
| (0.18) | (0.21) | |||
| factor(wave)2 | 0.35* | 0.47* | ||
| (0.17) | (0.19) | |||
| factor(wave)3 | 0.42* | 0.63** | ||
| (0.17) | (0.19) | |||
| length | -0.03 | -0.02 | ||
| (0.02) | (0.02) | |||
| educprof_school | 0.09 | |||
| (0.22) | ||||
| educuniversity | 0.47 | |||
| (0.29) | ||||
| enfenfants_oui | 0.77 | |||
| (0.43) | ||||
| activ25-75% | 0.80*** | |||
| (0.24) | ||||
| activ>=80% | 0.74** | |||
| (0.24) | ||||
| n_transitions | -0.02 | |||
| (0.22) | ||||
| AIC | 1968.98 | 1978.34 | 1942.69 | 1906.93 |
| BIC | 1991.50 | 1995.23 | 2004.60 | 2002.39 |
| Log Likelihood | -980.49 | -986.17 | -960.34 | -936.46 |
| Num. obs. | 2056 | 2056 | 2056 | 2029 |
| Num. groups: id:v2.idmen | 686 | 686 | 686 | 686 |
| Num. groups: v2.idmen | 343 | 343 | 343 | 343 |
| Var: id:v2.idmen (Intercept) | 0.03 | 1.60 | 1.17 | 1.25 |
| Var: v2.idmen (Intercept) | 0.06 | 4.58 | 4.56 | 4.72 |
| Var: Residual | 0.10 | |||
| ***p < 0.001; **p < 0.01; *p < 0.05 | ||||
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.