library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.3
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'tibble' was built under R version 4.3.2
## Warning: package 'tidyr' was built under R version 4.3.3
## Warning: package 'readr' was built under R version 4.3.3
## Warning: package 'purrr' was built under R version 4.3.3
## Warning: package 'dplyr' was built under R version 4.3.3
## Warning: package 'stringr' was built under R version 4.3.3
## Warning: package 'forcats' was built under R version 4.3.3
## Warning: package 'lubridate' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(usmap)
library(viridis)
## Warning: package 'viridis' was built under R version 4.3.3
## Loading required package: viridisLite
## Warning: package 'viridisLite' was built under R version 4.3.2
# Load data
df <- read.csv("C:/Users/mferdo2/OneDrive - Louisiana State University/Finance_PhD/Real_Estate_project/02_data/processed/broadband_annual_2018_2024.csv")
# Calculate broadband penetration
df <- df %>%
mutate(
fips = sprintf("%05d", county_fips),
bbd_penetration = (consumer_bbd / Housing_Units) * 100
)
# ===== TOP/BOTTOM 5% =====
# Filter 2024 data and calculate percentiles
df_2024 <- df %>%
filter(year == 2024, !is.na(bbd_penetration))
# Get thresholds
top_5_threshold <- quantile(df_2024$bbd_penetration, 0.95, na.rm = TRUE)
bottom_5_threshold <- quantile(df_2024$bbd_penetration, 0.05, na.rm = TRUE)
# Create category variable
df_2024 <- df_2024 %>%
mutate(
category = case_when(
bbd_penetration >= top_5_threshold ~ "Top 5%",
bbd_penetration <= bottom_5_threshold ~ "Bottom 5%",
TRUE ~ "Middle 90%"
)
)
# Summary stats
cat("Top 5% threshold:", round(top_5_threshold, 1), "\n")
## Top 5% threshold: 0.1
cat("Bottom 5% threshold:", round(bottom_5_threshold, 1), "\n")
## Bottom 5% threshold: 0
cat("Counties in top 5%:", sum(df_2024$category == "Top 5%"), "\n")
## Counties in top 5%: 159
cat("Counties in bottom 5%:", sum(df_2024$category == "Bottom 5%"), "\n")
## Counties in bottom 5%: 159
# Map - Top/Bottom 5%
plot_usmap(
data = df_2024,
values = "category",
regions = "counties",
color = "white",
size = 0.1
) +
scale_fill_manual(
name = "Broadband Penetration",
values = c(
"Top 5%" = "#2a9d8f", # teal
"Bottom 5%" = "#e63946", # red
"Middle 90%" = "gray85"
),
breaks = c("Top 5%", "Middle 90%", "Bottom 5%")
) +
labs(
title = "Top 5% and Bottom 5% Counties by Broadband Penetration (2024)",
subtitle = "Consumer broadband connections per 100 housing units",
caption = paste0("Top 5% threshold: ", round(top_5_threshold, 1),
" | Bottom 5% threshold: ", round(bottom_5_threshold, 1))
) +
theme(
plot.title = element_text(size = 16, face = "bold", hjust = 0.5),
plot.subtitle = element_text(size = 12, hjust = 0.5),
legend.position = "right",
legend.text = element_text(size = 10)
)

ggsave("broadband_top_bottom_5pct.png", width = 12, height = 8, dpi = 300)
# =====TOP/BOTTOM 1% =====
# Get thresholds
top_1_threshold <- quantile(df_2024$bbd_penetration, 0.99, na.rm = TRUE)
bottom_1_threshold <- quantile(df_2024$bbd_penetration, 0.01, na.rm = TRUE)
# Create category variable
df_2024 <- df_2024 %>%
mutate(
category_1pct = case_when(
bbd_penetration >= top_1_threshold ~ "Top 1%",
bbd_penetration <= bottom_1_threshold ~ "Bottom 1%",
TRUE ~ "Middle 98%"
)
)
# Summary stats
cat("\nTop 1% threshold:", round(top_1_threshold, 1), "\n")
##
## Top 1% threshold: 0.1
cat("Bottom 1% threshold:", round(bottom_1_threshold, 1), "\n")
## Bottom 1% threshold: 0
cat("Counties in top 1%:", sum(df_2024$category_1pct == "Top 1%"), "\n")
## Counties in top 1%: 32
cat("Counties in bottom 1%:", sum(df_2024$category_1pct == "Bottom 1%"), "\n")
## Counties in bottom 1%: 49
# Map - Top/Bottom 1%
plot_usmap(
data = df_2024,
values = "category_1pct",
regions = "counties",
color = "white",
size = 0.1
) +
scale_fill_manual(
name = "Broadband Penetration",
values = c(
"Top 1%" = "#2a9d8f", # teal
"Bottom 1%" = "#e63946", # red
"Middle 98%" = "gray85"
),
breaks = c("Top 1%", "Middle 98%", "Bottom 1%")
) +
labs(
title = "Top 1% and Bottom 1% Counties by Broadband Penetration (2024)",
subtitle = "Consumer broadband connections per 100 housing units",
caption = paste0("Top 1% threshold: ", round(top_1_threshold, 1),
" | Bottom 1% threshold: ", round(bottom_1_threshold, 1))
) +
theme(
plot.title = element_text(size = 16, face = "bold", hjust = 0.5),
plot.subtitle = element_text(size = 12, hjust = 0.5),
legend.position = "right",
legend.text = element_text(size = 10)
)

ggsave("broadband_top_bottom_1pct.png", width = 12, height = 8, dpi = 300)
# ===== EXPORT COUNTY LISTS =====
# Top 5% counties
top_5pct <- df_2024 %>%
filter(category == "Top 5%") %>%
arrange(desc(bbd_penetration)) %>%
select(fips, countyname, statename, bbd_penetration, Housing_Units, consumer_bbd)
write.csv(top_5pct, "top_5pct_counties.csv", row.names = FALSE)
# Bottom 5% counties
bottom_5pct <- df_2024 %>%
filter(category == "Bottom 5%") %>%
arrange(bbd_penetration) %>%
select(fips, countyname, statename, bbd_penetration, Housing_Units, consumer_bbd)
write.csv(bottom_5pct, "bottom_5pct_counties.csv", row.names = FALSE)
# Top 1% counties
top_1pct <- df_2024 %>%
filter(category_1pct == "Top 1%") %>%
arrange(desc(bbd_penetration)) %>%
select(fips, countyname, statename, bbd_penetration, Housing_Units, consumer_bbd)
write.csv(top_1pct, "top_1pct_counties.csv", row.names = FALSE)
# Bottom 1% counties
bottom_1pct <- df_2024 %>%
filter(category_1pct == "Bottom 1%") %>%
arrange(bbd_penetration) %>%
select(fips, countyname, statename, bbd_penetration, Housing_Units, consumer_bbd)
write.csv(bottom_1pct, "bottom_1pct_counties.csv", row.names = FALSE)
cat("\nFiles saved:\n")
##
## Files saved:
cat("- broadband_top_bottom_5pct.png\n")
## - broadband_top_bottom_5pct.png
cat("- broadband_top_bottom_1pct.png\n")
## - broadband_top_bottom_1pct.png
cat("- top_5pct_counties.csv\n")
## - top_5pct_counties.csv
cat("- bottom_5pct_counties.csv\n")
## - bottom_5pct_counties.csv
cat("- top_1pct_counties.csv\n")
## - top_1pct_counties.csv
cat("- bottom_1pct_counties.csv\n")
## - bottom_1pct_counties.csv