gmodels::CrossTable(final_master$discont_before_day3)
## Registered S3 method overwritten by 'gdata':
## method from
## reorder.factor DescTools
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 243
##
##
## | 0 | 1 |
## |-----------|-----------|
## | 154 | 89 |
## | 0.634 | 0.366 |
## |-----------|-----------|
##
##
##
##
gmodels::CrossTable(final_master$pc_change_before_day3)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 243
##
##
## | 0 | 1 |
## |-----------|-----------|
## | 206 | 37 |
## | 0.848 | 0.152 |
## |-----------|-----------|
##
##
##
##
gmodels::CrossTable(final_master$pc_nochange_after_day3)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 243
##
##
## | 0 | 1 |
## |-----------|-----------|
## | 171 | 72 |
## | 0.704 | 0.296 |
## |-----------|-----------|
##
##
##
##
new <- final_master %>% mutate(new_var=case_when(pc_nochange_after_day3==1 ~ "group B:pc_nochange_after_day3",
pc_change_before_day3 ==1 ~ "group A:pc_change_before_day3")
) %>% filter(!is.na(new_var))
table1(~new_var|hrs_responders_cat_2,new)
| 0 (N=31) |
1 (N=78) |
Overall (N=109) |
|
|---|---|---|---|
| new_var | |||
| group A:pc_change_before_day3 | 15 (48.4%) | 22 (28.2%) | 37 (33.9%) |
| group B:pc_nochange_after_day3 | 16 (51.6%) | 56 (71.8%) | 72 (66.1%) |
chisq.test(new$new_var,new$hrs_responders_cat_2)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: new$new_var and new$hrs_responders_cat_2
## X-squared = 3.1799, df = 1, p-value = 0.07455
final_master$pc_change_before_day3 <- as.factor(final_master$pc_change_before_day3)
table1(~pc_change_before_day3|ckd_baseline,final_master %>% filter(!is.na(ckd_baseline)))
## Warning in table1.formula(~pc_change_before_day3 | ckd_baseline, final_master
## %>% : Terms to the right of '|' in formula 'x' define table columns and are
## expected to be factors with meaningful labels.
| 0 (N=127) |
1 (N=89) |
Overall (N=216) |
|
|---|---|---|---|
| pc_change_before_day3 | |||
| 0 | 105 (82.7%) | 79 (88.8%) | 184 (85.2%) |
| 1 | 22 (17.3%) | 10 (11.2%) | 32 (14.8%) |
chisq.test(final_master$pc_change_before_day3,final_master$ckd_baseline)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: final_master$pc_change_before_day3 and final_master$ckd_baseline
## X-squared = 1.0918, df = 1, p-value = 0.2961
gmodels::CrossTable(final_master$pc_day3)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 243
##
##
## | 0 | 1 |
## |-----------|-----------|
## | 203 | 40 |
## | 0.835 | 0.165 |
## |-----------|-----------|
##
##
##
##
table1(~ Discont_Day | pc_change_before_day3, data = final_master,render.continuous = c(.="Mean (SD)", .="Median [Q1, Q3]"))
| 0 (N=206) |
1 (N=37) |
Overall (N=243) |
|
|---|---|---|---|
| Discont_Day | |||
| Mean (SD) | 3.53 (2.76) | 6.76 (2.68) | 4.02 (2.98) |
| Median [Q1, Q3] | 3.00 [1.25, 4.00] | 6.00 [4.00, 8.00] | 3.00 [2.00, 5.00] |
table1(~ Discont_Day |pc_nochange_after_day3 , data = final_master,render.continuous = c(.="Mean (SD)", .="Median [Q1, Q3]") )
## Warning in table1.formula(~Discont_Day | pc_nochange_after_day3, data =
## final_master, : Terms to the right of '|' in formula 'x' define table columns
## and are expected to be factors with meaningful labels.
| 0 (N=171) |
1 (N=72) |
Overall (N=243) |
|
|---|---|---|---|
| Discont_Day | |||
| Mean (SD) | 3.04 (2.48) | 6.38 (2.75) | 4.02 (2.98) |
| Median [Q1, Q3] | 2.00 [1.00, 3.00] | 5.50 [4.00, 8.00] | 3.00 [2.00, 5.00] |
gmodels::CrossTable(final_master_hrs_responders_group_1$discont_before_day3)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 134
##
##
## | 0 | 1 |
## |-----------|-----------|
## | 104 | 30 |
## | 0.776 | 0.224 |
## |-----------|-----------|
##
##
##
##
gmodels::CrossTable(final_master_hrs_responders_group_1$pc_change_before_day3)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 134
##
##
## | 0 | 1 |
## |-----------|-----------|
## | 112 | 22 |
## | 0.836 | 0.164 |
## |-----------|-----------|
##
##
##
##
gmodels::CrossTable(final_master_hrs_responders_group_1$pc_nochange_after_day3)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 134
##
##
## | 0 | 1 |
## |-----------|-----------|
## | 78 | 56 |
## | 0.582 | 0.418 |
## |-----------|-----------|
##
##
##
##
gmodels::CrossTable(final_master_hrs_responders_group_1$pc_day3)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 134
##
##
## | 0 | 1 |
## |-----------|-----------|
## | 110 | 24 |
## | 0.821 | 0.179 |
## |-----------|-----------|
##
##
##
##
table1(~ Discont_Day | pc_change_before_day3, data = final_master_hrs_responders_group_1,render.continuous = c(.="Mean (SD)", .="Median [Q1, Q3]"))
## Warning in table1.formula(~Discont_Day | pc_change_before_day3, data =
## final_master_hrs_responders_group_1, : Terms to the right of '|' in formula 'x'
## define table columns and are expected to be factors with meaningful labels.
| 0 (N=112) |
1 (N=22) |
Overall (N=134) |
|
|---|---|---|---|
| Discont_Day | |||
| Mean (SD) | 4.48 (3.16) | 6.59 (2.77) | 4.83 (3.18) |
| Median [Q1, Q3] | 4.00 [2.00, 6.00] | 6.00 [4.00, 7.75] | 4.00 [3.00, 6.00] |
table1(~ Discont_Day |pc_nochange_after_day3 , data = final_master_hrs_responders_group_1,render.continuous = c(.="Mean (SD)", .="Median [Q1, Q3]") )
## Warning in table1.formula(~Discont_Day | pc_nochange_after_day3, data =
## final_master_hrs_responders_group_1, : Terms to the right of '|' in formula 'x'
## define table columns and are expected to be factors with meaningful labels.
| 0 (N=78) |
1 (N=56) |
Overall (N=134) |
|
|---|---|---|---|
| Discont_Day | |||
| Mean (SD) | 3.45 (2.61) | 6.75 (2.92) | 4.83 (3.18) |
| Median [Q1, Q3] | 3.00 [2.00, 4.00] | 6.00 [4.00, 8.25] | 4.00 [3.00, 6.00] |
#1 Univariate logistic regression outcome hrs_responders_cat_2: aclf_grade_new 3 lvls
table(final_master$hrs_responders_cat_2,final_master$aclf_grade)
##
## 0 1 2 3
## 0 0 19 31 59
## 1 2 28 54 50
final_master %>%
select(sbp_previous_comp,refascites_previous_comp,scr_terli_day0,tbili_admit,aclf_grade_3,hrs_responders_cat_2) %>%
tbl_uvregression(
method = glm,
method.args = list(family = binomial),
y = hrs_responders_cat_2,
pvalue_fun = ~style_pvalue(.x, digits = 3),
exponentiate = TRUE
) %>%
bold_p(0.05) %>% # bold p-values under a given threshold (default 0.05)
bold_labels()
| Characteristic | N | OR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| sbp_previous_comp | 241 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 2.32 | 1.17, 4.82 | 0.019 | |
| refascites_previous_comp | 204 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 1.90 | 1.09, 3.34 | 0.025 | |
| scr_terli_day0 | 243 | 0.73 | 0.56, 0.95 | 0.021 |
| tbili_admit | 235 | 0.96 | 0.94, 0.99 | 0.002 |
| aclf_grade_3 | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.50 | 0.30, 0.84 | 0.009 | |
| 1 OR = Odds Ratio, CI = Confidence Interval | ||||
#1 Multivariate logistic regression outcome hrs_responders_cat_2
glm(
hrs_responders_cat_2 ~ sbp_previous_comp + refascites_previous_comp +
scr_terli_day0 + tbili_admit +aclf_grade_3,
data = final_master,
family = binomial
) %>% tbl_regression(pvalue_fun = ~style_pvalue(.x, digits = 3),
exponentiate = TRUE) %>%
bold_p(0.05) %>% # bold p-values under a given threshold (default 0.05)
bold_labels()
| Characteristic | OR1 | 95% CI1 | p-value |
|---|---|---|---|
| sbp_previous_comp | |||
|     0 | — | — | |
| Â Â Â Â 1 | 2.03 | 0.94, 4.64 | 0.078 |
| refascites_previous_comp | |||
|     0 | — | — | |
| Â Â Â Â 1 | 1.53 | 0.82, 2.84 | 0.179 |
| scr_terli_day0 | 0.82 | 0.59, 1.13 | 0.222 |
| tbili_admit | 0.98 | 0.95, 1.01 | 0.147 |
| aclf_grade_3 | |||
|     0 | — | — | |
| Â Â Â Â 1 | 0.86 | 0.45, 1.67 | 0.651 |
| 1 OR = Odds Ratio, CI = Confidence Interval | |||
#2 Univariate logistic regression outcome HRS_reversal_new
final_master %>%
select(scr_terli_day0,sodium_admit,sbp_previous_comp,refascites_previous_comp,hcc_previous_comp,clif_c_score,HRS_reversal_new) %>%
tbl_uvregression(
method = glm,
method.args = list(family = binomial),
y = HRS_reversal_new,
pvalue_fun = ~style_pvalue(.x, digits = 3),
exponentiate = TRUE
) %>%
bold_p(0.05) %>% # bold p-values under a given threshold (default 0.05)
bold_labels()
| Characteristic | N | OR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| scr_terli_day0 | 243 | 0.35 | 0.23, 0.51 | <0.001 |
| sodium_admit | 234 | 0.94 | 0.90, 0.98 | 0.003 |
| sbp_previous_comp | 241 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 2.58 | 1.33, 5.03 | 0.005 | |
| refascites_previous_comp | 204 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 2.11 | 1.15, 3.96 | 0.018 | |
| hcc_previous_comp | 242 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 3.02 | 1.19, 7.82 | 0.020 | |
| clif_c_score | 234 | 0.94 | 0.90, 0.97 | <0.001 |
| 1 OR = Odds Ratio, CI = Confidence Interval | ||||
#2 Multivariate logistic regression outcome HRS_reversal_new
glm(
HRS_reversal_new ~ scr_terli_day0+sodium_admit+sbp_previous_comp+refascites_previous_comp+hcc_previous_comp+clif_c_score,
data = final_master,
family = binomial
) %>% tbl_regression(pvalue_fun = ~style_pvalue(.x, digits = 3),
exponentiate = TRUE) %>%
bold_p(0.05) %>% # bold p-values under a given threshold (default 0.05)
bold_labels()
| Characteristic | OR1 | 95% CI1 | p-value |
|---|---|---|---|
| scr_terli_day0 | 0.43 | 0.26, 0.67 | <0.001 |
| sodium_admit | 0.95 | 0.90, 1.00 | 0.044 |
| sbp_previous_comp | |||
|     0 | — | — | |
| Â Â Â Â 1 | 3.59 | 1.54, 8.61 | 0.003 |
| refascites_previous_comp | |||
|     0 | — | — | |
| Â Â Â Â 1 | 1.24 | 0.60, 2.56 | 0.564 |
| hcc_previous_comp | |||
|     0 | — | — | |
| Â Â Â Â 1 | 2.16 | 0.64, 7.22 | 0.207 |
| clif_c_score | 0.95 | 0.91, 1.00 | 0.044 |
| 1 OR = Odds Ratio, CI = Confidence Interval | |||
#3.1 Unviariate cmp: time_to_death_status_90days_cmp failcode=1 :
## 10 cases omitted due to missing values
## 8 cases omitted due to missing values
| Characteristic | N | HR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| hrs_responders_cat_2 | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.56 | 0.38, 0.83 | 0.004 | |
| scr_terli_day0 | 243 | 1.04 | 0.85, 1.26 | 0.710 |
| akin | 233 | |||
|     1 | — | — | ||
| Â Â Â Â 2 | 1.40 | 0.80, 2.46 | 0.240 | |
| Â Â Â Â 3 | 1.50 | 0.89, 2.53 | 0.130 | |
| tbili_admit | 235 | 1.01 | 1.00, 1.03 | 0.067 |
| aclf_grade_3 | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 1.93 | 1.31, 2.86 | <0.001 | |
| 1 HR = Hazard Ratio, CI = Confidence Interval | ||||
#3.1 Multiviariate cmp: time_to_death_status_90days_cmp failcode=1
## 18 cases omitted due to missing values
| Characteristic | N | HR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| hrs_responders_cat_2 | 225 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.59 | 0.39, 0.90 | 0.015 | |
| scr_terli_day0 | 225 | 0.87 | 0.67, 1.12 | 0.3 |
| akin | 225 | |||
|     1 | — | — | ||
| Â Â Â Â 2 | 1.40 | 0.79, 2.48 | 0.2 | |
| Â Â Â Â 3 | 1.67 | 0.92, 3.03 | 0.090 | |
| tbili_admit | 225 | 1.0 | 0.98, 1.01 | 0.6 |
| aclf_grade_3 | 225 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 2.01 | 1.24, 3.24 | 0.004 | |
| 1 HR = Hazard Ratio, CI = Confidence Interval | ||||
#3.2 Unviariate cmp: time_to_death_status_90days_cmp failcode=1
## 10 cases omitted due to missing values
## 8 cases omitted due to missing values
| Characteristic | N | HR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| HRS_reversal_new | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.66 | 0.42, 1.02 | 0.059 | |
| scr_terli_day0 | 243 | 1.04 | 0.85, 1.26 | 0.710 |
| akin | 233 | |||
|     1 | — | — | ||
| Â Â Â Â 2 | 1.40 | 0.80, 2.46 | 0.240 | |
| Â Â Â Â 3 | 1.50 | 0.89, 2.53 | 0.130 | |
| tbili_admit | 235 | 1.01 | 1.00, 1.03 | 0.067 |
| aclf_grade_3 | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 1.93 | 1.31, 2.86 | <0.001 | |
| 1 HR = Hazard Ratio, CI = Confidence Interval | ||||
#3.2 Multiviariate cmp: time_to_death_status_90days_cmp failcode=1
## 18 cases omitted due to missing values
| Characteristic | N | HR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| HRS_reversal_new | 225 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.62 | 0.37, 1.02 | 0.061 | |
| scr_terli_day0 | 225 | 0.82 | 0.62, 1.08 | 0.2 |
| akin | 225 | |||
|     1 | — | — | ||
| Â Â Â Â 2 | 1.42 | 0.80, 2.54 | 0.2 | |
| Â Â Â Â 3 | 1.70 | 0.93, 3.10 | 0.086 | |
| tbili_admit | 225 | 1.00 | 0.98, 1.02 | 0.8 |
| aclf_grade_3 | 225 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 1.98 | 1.23, 3.18 | 0.005 | |
| 1 HR = Hazard Ratio, CI = Confidence Interval | ||||
#4.1 Unviariate cmp: time_to_death_status_90days_cmp failcode=1:
| Characteristic | N | HR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| hrs_responders_cat_2 | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.56 | 0.38, 0.83 | 0.004 | |
| age | 243 | 1.01 | 0.99, 1.03 | 0.410 |
| race_2 | 243 | 1.06 | 0.62, 1.80 | 0.830 |
| hispanic | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.76 | 0.43, 1.36 | 0.360 | |
| admit_meld_3 | 243 | 1.02 | 1.00, 1.05 | 0.070 |
| center | 243 | 1.04 | 0.96, 1.13 | 0.350 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | ||||
#4.1 Multiviariate cmp: time_to_death_status_90days_cmp failcode=1
| Characteristic | N | HR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| hrs_responders_cat_2 | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.57 | 0.38, 0.85 | 0.005 | |
| age | 243 | 1.02 | 1.00, 1.04 | 0.10 |
| race_2 | 243 | 1.12 | 0.64, 1.96 | 0.7 |
| hispanic | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.85 | 0.49, 1.50 | 0.6 | |
| admit_meld_3 | 243 | 1.03 | 1.00, 1.06 | 0.049 |
| center | 243 | 1.04 | 0.96, 1.13 | 0.4 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | ||||
#4.2 Unviariate cmp: time_to_death_status_90days_cmp failcode=1
## 2 cases omitted due to missing values
| Characteristic | N | HR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| HRS_reversal_new | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.66 | 0.42, 1.02 | 0.059 | |
| race | 241 | |||
|     1 | — | — | ||
| Â Â Â Â 2 | 0.67 | 0.24, 1.83 | 0.430 | |
| Â Â Â Â 3 | 0.00 | 0.00, 0.00 | <0.001 | |
| Â Â Â Â 4 | 1.38 | 0.76, 2.49 | 0.280 | |
| hispanic | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.76 | 0.43, 1.36 | 0.360 | |
| admit_meld_3 | 243 | 1.02 | 1.00, 1.05 | 0.070 |
| center | 243 | 1.04 | 0.96, 1.13 | 0.350 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | ||||
#4.2 Multiviariate cmp: time_to_death_status_90days_cmp failcode=1
| Characteristic | N | HR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| HRS_reversal_new | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.73 | 0.46, 1.15 | 0.2 | |
| age | 243 | 1.01 | 0.99, 1.03 | 0.2 |
| race_2 | 243 | 1.14 | 0.66, 1.97 | 0.6 |
| hispanic | 243 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.79 | 0.44, 1.40 | 0.4 | |
| admit_meld_3 | 243 | 1.03 | 1.00, 1.06 | 0.063 |
| center | 243 | 1.03 | 0.94, 1.12 | 0.5 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | ||||
#5 survived_day3 Multiviariate cmp: time_to_death_status_90days_cmp failcode=1
| Characteristic | N | HR1 | 95% CI1 | p-value |
|---|---|---|---|---|
| hrs_responders_cat_2 | 236 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.61 | 0.40, 0.92 | 0.019 | |
| age | 236 | 1.02 | 1.00, 1.04 | 0.056 |
| race_2 | 236 | 1.14 | 0.64, 2.01 | 0.7 |
| hispanic | 236 | |||
|     0 | — | — | ||
| Â Â Â Â 1 | 0.84 | 0.47, 1.51 | 0.6 | |
| admit_meld_3 | 236 | 1.04 | 1.01, 1.07 | 0.018 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | ||||
| hrs_responders_cat_2 | n_baseline_scr | n_last_scr | n_scr_terli_day0 | n_scr_terli_day1 | n_scr_terli_day2 | n_scr_terli_day3 | n_scr_day1_post_terli | n_scr_day2_post_terli | n_scr_day3_post_terli | n_dc_scr |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 109 | 107 | 109 | 108 | 74 | 49 | 95 | 90 | 87 | 87 |
| 1 | 133 | 132 | 134 | 133 | 116 | 103 | 115 | 103 | 98 | 118 |
| HRS_reversal_new | n_baseline_scr | n_last_scr | n_scr_terli_day0 | n_scr_terli_day1 | n_scr_terli_day2 | n_scr_terli_day3 | n_scr_day1_post_terli | n_scr_day2_post_terli | n_scr_day3_post_terli | n_dc_scr |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 167 | 165 | 168 | 166 | 119 | 87 | 143 | 133 | 129 | 137 |
| 1 | 75 | 74 | 75 | 75 | 71 | 65 | 67 | 60 | 56 | 68 |
| 0 (N=201) |
1 (N=42) |
Overall (N=243) |
|
|---|---|---|---|
| totalalbumin_before_terli | |||
| Mean (SD) | 237 (171) | 302 (238) | 247 (184) |
| Median [Q1, Q3] | 200 [113, 350] | 225 [175, 359] | 200 [125, 350] |
| Missing | 17 (8.5%) | 8 (19.0%) | 25 (10.3%) |
##
## Wilcoxon rank sum test with continuity correction
##
## data: totalalbumin_before_terli by any_ae
## W = 2616.5, p-value = 0.1301
## alternative hypothesis: true location shift is not equal to 0
| 0 (N=201) |
1 (N=42) |
Overall (N=243) |
|
|---|---|---|---|
| totalalbumin_before_terli | |||
| Mean (SD) | 217 (177) | 244 (245) | 222 (190) |
| Median [Q1, Q3] | 188 [75.0, 325] | 200 [87.5, 331] | 188 [75.0, 325] |
##
## Wilcoxon rank sum test with continuity correction
##
## data: totalalbumin_before_terli by any_ae
## W = 4156.5, p-value = 0.8771
## alternative hypothesis: true location shift is not equal to 0
| 0 (N=220) |
1 (N=23) |
Overall (N=243) |
|
|---|---|---|---|
| totalalbumin_before_terli | |||
| Mean (SD) | 239 (172) | 329 (270) | 247 (184) |
| Median [Q1, Q3] | 200 [125, 350] | 250 [179, 394] | 200 [125, 350] |
| Missing | 22 (10.0%) | 3 (13.0%) | 25 (10.3%) |
##
## Wilcoxon rank sum test with continuity correction
##
## data: totalalbumin_before_terli by terli_ae_respfail
## W = 1567.5, p-value = 0.1251
## alternative hypothesis: true location shift is not equal to 0
| 0 (N=220) |
1 (N=23) |
Overall (N=243) |
|
|---|---|---|---|
| totalalbumin_before_terli | |||
| Mean (SD) | 215 (178) | 286 (276) | 222 (190) |
| Median [Q1, Q3] | 188 [75.0, 321] | 225 [93.8, 369] | 188 [75.0, 325] |
##
## Wilcoxon rank sum test with continuity correction
##
## data: totalalbumin_before_terli by terli_ae_respfail
## W = 2194.5, p-value = 0.2958
## alternative hypothesis: true location shift is not equal to 0