#Aim
To quantify and compare the proportion of macroinvertebrates consumed by Poecilia reticulata, Poecilia vivipara, and Phalloceros harpagos under controlled mesocosm conditions.
To account for the large number of zero observations in the dataset, we initially fit a zero-inflated beta GLMM. The model included standard length and species as fixed effects, mesocosm identity as a random intercept, and species as a predictor of the zero-inflation probability.
## Family: beta ( logit )
## Formula: X.inv ~ StandardLenght + Sp + (1 | microcosm)
## Zero inflation: ~Sp
## Data: data_meso
##
## AIC BIC logLik -2*log(L) df.resid
## 59.9 78.6 -20.9 41.9 50
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## microcosm (Intercept) 0.4794 0.6924
## Number of obs: 59, groups: microcosm, 15
##
## Dispersion parameter for beta family (): 6.02
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.10811 0.91569 -1.210 0.22623
## StandardLenght 0.02163 0.03159 0.685 0.49346
## SpP. reticulata 0.50691 0.64525 0.786 0.43210
## SpP. vivipara -1.99596 0.74458 -2.681 0.00735 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Zero-inflation model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.407e-07 4.472e-01 0.000 1.000
## SpP. reticulata -5.390e-01 6.528e-01 -0.826 0.409
## SpP. vivipara -7.412e-07 6.325e-01 0.000 1.000
Zero-inflation terms were not significant (p = 0.40–1.00), and diagnostic plots showed no evidence of excess zeros. Therefore, we refit the model as a standard beta GLMM after adding a small constant (0.001) to accommodate zeros in the response.
As beta regression requires that responses fall strictly within (0,1), we added a small constant (0.001) to zero values and refit the model as a standard beta GLMM. This model provided an excellent distributional fit and was retained as the final model.
## Family: beta ( logit )
## Formula: X.inv_adj ~ StandardLenght + Sp + (1 | microcosm)
## Data: data_meso
##
## AIC BIC logLik -2*log(L) df.resid
## -213.1 -200.7 112.6 -225.1 53
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## microcosm (Intercept) 1.562 1.25
## Number of obs: 59, groups: microcosm, 15
##
## Dispersion parameter for beta family (): 4.97
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.9474794 1.0391967 -1.874 0.0609 .
## StandardLenght 0.0004685 0.0313774 0.015 0.9881
## SpP. reticulata 0.5890235 0.8514229 0.692 0.4891
## SpP. vivipara -0.9500541 0.9110920 -1.043 0.2971
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
In this mesocosm experiment, species identity and body size had little influence on the proportion of total invertebrates consumed.
Body size did not affect the proportion of invertebrates consumed (β = 0.0005 ± 0.031, p = 0.99). Differences among species were small and not statistically significant: P. reticulata showed a modest, non-significant increase in consumption relative to the reference species (β = 0.589 ± 0.851, p = 0.49), whereas P. vivipara showed a non-significant decrease (β = –0.950 ± 0.911, p = 0.30). Variation among mesocosms (SD = 1.25) exceeded fixed effects, indicating that environmental conditions rather than intrinsic species traits dominated feeding outcomes.
| Â | % of Total Invertebrates Consumed | |
|---|---|---|
| Predictors | Estimates | p |
| (Intercept) — P. harpagos |
-1.947 (1.039) |
0.061 |
| Standard Length (mm) |
0.000 (0.031) |
0.988 |
| P. reticulata |
0.589 (0.851) |
0.489 |
| P. vivipara |
-0.950 (0.911) |
0.297 |
| Random Effects | ||
| σ2 | 0.83 | |
| τ00 microcosm | 1.56 | |
| N microcosm | 15 | |
| Observations | 59 | |
Here we compare the percentage of Chironomidae consumed among the three species. We applied the same modeling approach used in the previous analysis, beginning with a zero-inflated beta GLMM and testing whether zero-inflation terms were significant.
## Family: beta ( logit )
## Formula: X.chironomid ~ StandardLenght + Sp + (1 | microcosm)
## Zero inflation: ~Sp
## Data: data_meso
##
## AIC BIC logLik -2*log(L) df.resid
## 56.0 74.7 -19.0 38.0 50
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## microcosm (Intercept) 0.02866 0.1693
## Number of obs: 59, groups: microcosm, 15
##
## Dispersion parameter for beta family (): 3.81
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.804373 1.110397 -0.724 0.4688
## StandardLenght -0.006201 0.042257 -0.147 0.8833
## SpP. reticulata 0.226576 0.473575 0.478 0.6323
## SpP. vivipara -1.421001 0.707299 -2.009 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Zero-inflation model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6190 0.4688 1.320 0.1867
## SpP. reticulata -1.1580 0.6678 -1.734 0.0829 .
## SpP. vivipara 0.2283 0.6767 0.337 0.7359
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Zero-inflation terms were not significant (p = 0.08–0.73), and diagnostic plots showed no evidence of excess zeros. Therefore, we refit the model as a standard beta GLMM after adding a small constant (0.001) to accommodate zeros in the response.
## Family: beta ( logit )
## Formula: X.chironomid_adj ~ StandardLenght + Sp + (1 | microcosm)
## Data: data_meso
##
## AIC BIC logLik -2*log(L) df.resid
## -275.8 -263.3 143.9 -287.8 53
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## microcosm (Intercept) 0.2628 0.5126
## Number of obs: 59, groups: microcosm, 15
##
## Dispersion parameter for beta family (): 3.28
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.95756 0.88254 -2.218 0.0265 *
## StandardLenght -0.01923 0.03056 -0.629 0.5293
## SpP. reticulata 0.80183 0.49290 1.627 0.1038
## SpP. vivipara -0.12043 0.55216 -0.218 0.8274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Body size did not influence the proportion of Chironomidae consumed (β = –0.019 ± 0.031, p = 0.53). Species effects were weak: P. reticulata showed a non-significant tendency toward higher chironomid consumption (β = 0.802 ± 0.493, p = 0.10), whereas P. vivipara did not differ from the reference (P. harpagos) (β = –0.120 ± 0.552, p = 0.83). Variation among mesocosms (SD = 0.51) exceeded fixed-effect differences, suggesting that environmental context played an important role in determining feeding patterns.
| Â | % of Chironomidae Consumed | |
|---|---|---|
| Predictors | Estimates | p |
| (Intercept) — P. harpagos |
-1.958 (0.883) |
0.027 |
| Standard Length (mm) |
-0.019 (0.031) |
0.529 |
| P. reticulata |
0.802 (0.493) |
0.104 |
| P. vivipara |
-0.120 (0.552) |
0.827 |
| Random Effects | ||
| σ2 | 1.17 | |
| τ00 microcosm | 0.26 | |
| N microcosm | 15 | |
| Observations | 59 | |
Here we compare the percentage of Culicidae consumed among the three species. We applied the zero-inflated beta GLMM and testing whether zero-inflation terms were significant.
## Family: beta ( logit )
## Formula: X.Culicidae ~ StandardLenght + Sp + (1 | microcosm)
## Zero inflation: ~Sp
## Data: data_meso
##
## AIC BIC logLik -2*log(L) df.resid
## 54.7 73.4 -18.4 36.7 50
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## microcosm (Intercept) 2.946e-10 1.716e-05
## Number of obs: 59, groups: microcosm, 15
##
## Dispersion parameter for beta family (): 4.46
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.34844 1.12437 -0.310 0.7566
## StandardLenght 0.01958 0.04198 0.466 0.6409
## SpP. reticulata -1.01317 0.72981 -1.388 0.1651
## SpP. vivipara -2.55172 1.01452 -2.515 0.0119 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Zero-inflation model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.1972 0.7454 2.948 0.0032 **
## SpP. reticulata -1.1676 0.9094 -1.284 0.1992
## SpP. vivipara -1.3499 0.8909 -1.515 0.1297
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Across mesocosms, P. vivipara consumed far fewer mosquito larvae than P. harpagos, with effect sizes indicating a 45–55% reduction in Culicidae predation (β = –2.55 ± 1.01 SE, p = 0.012). P. reticulata showed a smaller, non-significant decrease in mosquito consumption (β = –1.01 ± 0.73 SE, p = 0.17), corresponding to an estimated 15–25% reduction relative to P. harpagos. Body size did not influence feeding behavior (β = 0.020 ± 0.042 SE, p = 0.64), indicating that species-specific foraging strategies—rather than morphology—drive differences in mosquito predation efficiency.
The presence of structural zeros suggests that mosquito prey were often ignored, but this zero-feeding probability did not differ among species.
| Â | % of Culicidae consumed | ||
|---|---|---|---|
| Predictors | Estimates | p | |
| Count Model | |||
| (Intercept) |
-0.348 (1.124) |
0.757 | |
| StandardLenght |
0.020 (0.042) |
0.641 | |
| SpP. reticulata |
-1.013 (0.730) |
0.165 | |
| SpP. vivipara |
-2.552 (1.015) |
0.012 | |
| (Intercept) |
4.459 (NA) |
||
| Zero-Inflated Model | |||
| (Intercept) |
2.197 (0.745) |
0.003 | |
| SpP. reticulata |
-1.168 (0.909) |
0.199 | |
| SpP. vivipara |
-1.350 (0.891) |
0.130 | |
| Random Effects | |||
| σ2 | 4.43 | ||
| τ00 microcosm | 0.00 | ||
| N microcosm | 15 | ||
| Observations | 59 | ||