Load data
Sexism
Demographic information
Raw
Sexism
Age
Gender
## gender_text
## Non-binary/Other Woman
## 1 279
Race
## racef
## White Traditionally Marginalized Multiracial Asian
## 193 35 25 16
## racef
## White Traditionally Marginalized Multiracial Asian
## 0.681978798586572398932 0.123674911660777389621 0.088339222614840992587 0.056537102473498232480
Failed attention check
## filterout
## Exclude Retain
## 36 244
Racism
Age
Gender
## gender_text
## Man Non-binary/Other Woman
## 187 4 89
Race
## racef
## Traditionally Marginalized Multiracial Asian White
## 165 34 64 19
## racef
## Traditionally Marginalized Multiracial Asian White
## 0.583038869257950564950 0.120141342756183738816 0.226148409893992929920 0.067137809187279157142
Failed attention check
## filterout
## Exclude Retain
## 35 246
Clean
Sexism
Gender
## gender_text
## Woman
## 243
Race
## racef
## White Traditionally Marginalized Multiracial Asian
## 170 29 19 14
## racef
## White Traditionally Marginalized Multiracial Asian
## 0.699588477366255179213 0.119341563786008228454 0.078189300411522638656 0.057613168724279836819
Racism
Gender
## gender_text
## Man Non-binary/Other Woman
## 155 2 72
Race
## racef
## Traditionally Marginalized Multiracial Asian
## 146 29 54
## racef
## Traditionally Marginalized Multiracial Asian
## 0.63478260869565217295 0.12608695652173912416 0.23478260869565217850
Alphas
Sexism
Need for significance
## [1] 0.99045317992164860765
Status
## [1] 0.92970625551126451214
Rewards
##
## Pearson's product-moment correlation
##
## data: reward1 and reward2
## t = 16.6257888234635978, df = 241, p-value < 0.000000000000000222044604925031
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.66635392353719791192 0.78458465597080939702
## sample estimates:
## cor
## 0.73090675290524020902
Racism
Need for significance
## [1] 0.98578877093160588441
Status
## [1] 0.93596260020119326217
Rewards
##
## Pearson's product-moment correlation
##
## data: reward1 and reward2
## t = 26.4438041375674011, df = 228, p-value < 0.000000000000000222044604925031
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.83256769017715981374 0.89699450502945576869
## sample estimates:
## cor
## 0.86839978733800593513
Breakdown of race perceptions
Jeff’s Ethnicity
## instigation_type
## jeff_ethn prejudice traditional
## Asian 1 0
## Black 20 11
## Latino/Hispanic 7 3
## NativeAmerican 0 1
## White 90 96
## Warning in chisq.test(with(vignracismclean, table(jeff_ethn, instigation_type))): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: with(vignracismclean, table(jeff_ethn, instigation_type))
## X-squared = 6.19826937380245013, df = 4, p-value = 0.18482260839810441
Paul’s Ethnicity
## instigation_type
## paul_ethn prejudice traditional
## Asian 0 1
## Black 6 4
## Latino/Hispanic 3 1
## NativeAmerican 1 1
## White 108 104
## Warning in chisq.test(with(vignracismclean, table(paul_ethn, instigation_type))): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: with(vignracismclean, table(paul_ethn, instigation_type))
## X-squared = 2.26361298138560763, df = 4, p-value = 0.68740148605213713
Means + SDs
Correlations
library(datscience)
racismcorrelations <- corstars(vignracismclean %>% select(c(createdcolumns, "rudeness1", "rudeness2"))) %>% rownames_to_column("scale")## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## ℹ Please use `all_of()` or `any_of()` instead.
## # Was:
## data %>% select(createdcolumns)
##
## # Now:
## data %>% select(all_of(createdcolumns))
##
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
sexismcorrelations <- corstars(vignsexismclean %>% select(c(createdcolumns, "rudeness1", "rudeness2"))) %>% rownames_to_column("scale")
racismcorr <- racismcorrelations %>% pivot_longer(nfs:rudeness1) %>% filter(value != "") %>% rename(cor = value)
sexismcorr <- sexismcorrelations %>% pivot_longer(nfs:rudeness1) %>% filter(value != "") %>% rename(cor = value)
f1 <- function(df1, df2) {
# found here: https://stackoverflow.com/questions/57179449/merge-two-correlation-tables-into-a-symmetrical-named-matrix
col <- unique(c(t(df1[1:2])))
rn <- unique(c(t(df2[1:2])))
mat <- matrix(NA, length(rn), length(col), dimnames = list(rn, col))
mat[lower.tri(mat)] <- df2$cor
mat[upper.tri(mat)] <- df1$cor
diag(mat) <- "-"
return(mat)
}
(combined_corr <- f1(racismcorr, sexismcorr))## status nfs rewards socreward disruptive harder badvibes learn1 learn2 learn3 rudeness1 rudeness2
## status "-" " 0.589999999999999968914*** " " 0.569999999999999951150*** " " 0.589999999999999968914*** " "-0.390000000000000013323*** " "-0.330000000000000015543*** " "-0.429999999999999993339*** " "-0.050000000000000002776 " " 0.179999999999999993339** " " 0.270000000000000017764*** " "-0.130000000000000004441 " " 0.390000000000000013323*** "
## nfs " 0.650000000000000022204*** " "-" " 0.849999999999999977796*** " " 0.869999999999999995559*** " "-0.409999999999999975575*** " "-0.369999999999999995559*** " "-0.450000000000000011102*** " "-0.119999999999999995559 " " 0.140000000000000013323* " " 0.239999999999999991118*** " "-0.200000000000000011102** " " 0.409999999999999975575*** "
## rewards " 0.569999999999999951150*** " "-0.359999999999999986677*** " "-" " 0.880000000000000004441*** " "-0.429999999999999993339*** " "-0.409999999999999975575*** " "-0.440000000000000002220*** " "-0.059999999999999997780 " " 0.140000000000000013323* " " 0.270000000000000017764*** " "-0.209999999999999992228** " " 0.380000000000000004441*** "
## socreward " 0.780000000000000026645*** " "-0.230000000000000009992*** " "-0.140000000000000013323* " "-" "-0.440000000000000002220*** " "-0.429999999999999993339*** " "-0.460000000000000019984*** " "-0.080000000000000001665 " " 0.130000000000000004441 " " 0.250000000000000000000*** " "-0.170000000000000012212* " " 0.400000000000000022204*** "
## disruptive " 0.630000000000000004441*** " "-0.320000000000000006661*** " "-0.050000000000000002776 " "-0.029999999999999998890 " "-" " 0.810000000000000053291*** " " 0.869999999999999995559*** " " 0.209999999999999992228** " " 0.059999999999999997780 " "-0.179999999999999993339** " " 0.020000000000000000416 " "-0.209999999999999992228** "
## harder " 0.849999999999999977796*** " " 0.859999999999999986677*** " "-0.010000000000000000208 " "-0.029999999999999998890 " " 0.190000000000000002220** " "-" " 0.819999999999999951150*** " " 0.200000000000000011102** " " 0.040000000000000000833 " "-0.140000000000000013323* " " 0.029999999999999998890 " "-0.190000000000000002220** "
## badvibes " 0.829999999999999960032*** " "-0.369999999999999995559*** " "-0.040000000000000000833 " "-0.029999999999999998890 " " 0.209999999999999992228*** " "-0.160000000000000003331* " "-" " 0.200000000000000011102** " " 0.070000000000000006661 " "-0.200000000000000011102** " " 0.010000000000000000208 " "-0.200000000000000011102** "
## learn1 "-0.280000000000000026645*** " "-0.429999999999999993339*** " " 0.340000000000000024425*** " " 0.029999999999999998890 " "-0.200000000000000011102** " "-0.190000000000000002220** " " 0.029999999999999998890 " "-" "-0.209999999999999992228** " "-0.469999999999999973355*** " "-0.059999999999999997780 " " 0.040000000000000000833 "
## learn2 "-0.380000000000000004441*** " "-0.309999999999999997780*** " " 0.280000000000000026645*** " "-0.029999999999999998890 " "-0.110000000000000000555 " "-0.089999999999999996669 " "-0.080000000000000001665 " " 0.530000000000000026645*** " "-" " 0.460000000000000019984*** " " 0.059999999999999997780 " " 0.010000000000000000208 "
## learn3 "-0.239999999999999991118*** " "-0.400000000000000022204*** " " 0.309999999999999997780*** " "-0.280000000000000026645*** " "-0.230000000000000009992*** " "-0.140000000000000013323* " " 0.179999999999999993339** " " 0.419999999999999984457*** " "-0.299999999999999988898*** " "-" " 0.179999999999999993339** " " 0.010000000000000000208 "
## rudeness1 "-0.309999999999999997780*** " " 0.829999999999999960032*** " " 0.100000000000000005551 " " 0.289999999999999980016*** " "-0.419999999999999984457*** " " 0.059999999999999997780 " " 0.100000000000000005551 " " 0.450000000000000011102*** " "-0.400000000000000022204*** " " 0.040000000000000000833 " "-" " 0.000000000000000000000 "
## rudeness2 "-0.270000000000000017764*** " " 0.829999999999999960032*** " "-0.029999999999999998890 " " 0.179999999999999993339** " " 0.579999999999999960032*** " " 0.020000000000000000416 " " 0.409999999999999975575*** " "-0.390000000000000013323*** " "-0.089999999999999996669 " " 0.130000000000000004441* " " 0.040000000000000000833 " "-"
Analyses
basedatalik <- expand_grid(
dataset = c("vignsexismclean", "vignracismclean"),
y = createdcolumns
)
basedatabin <- expand_grid(
dataset = c("vignsexismclean", "vignracismclean"),
y = c("reprimanded", "jeffuncivil", "pauluncivil")
)Main effects
Mediation
Midpoint analyses
Tables
Correlations
Controls
Likert
| nfs | nfs | status | status | rewards | rewards | socreward | socreward | |||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df |
| (Intercept) | 4.55 *** | 0.14 | 31.40 | 228.00 | 2.60 *** | 0.62 | 4.20 | 219.00 | 0.91 *** | 0.14 | 6.36 | 228.00 | -0.69 | 0.60 | -1.15 | 219.00 | 0.69 *** | 0.14 | 5.08 | 228.00 | -1.33 * | 0.57 | -2.35 | 219.00 | 0.77 *** | 0.14 | 5.48 | 228.00 | -0.54 | 0.59 | -0.91 | 219.00 |
| age | 0.01 | 0.01 | 0.60 | 219.00 | 0.01 | 0.01 | 0.98 | 219.00 | 0.01 | 0.01 | 0.87 | 219.00 | -0.00 | 0.01 | -0.32 | 219.00 | ||||||||||||||||
| prejudice | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||||||||
| traditional | -1.71 *** | 0.21 | -8.23 | 228.00 | -1.30 *** | 0.22 | -5.93 | 219.00 | -1.26 *** | 0.20 | -6.18 | 228.00 | -0.69 ** | 0.21 | -3.26 | 219.00 | -1.00 *** | 0.20 | -5.09 | 228.00 | -0.43 * | 0.20 | -2.15 | 219.00 | -1.15 *** | 0.20 | -5.73 | 228.00 | -0.62 ** | 0.21 | -2.98 | 219.00 |
| learn1 | 0.06 | 0.06 | 0.99 | 219.00 | -0.04 | 0.06 | -0.63 | 219.00 | 0.05 | 0.06 | 0.81 | 219.00 | 0.02 | 0.06 | 0.40 | 219.00 | ||||||||||||||||
| learn2 | 0.09 | 0.07 | 1.30 | 219.00 | 0.05 | 0.06 | 0.71 | 219.00 | 0.02 | 0.06 | 0.36 | 219.00 | 0.02 | 0.06 | 0.28 | 219.00 | ||||||||||||||||
| learn3 | 0.28 *** | 0.07 | 4.07 | 219.00 | 0.22 ** | 0.07 | 3.26 | 219.00 | 0.28 *** | 0.06 | 4.48 | 219.00 | 0.25 *** | 0.07 | 3.81 | 219.00 | ||||||||||||||||
|
Traditionally Marginalized |
Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||||||||
| Multiracial | 0.02 | 0.30 | 0.06 | 219.00 | 0.05 | 0.29 | 0.17 | 219.00 | -0.23 | 0.27 | -0.82 | 219.00 | -0.27 | 0.29 | -0.94 | 219.00 | ||||||||||||||||
| Asian | -0.00 | 0.24 | -0.00 | 219.00 | 0.08 | 0.23 | 0.34 | 219.00 | -0.04 | 0.22 | -0.18 | 219.00 | 0.18 | 0.23 | 0.79 | 219.00 | ||||||||||||||||
| rudeness1 | -0.13 | 0.08 | -1.66 | 219.00 | -0.26 *** | 0.08 | -3.36 | 219.00 | -0.29 *** | 0.07 | -3.92 | 219.00 | -0.22 ** | 0.08 | -2.96 | 219.00 | ||||||||||||||||
| rudeness2 | 0.25 *** | 0.06 | 4.02 | 219.00 | 0.32 *** | 0.06 | 5.31 | 219.00 | 0.29 *** | 0.06 | 5.11 | 219.00 | 0.30 *** | 0.06 | 5.06 | 219.00 | ||||||||||||||||
| Observations | 230 | 229 | 230 | 229 | 230 | 229 | 230 | 229 | ||||||||||||||||||||||||
| R2 / R2 adjusted | 0.229 / 0.226 | 0.366 / 0.340 | 0.144 / 0.140 | 0.320 / 0.292 | 0.102 / 0.098 | 0.306 / 0.278 | 0.126 / 0.122 | 0.297 / 0.268 | ||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||
Binary
| reprimanded | reprimanded | jeffuncivil | jeffuncivil | pauluncivil | pauluncivil | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df |
| (Intercept) | 0.18 *** | 0.05 | -6.70 | Inf | 4.40 | 14934.55 | 0.00 | Inf | 0.18 *** | 0.05 | -6.70 | Inf | 0.00 | 0.00 | -0.01 | Inf | 2.81 *** | 0.59 | 4.93 | Inf | 0.64 | 1314.49 | -0.00 | Inf |
| age | 0.97 | 0.02 | -1.44 | Inf | 0.99 | 0.02 | -0.82 | Inf | 0.99 | 0.02 | -0.78 | Inf | ||||||||||||
| prejudice | Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||
| traditional | 3.87 *** | 1.24 | 4.23 | Inf | 2.28 * | 0.90 | 2.09 | Inf | 2.85 ** | 0.93 | 3.23 | Inf | 1.69 | 0.67 | 1.33 | Inf | 0.67 | 0.19 | -1.41 | Inf | 0.75 | 0.27 | -0.80 | Inf |
| jeff_ethnBlack | 2700517.69 | 6480013153.27 | 0.01 | Inf | 1508380.03 | 3619425456.58 | 0.01 | Inf | 10593274.51 | 15417426618.02 | 0.01 | Inf | ||||||||||||
| jeff_ethnLatino/Hispanic | 1209053.62 | 2901178484.99 | 0.01 | Inf | 811860.53 | 1948095813.01 | 0.01 | Inf | 12386527.69 | 18027324652.34 | 0.01 | Inf | ||||||||||||
| jeff_ethnNativeAmerican | 0.00 | 0.00 | -0.00 | Inf | 663825.25 | 2758946423.95 | 0.00 | Inf | 27910680906363789312.00 | 70357879512255887835136.00 | 0.02 | Inf | ||||||||||||
| jeff_ethnWhite | 933838.57 | 2240787461.12 | 0.01 | Inf | 788883.18 | 1892960519.01 | 0.01 | Inf | 9945468.86 | 14474611307.60 | 0.01 | Inf | ||||||||||||
| learn1 | 1.11 | 0.13 | 0.94 | Inf | 0.93 | 0.11 | -0.62 | Inf | 1.19 | 0.12 | 1.76 | Inf | ||||||||||||
| learn2 | 1.06 | 0.13 | 0.46 | Inf | 1.11 | 0.13 | 0.87 | Inf | 1.23 | 0.14 | 1.83 | Inf | ||||||||||||
| learn3 | 0.88 | 0.11 | -0.99 | Inf | 0.65 ** | 0.10 | -2.93 | Inf | 0.78 * | 0.09 | -2.20 | Inf | ||||||||||||
| paul_ethnBlack | 0.00 | 0.00 | -0.01 | Inf | 74248381.80 | 178162324920.99 | 0.01 | Inf | 0.00 | 0.00 | -0.01 | Inf | ||||||||||||
| paul_ethnLatino/Hispanic | 0.00 | 0.00 | -0.01 | Inf | 45867873.75 | 110062032388.56 | 0.01 | Inf | 0.00 | 0.00 | -0.01 | Inf | ||||||||||||
| paul_ethnNativeAmerican | 2.15 | 7306.59 | 0.00 | Inf | 4.33 | 14679.57 | 0.00 | Inf | 0.00 | 0.00 | -0.01 | Inf | ||||||||||||
| paul_ethnWhite | 0.00 | 0.00 | -0.01 | Inf | 15507787.25 | 37211629614.59 | 0.01 | Inf | 0.00 | 0.00 | -0.01 | Inf | ||||||||||||
|
Traditionally Marginalized |
Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||
| Multiracial | 0.81 | 0.47 | -0.37 | Inf | 1.34 | 0.74 | 0.53 | Inf | 0.47 | 0.23 | -1.53 | Inf | ||||||||||||
| Asian | 1.13 | 0.47 | 0.30 | Inf | 1.34 | 0.56 | 0.70 | Inf | 0.69 | 0.26 | -0.97 | Inf | ||||||||||||
| rudeness1 | 1.62 ** | 0.24 | 3.29 | Inf | 1.56 ** | 0.24 | 2.95 | Inf | 0.68 ** | 0.09 | -2.92 | Inf | ||||||||||||
| rudeness2 | 0.53 *** | 0.08 | -4.26 | Inf | 0.58 *** | 0.09 | -3.70 | Inf | 1.00 | 0.11 | -0.04 | Inf | ||||||||||||
| Observations | 230 | 228 | 230 | 228 | 230 | 228 | ||||||||||||||||||
| R2 Tjur | 0.083 | 0.271 | 0.047 | 0.233 | 0.009 | 0.154 | ||||||||||||||||||
|
||||||||||||||||||||||||
Social Rewards