data("mtcars")
mtcars <- as_tibble(mtcars)
mydata <- read_csv('Worldmap - Sheet1.csv')
## Rows: 233 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): Country, Continents, World%
## dbl (1): #
## num (2): Population, Land Area Km2
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Case of numeric variables
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
mtcars %>% map_dbl(.f = ~mean(x = .x))
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
mtcars %>% map_dbl(.f = mean)
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
mtcars %>% map_dbl(mean)
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
# Adding an argument
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
## mpg cyl disp hp drat wt
## 19.6961538 6.2307692 222.5230769 141.1923077 3.5792308 3.1526923
## qsec vs am gear carb
## 17.8276923 0.4230769 0.3846154 3.6153846 2.6538462
mtcars %>% map_dbl(mean, trim = 0.1)
## mpg cyl disp hp drat wt
## 19.6961538 6.2307692 222.5230769 141.1923077 3.5792308 3.1526923
## qsec vs am gear carb
## 17.8276923 0.4230769 0.3846154 3.6153846 2.6538462
mtcars %>% select(.data = ., mpg)
## # A tibble: 32 × 1
## mpg
## <dbl>
## 1 21
## 2 21
## 3 22.8
## 4 21.4
## 5 18.7
## 6 18.1
## 7 14.3
## 8 24.4
## 9 22.8
## 10 19.2
## # ℹ 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
## mpg
## <dbl>
## 1 21
## 2 21
## 3 22.8
## 4 21.4
## 5 18.7
## 6 18.1
## 7 14.3
## 8 24.4
## 9 22.8
## 10 19.2
## # ℹ 22 more rows
Create your own function
#double values in columns
double_by_factor <- function(x,factor) {x*factor}
10 %>% double_by_factor(factor = 2)
## [1] 20
mtcars %>% map_dfr(.x =., .f = ~double_by_factor(x= .x, factor = 10))
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 210 60 1600 1100 39 26.2 165. 0 10 40 40
## 2 210 60 1600 1100 39 28.8 170. 0 10 40 40
## 3 228 40 1080 930 38.5 23.2 186. 10 10 40 10
## 4 214 60 2580 1100 30.8 32.2 194. 10 0 30 10
## 5 187 80 3600 1750 31.5 34.4 170. 0 0 30 20
## 6 181 60 2250 1050 27.6 34.6 202. 10 0 30 10
## 7 143 80 3600 2450 32.1 35.7 158. 0 0 30 40
## 8 244 40 1467 620 36.9 31.9 200 10 0 40 20
## 9 228 40 1408 950 39.2 31.5 229 10 0 40 20
## 10 192 60 1676 1230 39.2 34.4 183 10 0 40 40
## # ℹ 22 more rows
mtcars %>% map_dfr(double_by_factor, factor = 10)
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 210 60 1600 1100 39 26.2 165. 0 10 40 40
## 2 210 60 1600 1100 39 28.8 170. 0 10 40 40
## 3 228 40 1080 930 38.5 23.2 186. 10 10 40 10
## 4 214 60 2580 1100 30.8 32.2 194. 10 0 30 10
## 5 187 80 3600 1750 31.5 34.4 170. 0 0 30 20
## 6 181 60 2250 1050 27.6 34.6 202. 10 0 30 10
## 7 143 80 3600 2450 32.1 35.7 158. 0 0 30 40
## 8 244 40 1467 620 36.9 31.9 200 10 0 40 20
## 9 228 40 1408 950 39.2 31.5 229 10 0 40 20
## 10 192 60 1676 1230 39.2 34.4 183 10 0 40 40
## # ℹ 22 more rows
When you have a grouping variable (factor)
mtcars %>% lm(formula = mpg ~ wt, data =.)
##
## Call:
## lm(formula = mpg ~ wt, data = .)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
## cyl
## <dbl>
## 1 6
## 2 4
## 3 8
reg_coeff_tbl <- mtcars %>%
#split into a list of data frames
split(.$cyl) %>%
#repeat regression over each group
map(~lm(formula = mpg ~ wt, data =.)) %>%
map(broom::tidy, conf.int = TRUE) %>%
#convert to tibble
bind_rows(.id = "cyl") %>%
#filter to wt coefficients
filter(term == "wt")
reg_coeff_tbl %>%
mutate(estimate = -estimate,
conf.low = -conf.low,
conf.high = -conf.high) %>%
ggplot(aes(x =estimate, y = cyl)) +
geom_point() +
geom_errorbar(aes(xmin = conf.low, xmax = conf.high))
Choose either one of the two cases above and apply it to your data
mydata %>%
mutate(
Land_Area_Km2 = `Land Area Km2`)
## # A tibble: 233 × 7
## `#` Country Population Continents `Land Area Km2` `World%` Land_Area_Km2
## <dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl>
## 1 1 India 1463865525 Asia 2973190 17.78% 2973190
## 2 2 China 1416096094 Asia 9388211 17.20% 9388211
## 3 3 United St… 347275807 North Ame… 9147420 4.22% 9147420
## 4 4 Indonesia 285721236 Asia 1811570 3.47% 1811570
## 5 5 Pakistan 255219554 Asia 770880 3.10% 770880
## 6 6 Nigeria 237527782 Africa 910770 2.89% 910770
## 7 7 Brazil 212812405 South Ame… 8358140 2.59% 8358140
## 8 8 Bangladesh 175686899 Asia 130170 2.13% 130170
## 9 9 Russia 143997393 Europe/As… 16376870 1.75% 16376870
## 10 10 Ethiopia 135472051 Africa 1000000 1.65% 1000000
## # ℹ 223 more rows
mydata %>%
lm(formula = Population ~ `Land Area Km2`, data = .)
##
## Call:
## lm(formula = Population ~ `Land Area Km2`, data = .)
##
## Coefficients:
## (Intercept) `Land Area Km2`
## 1.475e+07 3.684e+01
mydata %>%
distinct(Continents)
## # A tibble: 8 × 1
## Continents
## <chr>
## 1 Asia
## 2 North America
## 3 Africa
## 4 South America
## 5 Europe/Asia
## 6 Europe
## 7 Oceania
## 8 Other
reg_coeff_tbl <- mydata %>%
split(.$Continents) %>%
map(~ lm(Population ~ `Land Area Km2`, data = .x)) %>%
map(broom::tidy, conf.int = TRUE) %>%
bind_rows(.id = "Continents") %>%
filter(term == "`Land Area Km2`")
## Warning in qt(a, object$df.residual): NaNs produced
reg_coeff_tbl %>%
ggplot(aes(x = estimate, y = Continents)) +
geom_point() +
geom_errorbar(aes(xmin = conf.low, xmax = conf.high))