# Load packages
# Core
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.2
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## ── Attaching core tidyquant packages ─────────────────────── tidyquant 1.0.11 ──
## ✔ PerformanceAnalytics 2.0.8 ✔ TTR 0.24.4
## ✔ quantmod 0.4.28 ✔ xts 0.14.1── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date() masks base::as.Date()
## ✖ zoo::as.Date.numeric() masks base::as.Date.numeric()
## ✖ dplyr::filter() masks stats::filter()
## ✖ xts::first() masks dplyr::first()
## ✖ dplyr::lag() masks stats::lag()
## ✖ xts::last() masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary() masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggrepel)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("XOM", "CVX", "COP", "BP", "SHEL")
# Using tq_get() ----
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
# remane
set_names(c("asset", "date", "returns"))
# period_returns = c("yearly", "quarterly", "monthly", "weekly")
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.25,
0.25,
0.20,
0.20,
0.10)
w_tbl <- tibble(symbols, w)
portfolio_returns_rebalanced_monthly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "months")
## Warning in check_weights(weights, assets_col, map, x): Sum of weights does not
## equal 1.
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0377
## 2 2013-02-28 -0.0251
## 3 2013-03-28 0.0228
## 4 2013-04-30 0.0212
## 5 2013-05-31 0.00831
## 6 2013-06-28 -0.0257
## 7 2013-07-31 0.0481
## 8 2013-08-30 -0.0144
## 9 2013-09-30 0.0200
## 10 2013-10-31 0.0457
## # ℹ 50 more rows
# write_rds(portfolio_returns_rebalanced_monthly_tbl,
# "00_data/Ch03_portfolio_returns_rebalanced_monthly_tbl.rds")
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4) * 100)
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0507 5.07
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(date, returns)) +
geom_point(color = "cornflowerblue", size = 2) +
labs(title = "Scatterplot of Returns by Date") +
theme(plot.title = element_text(hjust = 0.5))
sd_plot <- sd(portfolio_returns_rebalanced_monthly_tbl$returns)
mean_plot <- mean(portfolio_returns_rebalanced_monthly_tbl$returns)
portfolio_returns_rebalanced_monthly_tbl %>%
mutate(hist_col = case_when(
returns > mean_plot + sd_plot ~ "high",
returns < mean_plot - sd_plot ~ "middle",
TRUE ~ "low"
)) %>%
ggplot(aes(date, returns, col = hist_col)) +
geom_point(size = 2) +
labs(title = "Colored Scatter") +
theme(plot.title = element_text(hjust = 0.5))
sd_plot <- sd(portfolio_returns_rebalanced_monthly_tbl$returns)
mean_plot <- mean(portfolio_returns_rebalanced_monthly_tbl$returns)
portfolio_returns_rebalanced_monthly_tbl %>%
mutate(hist_col = case_when(
returns > mean_plot + sd_plot ~ "high",
returns < mean_plot - sd_plot ~ "middle",
TRUE ~ "low"
)) %>%
ggplot(aes(date, returns, col = hist_col)) +
geom_point(size = 2) +
labs(title = "Colored Scatter with Line") +
theme(plot.title = element_text(hjust = 0.5)) +
geom_hline(yintercept = mean_plot + sd_plot, linetype = "dotted", color = "purple") +
geom_hline(yintercept = mean_plot - sd_plot, linetype = "dotted", color = "purple")
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0377
## 2 2013-02-28 -0.0251
## 3 2013-03-28 0.0228
## 4 2013-04-30 0.0212
## 5 2013-05-31 0.00831
## 6 2013-06-28 -0.0257
## 7 2013-07-31 0.0481
## 8 2013-08-30 -0.0144
## 9 2013-09-30 0.0200
## 10 2013-10-31 0.0457
## # ℹ 50 more rows
asset_returns_sd_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(asset, Stdev) %>%
ungroup() %>%
add_row(tibble(asset = "Portfolio",
Stdev = sd(portfolio_returns_rebalanced_monthly_tbl$returns)))
asset_returns_sd_tbl %>%
# Plot
ggplot(aes(asset, Stdev, col = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_returns_sd_tbl %>%
filter(asset == "Portfolio")) +
labs(title = "")
asset_returns_sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(asset, Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
add_row(tibble(asset = "Portfolio",
Mean = mean(portfolio_returns_rebalanced_monthly_tbl$returns),
Stdev = sd(portfolio_returns_rebalanced_monthly_tbl$returns)))
asset_returns_sd_mean_tbl %>%
ggplot(aes(Stdev, Mean, col = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
window <- 24
port_rolling_sd_tbl <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = sd,
col_rename = "rolling_sd") %>%
select(date, rolling_sd) %>%
na.omit()
port_rolling_sd_tbl %>%
ggplot(aes(date, rolling_sd)) +
geom_line(color = "cornflowerblue") +
scale_y_continuous(labels = scales::percent) +
scale_x_date(breaks = scales::breaks_pretty(n = 7))+
labs(title = "24-Month Rolling Volatility",
x = NULL,
y = NULL) +
theme(plot.title = element_text(hjust = 0.5))
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
I would invest my money in Shell because, based on the data, it offers the strongest potential for profit among the companies I evaluated. It has the highest expected return while also carrying the lowest level of risk, making it the most attractive option overall.