q1_dat<- import(here::here(“D:/Dashboard for Bulletin Webpage/PHEM Weekly Surveillance Data.csv”))
clean_dat<- q1_dat%>% clean_names()
quarter1_dat <- clean_dat[,-4]
quarter1_data <- quarter1_dat %>% filter(year == 2025)
oromia_reg_data <- quarter1_data %>% filter( region ==“Oromia” & epi_week %in% c(28:41))
glimpse(oromia_reg_data)
summary(oromia_reg_data)
skimr::skim(oromia_reg_data)
vis_miss(oromia_reg_data)
vis_dat(oromia_reg_data)
gg_miss_var(oromia_reg_data)+theme()
as_shadow(oromia_reg_data)
miss_var_summary(oromia_reg_data)
n_miss(oromia_reg_data)
n_distinct(oromia_reg_data$total_malaria_confirmed_and_clinical)
n_complete(oromia_reg_data$t_malaria_out_p_cases)
n_complete_row(oromia_reg_data)
prop_miss(oromia_reg_data)
prop_miss_case(oromia_reg_data)
prop_complete_var(oromia_reg_data)
prop_miss_var(oromia_reg_data)
miss_case_summary(oromia_reg_data)
oromia_reg_data %>% group_by(woreda) %>% miss_var_summary()
miss_case_table(oromia_reg_data)
miss_var_table(oromia_reg_data)
miss_var_which(oromia_reg_data)
miss_var_summary(oromia_reg_data,add_cumsum = TRUE)