A Time Series Analysis of Amazon’s Month-to-Month Stock Price

Chris Bahm

2025-12-11

What Did I Do and Why?

Methods and Technology Used

Background of Dataset

Date Open High Low Close Adj Close Volume
1997-05-15 2.437500 2.500000 1.927083 1.958333 1.958333 72156000
1997-05-16 1.968750 1.979167 1.708333 1.729167 1.729167 14700000
1997-05-19 1.760417 1.770833 1.625000 1.708333 1.708333 6106800
1997-05-20 1.729167 1.750000 1.635417 1.635417 1.635417 5467200
1997-05-21 1.635417 1.645833 1.375000 1.427083 1.427083 18853200
1997-05-22 1.437500 1.447917 1.312500 1.395833 1.395833 11776800

My Procedure

Data Visualization

Data Visualization

Training Vs Testing Data

Model Creation - Exponential Smoothing and Holt

Model Type Explanation Trend? Seasonality? Assumptions
Simple Exponential Smoothing (SES) Weighted average; More recent observations = More weight No No Values are not changing much from what they’ve recently been
Holt Additive Generalized SES, but ADDS trend parameter Yes No Values increasing/decreasing in LINEAR fashion
Holt Additive W/Damp Generalized SES, ADDS trend parameter, but DAMPS parameter to reduce abs[trend’s impact] Yes No Linear increase/decrease, but will weaken in strength over time
Holt Multiplicative W/Damp Like additive iteration, but MULTIPLIES trend parameter Yes No Values increasing/decreasing by a RATE

Model Creation - Holt-Winters

Model Type Explanation Trend? Seasonality? Assumptions
Holt-Winters (HW) Additive Adds Data’s trend and constant oscillation due to seasonality Yes Yes Linear upward/downward overall trend; seasonal fluctuations from a constant
HW Additive W/Damp Add’s a DAMPED trend and constant seasonality Yes Yes Upward/downward overall trend appears linear, but its strengh is decreasing; seasonal fluctuations remain constant
HW Multiplicative Multiplies Data’s trend and proportional oscillation due to seasonality Yes Yes Upward/downward overall trend per a certain rate; seasonal fluctuations behave proportionally
HW Multiplicative W/Damp Multiplies a DAMPED trend and proportional seasonality Yes Yes Upward/downward overall trend per a certain rate, but will decrease in magnitude; proportional season fluctuations

Model Forecasts

Model Forecasts for Monthly Amazon Stock Openings ($USD)
Month True Values SES Holt Add Holt Add W/ Damp Holt Multiply W/ Damp HW Add HW Multiply HW Add W/ Damp HW Multiply W/ Damp
Nov 2020 3147.33 3241.35 3340.39 3289.48 3300.31 3331.56 3212.56 3318.53 3197.97
Dec 2020 3199.93 3241.35 3439.42 3327.95 3360.33 3419.13 3237.60 3389.56 3200.23
Jan 2021 3206.54 3241.35 3538.45 3358.72 3409.14 3526.80 3386.01 3470.33 3326.71
Feb 2021 3267.66 3241.35 3637.48 3383.34 3448.69 3636.39 3473.67 3557.02 3472.25
Mar 2021 3074.58 3241.35 3736.51 3403.03 3480.66 3719.15 3493.00 3614.45 3430.89
Apr 2021 3347.73 3241.35 3835.53 3418.79 3506.45 3847.23 3780.15 3711.32 3696.34
May 2021 3261.31 3241.35 3934.56 3431.39 3527.23 3979.00 3984.88 3811.29 3830.22
Jun 2021 3360.01 3241.35 4033.59 3441.48 3543.93 4087.03 4274.96 3880.84 3946.92
Jul 2021 3612.71 3241.35 4132.62 3449.54 3557.35 4207.22 4678.05 3961.56 4258.44
Aug 2021 3310.76 3241.35 4231.65 3456.00 3568.13 4293.29 4670.11 4008.19 4273.38
Sept 2021 3432.44 3241.35 4330.68 3461.16 3576.77 4395.84 4695.49 4064.64 4165.20
Oct 2021 3325.98 3241.35 4429.70 3465.29 3583.70 4479.89 4599.32 4099.32 4050.32

Model Evaluation

Model Accuracy Summary Table
ME RMSE MAE MPE MAPE MASE ACF1
SES 22.4633 78.0381 43.8711 2.6342 5.8786 0.1942 0.2736
Holt Add 6.3619 72.6341 39.5756 0.3233 5.5699 0.1752 0.14
Holt Add W/ Damp 10.27 72.0711 39.6539 1.124 5.7019 0.1755 -0.0207
Holt Multiply W/ Damp 8.728 71.712 39.3588 0.9515 5.7406 0.1742 -0.0186
HW Add 6.1619 70.4673 41.937 0.3457 7.9333 0.1856 0.1267
HW Multiply 6.1625 67.4218 41.9806 0.1399 6.6633 0.1858 0.0722
HW Add W/ Damp 9.0695 70.5768 42.2699 0.7657 8.0253 0.1871 0.1107
HW Multiply W/ Damp 11.6052 61.579 39.8682 0.9885 6.2923 0.1765 0.1686

Model Plotting

Choosing Between Top Models

Prediction and Error Breakdown for SES and Additive Holt Models
Month True Values SES SES Errors Holt Add W/ Damp Holt Errors
Nov 2020 3147.33 3241.35 94.02 3289.48 142.15
Dec 2020 3199.93 3241.35 41.42 3327.95 128.02
Jan 2021 3206.54 3241.35 34.81 3358.72 152.18
Feb 2021 3267.66 3241.35 -26.31 3383.34 115.68
Mar 2021 3074.58 3241.35 166.77 3403.03 328.45
Apr 2021 3347.73 3241.35 -106.38 3418.79 71.06
May 2021 3261.31 3241.35 -19.96 3431.39 170.08
Jun 2021 3360.01 3241.35 -118.66 3441.48 81.47
Jul 2021 3612.71 3241.35 -371.36 3449.54 -163.17
Aug 2021 3310.76 3241.35 -69.41 3456 145.24
Sept 2021 3432.44 3241.35 -191.09 3461.16 28.72
Oct 2021 3325.98 3241.35 -84.63 3465.29 139.31
Average 3295.58 3241.35 -54.23 3407.18 111.6

Choosing Between Top Models

Final Model Selction

SES Accuracy Measures Calculated via Testing Data
ME -54.23
MSE 21039.21
MPE -1.49
MAPE 3.28

Conclusions/Explanations

Why did the simplest model perform the best?

1.) The massive spike in the rate of Amazon’s stock increase from about 2018 to October of 2021

Conclusions/Explanations

2.) Seasonal oscillations mirrored the overall data trend, disparities grew at exponential rate over the last ~ 4 years of data set

Conclusions/Explanations

3.) Damping parameter phi (pronounced “fee”) (\(\phi\)) was too high

Takeaways / Lessons

Changes/Ideas for Future Analyses

References

Original Dataset Source:

Dataset Download Link via Github:

My Complete Report:

Q&A