home <- read.csv("https://www.lock5stat.com/datasets3e/HomesForSale.csv")
ca <- subset(home, State == "CA")

Question 1:

Use the data only for California. How much does the size of a home influence its price?

df1 <- data.frame(Size = ca$Size, Price = ca$Price)

model1 <- lm(Price ~ Size, data = df1)
summary(model1)
## 
## Call:
## lm(formula = Price ~ Size, data = df1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -462.55 -139.69   39.24  147.65  352.21 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -56.81675  154.68102  -0.367 0.716145    
## Size          0.33919    0.08558   3.963 0.000463 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 219.3 on 28 degrees of freedom
## Multiple R-squared:  0.3594, Adjusted R-squared:  0.3365 
## F-statistic: 15.71 on 1 and 28 DF,  p-value: 0.0004634

Question 2:

Use the data only for California. How does the number of bedrooms of a home influence its price?

df2 <- data.frame(Beds = ca$Beds, Price = ca$Price)
model2 <- lm(Price ~ Beds, data = df2)
summary(model2)
## 
## Call:
## lm(formula = Price ~ Beds, data = df2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -413.83 -236.62   29.94  197.69  570.94 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)   269.76     233.62   1.155    0.258
## Beds           84.77      72.91   1.163    0.255
## 
## Residual standard error: 267.6 on 28 degrees of freedom
## Multiple R-squared:  0.04605,    Adjusted R-squared:  0.01198 
## F-statistic: 1.352 on 1 and 28 DF,  p-value: 0.2548

Question 3:

Use the data only for California. How does the number of bathrooms of a home influence its price?

df3 <- data.frame(Baths = ca$Baths, Price = ca$Price)
model3 <- lm(Price ~ Baths, data = df3)
summary(model3)
## 
## Call:
## lm(formula = Price ~ Baths, data = df3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -374.93 -181.56   -2.74  152.31  614.81 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    90.71     148.57   0.611  0.54641   
## Baths         194.74      62.28   3.127  0.00409 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 235.8 on 28 degrees of freedom
## Multiple R-squared:  0.2588, Adjusted R-squared:  0.2324 
## F-statistic: 9.779 on 1 and 28 DF,  p-value: 0.004092

Question 4:

Use the data only for California. How does the size, the number of bedrooms, and the number of bathrooms of a home jointly influence its price?

df4 <- data.frame(
  Size = ca$Size,
  Beds = ca$Beds,
  Baths = ca$Baths,
  Price = ca$Price
)
model4 <- lm(Price ~ Size + Beds + Baths, data = df4)
summary(model4)
## 
## Call:
## lm(formula = Price ~ Size + Beds + Baths, data = df4)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -415.47 -130.32   19.64  154.79  384.94 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -41.5608   210.3809  -0.198   0.8449  
## Size          0.2811     0.1189   2.364   0.0259 *
## Beds        -33.7036    67.9255  -0.496   0.6239  
## Baths        83.9844    76.7530   1.094   0.2839  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 221.8 on 26 degrees of freedom
## Multiple R-squared:  0.3912, Adjusted R-squared:  0.3209 
## F-statistic: 5.568 on 3 and 26 DF,  p-value: 0.004353

Question 5:

Are there significant differences in home prices among the four states (CA, NY, NJ, PA)? This will help you determine if the state in which a home is located has a significant impact on its price. All data should be used.

states <- subset(home, State %in% c("CA", "NY", "NJ", "PA"))
df5 <- data.frame(State = states$State, Price = states$Price)
anova_model <- aov(Price ~ State, data = df5)
summary(anova_model)
##              Df  Sum Sq Mean Sq F value   Pr(>F)    
## State         3 1198169  399390   7.355 0.000148 ***
## Residuals   116 6299266   54304                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1