# Load packages
 
# Core
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.2
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo 
## ── Attaching core tidyquant packages ─────────────────────── tidyquant 1.0.11 ──
## ✔ PerformanceAnalytics 2.0.8      ✔ TTR                  0.24.4
## ✔ quantmod             0.4.28     ✔ xts                  0.14.1── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date()                 masks base::as.Date()
## ✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
## ✖ dplyr::filter()                masks stats::filter()
## ✖ xts::first()                   masks dplyr::first()
## ✖ dplyr::lag()                   masks stats::lag()
## ✖ xts::last()                    masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary()            masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggrepel)

Goal

Measure portfolio risk using kurtosis. It describes the fatness of the tails in probability distributions. In other words, it measures whether a distribution has more or less returns in its tails than the normal distribution. It matters to investors because a distribution with excess kurtosis (kurtosis > 3) means our portfolio might be at risk of a rare but huge downside event. Kurtosis less than 3 means the portfolio is less risky because it has fewer returns in the tails.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
 
prices <- tq_get(x    = symbols,
                 get  = "stock.prices",   
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
   
    group_by(symbol) %>%
   
    tq_transmute(select     = adjusted,
                 mutate_fun = periodReturn,
                 period     = "monthly",
                 type       = "log") %>%
   
    slice(-1) %>%
   
    ungroup() %>%
   
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio
 
portfolio_returns_tbl <- asset_returns_tbl %>%
   
    tq_portfolio(assets_col = asset,
                 returns_col = returns,
                 weights = w_tbl,
                 rebalance_on = "months",
                 col_rename = "returns")
## Warning in check_weights(weights, assets_col, map, x): Sum of weights does not
## equal 1.
portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Calculate Skewness

portfolio_returns_tbl %>%
 
    tq_performance(Ra = returns,
                   Rb = NULL,
                   performance_fun = table.Stats) %>%
    select(Kurtosis)
## # A tibble: 1 × 1
##   Kurtosis
##      <dbl>
## 1    0.488

6 Plot

Distribution of portfolio returns

portfolio_returns_tbl %>%
    ggplot(aes(returns)) +
    geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Expected Return vs Risk

# Figure 6.3 Asset and Portfolio Kurtosis Comparison ----
 
asset_returns_kurtosis_tbl <- asset_returns_tbl %>%
 
    # kurtosis for each asset
    group_by(asset) %>%
    summarise(kt = kurtosis(returns),
              mean = mean(returns)) %>%
    ungroup() %>%
 
    # kurtosis of portfolio
    add_row(tibble(asset = "Portfolio",
                   kt = kurtosis(portfolio_returns_tbl$returns),
                   mean = mean(portfolio_returns_tbl$returns)))
 
asset_returns_kurtosis_tbl %>%
 
    ggplot(aes(kt, mean)) +
    geom_point() +
   
    # Formatting
    scale_y_continuous(labels = scales::percent_format(accuracy = 0.1)) +
    theme(legend.position = "none") +
 
    # Add label
    ggrepel::geom_text_repel(aes(label = asset, color = asset), size = 5) +
 
    labs(y = "Expected Return",
         x = "Kurtosis")

Rolling kurtosis

# 3 Rolling kurtosis ----
 
# Assign a value to winder
window <- 24
 
port_rolling_kurtosis_tbl <- portfolio_returns_tbl %>%
 
    tq_mutate(select = returns,
              mutate_fun = rollapply,
              width      = window,
              FUN        = kurtosis,
              col_rename = "rolling_kurtosis") %>%
    select(date, rolling_kurtosis) %>%
    na.omit()
 
# Figure 6.5 Rolling kurtosis ggplot ----
 
port_rolling_kurtosis_tbl %>%
 
    ggplot(aes(date, rolling_kurtosis)) +
    geom_line(color = "cornflowerblue") +
 
    scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
    scale_x_date(breaks = scales::breaks_pretty(n = 7)) +
 
    labs(title = paste0("Rolling ", window, "-Month Kurtosis"),
         x = NULL,
         y = "kurtosis") +
    theme(plot.title = element_text(hjust = 0.5)) +
 
    annotate(geom = "text",
             x = as.Date("2016-12-01"), y = 3,
             color = "red", size = 5,
             label = str_glue("The risk level skyrocketed at the end of the period
                              with the 24-month kurtosis rising above three."))