empid = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
empid
##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
age = c(30,37,45,32,50,60,35,32,34,43,32,30,43,50,60)
age
##  [1] 30 37 45 32 50 60 35 32 34 43 32 30 43 50 60
gender = c(0,1,0,1,1,1,0,0,1,0,0,1,1,0,0)
gender
##  [1] 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0
status = c(1,1,2,2,1,1,1,2,2,1,2,1,2,1,2)
status
##  [1] 1 1 2 2 1 1 1 2 2 1 2 1 2 1 2
empinfo <- data.frame(empid,age,gender,status)
empinfo
##    empid age gender status
## 1      1  30      0      1
## 2      2  37      1      1
## 3      3  45      0      2
## 4      4  32      1      2
## 5      5  50      1      1
## 6      6  60      1      1
## 7      7  35      0      1
## 8      8  32      0      2
## 9      9  34      1      2
## 10    10  43      0      1
## 11    11  32      0      2
## 12    12  30      1      1
## 13    13  43      1      2
## 14    14  50      0      1
## 15    15  60      0      2
empinfo$gender = factor(empinfo$gender, labels = c("male","female"))
empinfo$gender
##  [1] male   female male   female female female male   male   female male  
## [11] male   female female male   male  
## Levels: male female
empinfo$status = factor(empinfo$status, labels = c("staff","faculty"))
empinfo$status
##  [1] staff   staff   faculty faculty staff   staff   staff   faculty faculty
## [10] staff   faculty staff   faculty staff   faculty
## Levels: staff faculty
male = subset(empinfo,gender == "male")
female = subset(empinfo,gender == "female")

summary(empinfo)
##      empid           age           gender      status 
##  Min.   : 1.0   Min.   :30.00   male  :8   staff  :8  
##  1st Qu.: 4.5   1st Qu.:32.00   female:7   faculty:7  
##  Median : 8.0   Median :37.00                         
##  Mean   : 8.0   Mean   :40.87                         
##  3rd Qu.:11.5   3rd Qu.:47.50                         
##  Max.   :15.0   Max.   :60.00
summary(male)
##      empid             age           gender      status 
##  Min.   : 1.000   Min.   :30.00   male  :8   staff  :4  
##  1st Qu.: 6.000   1st Qu.:32.00   female:0   faculty:4  
##  Median : 9.000   Median :39.00                         
##  Mean   : 8.625   Mean   :40.88                         
##  3rd Qu.:11.750   3rd Qu.:46.25                         
##  Max.   :15.000   Max.   :60.00
summary(female)
##      empid             age           gender      status 
##  Min.   : 2.000   Min.   :30.00   male  :0   staff  :4  
##  1st Qu.: 4.500   1st Qu.:33.00   female:7   faculty:3  
##  Median : 6.000   Median :37.00                         
##  Mean   : 7.286   Mean   :40.86                         
##  3rd Qu.:10.500   3rd Qu.:46.50                         
##  Max.   :13.000   Max.   :60.00
summary(age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   30.00   32.00   37.00   40.87   47.50   60.00
table1 = table(empinfo$gender)

table1 
## 
##   male female 
##      8      7
table2 = table(empinfo$status)

table2
## 
##   staff faculty 
##       8       7
table3 = table(empinfo$gender, empinfo$status)

table3
##         
##          staff faculty
##   male       4       4
##   female     4       3
plot(empinfo$age, type = 'l', main = 'Age of Employess', xlab = "Employee ID", ylab = "Age ( Years)", col = "blue")

pie(table1)

barplot(table3,beside = T,xlim=c(1,15),ylim=c(0,5),col = c("blue","red"))
legend('topright',legend=rownames(table3),fill =c("blue","red"),bty="n")

boxplot(empinfo$age~empinfo$status,col = c('red','blue'))