Waste Management Project Update (Part IV - tentative model comparison)

Author

Jingyi Yang

This document aims to provide an informal comparison of three models that have been fitted in the [Title name : Two level (game-school) models with fixed effect and random effect predictors].

Since these three models have different fixed predictors (and different random effects), we use the maximum likelihood method (REML=FALSE) in lmer function, not the Restricted Maximum Likelihood (REML=TRUE).

1. Summary Outputs

1.1 Two level (game-school) model with main effects

m_school_r_2 <- lmer(
s_diversion ~ game_time_num_c_2 + attendance_school_z+ game_result + s_game_c + area_classification + tenure_year_c + total_revenues_z +conference + (1+tenure_year_c|school),
data = data_clean,   control = lmerControl(optimizer = "bobyqa"),  REML = FALSE
)
summary(m_school_r_2)
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
  method [lmerModLmerTest]
Formula: s_diversion ~ game_time_num_c_2 + attendance_school_z + game_result +  
    s_game_c + area_classification + tenure_year_c + total_revenues_z +  
    conference + (1 + tenure_year_c | school)
   Data: data_clean
Control: lmerControl(optimizer = "bobyqa")

      AIC       BIC    logLik -2*log(L)  df.resid 
  -1723.3   -1641.2     877.6   -1755.3      1229 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.3719 -0.5641 -0.0701  0.4776  3.9566 

Random effects:
 Groups   Name          Variance Std.Dev. Corr 
 school   (Intercept)   0.04541  0.21310       
          tenure_year_c 0.00111  0.03332  -0.22
 Residual               0.01216  0.11028       
Number of obs: 1245, groups:  school, 27

Fixed effects:
                       Estimate Std. Error         df t value Pr(>|t|)   
(Intercept)           5.215e-01  1.732e-01  2.684e+01   3.011  0.00562 **
game_time_num_c_2    -3.686e-04  1.148e-03  1.201e+03  -0.321  0.74812   
attendance_school_z   2.722e-03  3.409e-03  1.215e+03   0.799  0.42468   
game_result1          8.229e-03  7.577e-03  1.201e+03   1.086  0.27766   
s_game_c             -5.663e-04  1.633e-03  1.196e+03  -0.347  0.72887   
area_classification1 -7.463e-02  1.372e-01  2.658e+01  -0.544  0.59090   
tenure_year_c         7.392e-03  7.248e-03  2.610e+01   1.020  0.31713   
total_revenues_z      2.391e-02  9.218e-03  1.230e+03   2.593  0.00962 **
conferenceBig10      -1.400e-01  1.267e-01  2.607e+01  -1.105  0.27922   
conferenceBig12      -2.593e-01  1.819e-01  2.654e+01  -1.426  0.16566   
conferencePac12       2.111e-03  1.572e-01  2.918e+01   0.013  0.98937   
conferenceSEC        -2.309e-01  1.314e-01  2.624e+01  -1.758  0.09044 . 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) g____2 attn__ gm_rs1 s_gm_c ar_cl1 tnr_y_ ttl_r_ cnfB10
gm_tm_nm__2 -0.024                                                        
attndnc_sc_ -0.012 -0.116                                                 
game_reslt1 -0.036  0.040  0.097                                          
s_game_c    -0.036  0.148 -0.046  0.169                                   
ar_clssfct1 -0.792  0.001  0.002 -0.002  0.000                            
tenure_yr_c -0.060 -0.014  0.050 -0.019  0.007 -0.012                     
totl_rvns_z  0.074 -0.004 -0.087 -0.036 -0.032 -0.020 -0.184              
confrncBg10 -0.672  0.005  0.011  0.006  0.002  0.218  0.009 -0.047       
confrncBg12 -0.350 -0.005  0.013  0.005  0.007  0.001  0.008 -0.050  0.475
confrncPc12 -0.592 -0.009  0.005  0.020  0.004  0.246 -0.047  0.014  0.600
conferncSEC -0.484 -0.009  0.006  0.003 -0.001  0.001  0.022 -0.058  0.657
            cnfB12 cnfP12
gm_tm_nm__2              
attndnc_sc_              
game_reslt1              
s_game_c                 
ar_clssfct1              
tenure_yr_c              
totl_rvns_z              
confrncBg10              
confrncBg12              
confrncPc12  0.381       
conferncSEC  0.459  0.527

1.2 Two level (game-school) model with interaction effects

m_school_inter_r_2  <- lmer(
 s_diversion ~ 1 + game_time_num_c_2 + s_game_c + area_classification + attendance_school_z + game_result + tenure_year_c
    + total_revenues_z
    + conference
    + total_revenues_z:tenure_year_c     
    + attendance_school_z:tenure_year_c
    + game_result:tenure_year_c
    + area_classification:total_revenues_z
    + (1 + tenure_year_c | school),
  data = data_clean,
  control = lmerControl(optimizer = "bobyqa"),  REML = FALSE
)
summary(m_school_inter_r_2)
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
  method [lmerModLmerTest]
Formula: 
s_diversion ~ 1 + game_time_num_c_2 + s_game_c + area_classification +  
    attendance_school_z + game_result + tenure_year_c + total_revenues_z +  
    conference + total_revenues_z:tenure_year_c + attendance_school_z:tenure_year_c +  
    game_result:tenure_year_c + area_classification:total_revenues_z +  
    (1 + tenure_year_c | school)
   Data: data_clean
Control: lmerControl(optimizer = "bobyqa")

      AIC       BIC    logLik -2*log(L)  df.resid 
  -1760.7   -1658.2     900.4   -1800.7      1225 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.4269 -0.5159 -0.0567  0.4811  3.8762 

Random effects:
 Groups   Name          Variance Std.Dev. Corr 
 school   (Intercept)   0.042894 0.20711       
          tenure_year_c 0.001005 0.03171  -0.17
 Residual               0.011739 0.10834       
Number of obs: 1245, groups:  school, 27

Fixed effects:
                                        Estimate Std. Error         df t value
(Intercept)                            7.736e-01  1.844e-01  3.539e+01   4.195
game_time_num_c_2                     -3.441e-04  1.132e-03  1.203e+03  -0.304
s_game_c                              -7.876e-04  1.606e-03  1.196e+03  -0.491
area_classification1                  -2.500e-01  1.513e-01  3.633e+01  -1.652
attendance_school_z                   -9.838e-03  5.383e-03  1.220e+03  -1.828
game_result1                          -9.352e-03  1.110e-02  1.206e+03  -0.843
tenure_year_c                         -5.397e-03  7.259e-03  3.105e+01  -0.744
total_revenues_z                       2.829e-01  8.262e-02  2.180e+02   3.424
conferenceBig10                       -1.813e-01  1.249e-01  2.636e+01  -1.452
conferenceBig12                       -3.537e-01  1.798e-01  2.712e+01  -1.968
conferencePac12                        1.251e-03  1.549e-01  2.952e+01   0.008
conferenceSEC                         -2.749e-01  1.294e-01  2.647e+01  -2.125
tenure_year_c:total_revenues_z        -6.155e-03  1.124e-03  1.231e+03  -5.474
attendance_school_z:tenure_year_c      1.508e-03  5.863e-04  1.212e+03   2.572
game_result1:tenure_year_c             2.973e-03  1.713e-03  1.208e+03   1.735
area_classification1:total_revenues_z -1.859e-01  8.286e-02  2.156e+02  -2.243
                                      Pr(>|t|)    
(Intercept)                           0.000174 ***
game_time_num_c_2                     0.761122    
s_game_c                              0.623864    
area_classification1                  0.107152    
attendance_school_z                   0.067857 .  
game_result1                          0.399620    
tenure_year_c                         0.462764    
total_revenues_z                      0.000738 ***
conferenceBig10                       0.158250    
conferenceBig12                       0.059388 .  
conferencePac12                       0.993611    
conferenceSEC                         0.043060 *  
tenure_year_c:total_revenues_z        5.33e-08 ***
attendance_school_z:tenure_year_c     0.010243 *  
game_result1:tenure_year_c            0.082982 .  
area_classification1:total_revenues_z 0.025903 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 16 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it

1.3 Two level (game-school) models with interaction and nonlinear effects

m_school_polytenure_inter_r_2 <- lmer(
 s_diversion ~ 1 + game_time_num_c_2 + attendance_school_z + game_result + s_game_c + conference + area_classification
                 + total_revenues_z
                 + poly(tenure_year_c , 3)
                 + poly(tenure_year_c , 3):conference
                 + poly(tenure_year_c , 3):attendance_school_z
                 + area_classification:total_revenues_z
                 + poly(tenure_year_c , 3):total_revenues_z
                 + (1 + poly(tenure_year_c , 2) | school),
  data = data_clean,
  control = lmerControl(optimizer = "bobyqa"),  REML = FALSE
)
summary(m_school_polytenure_inter_r_2)
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
  method [lmerModLmerTest]
Formula: 
s_diversion ~ 1 + game_time_num_c_2 + attendance_school_z + game_result +  
    s_game_c + conference + area_classification + total_revenues_z +  
    poly(tenure_year_c, 3) + poly(tenure_year_c, 3):conference +  
    poly(tenure_year_c, 3):attendance_school_z + area_classification:total_revenues_z +  
    poly(tenure_year_c, 3):total_revenues_z + (1 + poly(tenure_year_c,  
    2) | school)
   Data: data_clean
Control: lmerControl(optimizer = "bobyqa")

      AIC       BIC    logLik -2*log(L)  df.resid 
  -1961.3   -1756.2    1020.6   -2041.3      1205 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.8097 -0.5172 -0.0286  0.4532  4.4720 

Random effects:
 Groups   Name                    Variance  Std.Dev. Corr     
 school   (Intercept)             6.097e-02  0.24692          
          poly(tenure_year_c, 2)1 1.057e+02 10.28145 0.57     
          poly(tenure_year_c, 2)2 1.310e+01  3.61876 0.39 0.88
 Residual                         9.383e-03  0.09687          
Number of obs: 1245, groups:  school, 27

Fixed effects:
                                              Estimate Std. Error         df
(Intercept)                                  6.737e-01  2.159e-01  2.803e+01
game_time_num_c_2                           -9.005e-05  1.017e-03  1.184e+03
attendance_school_z                         -1.734e-03  3.361e-03  1.212e+03
game_result1                                 5.003e-03  6.765e-03  1.188e+03
s_game_c                                     2.993e-05  1.439e-03  1.169e+03
conferenceBig10                             -3.848e-03  1.796e-01  1.547e+01
conferenceBig12                             -1.962e-01  2.594e-01  1.571e+01
conferencePac12                              1.266e-01  2.114e-01  1.661e+01
conferenceSEC                               -3.277e-01  1.952e-01  1.589e+01
area_classification1                        -3.492e-01  1.521e-01  3.638e+01
total_revenues_z                             4.056e-01  1.001e-01  9.128e+01
poly(tenure_year_c, 3)1                     -9.395e+00  7.736e+00  7.778e+00
poly(tenure_year_c, 3)2                     -2.272e+00  3.176e+00  5.890e+00
poly(tenure_year_c, 3)3                      2.945e+00  7.128e-01  3.184e+02
conferenceBig10:poly(tenure_year_c, 3)1      7.360e+00  8.844e+00  7.722e+00
conferenceBig12:poly(tenure_year_c, 3)1      5.159e+00  1.239e+01  6.860e+00
conferencePac12:poly(tenure_year_c, 3)1      8.745e+00  1.026e+01  7.512e+00
conferenceSEC:poly(tenure_year_c, 3)1       -8.876e+00  9.985e+00  8.505e+00
conferenceBig10:poly(tenure_year_c, 3)2      5.915e-01  3.631e+00  6.044e+00
conferenceBig12:poly(tenure_year_c, 3)2     -3.167e+00  5.228e+00  6.674e+00
conferencePac12:poly(tenure_year_c, 3)2      2.553e+00  4.233e+00  6.104e+00
conferenceSEC:poly(tenure_year_c, 3)2       -1.169e+01  4.337e+00  7.261e+00
conferenceBig10:poly(tenure_year_c, 3)3     -4.641e+00  8.505e-01  3.448e+02
conferenceBig12:poly(tenure_year_c, 3)3     -5.558e+00  1.934e+00  1.002e+02
conferencePac12:poly(tenure_year_c, 3)3     -5.284e+00  1.193e+00  1.427e+02
conferenceSEC:poly(tenure_year_c, 3)3       -8.804e+00  1.067e+00  2.712e+02
attendance_school_z:poly(tenure_year_c, 3)1  2.944e-01  1.019e-01  1.205e+03
attendance_school_z:poly(tenure_year_c, 3)2 -7.283e-02  1.014e-01  1.214e+03
attendance_school_z:poly(tenure_year_c, 3)3 -2.621e-01  1.098e-01  1.207e+03
area_classification1:total_revenues_z       -3.502e-01  1.010e-01  9.412e+01
total_revenues_z:poly(tenure_year_c, 3)1    -6.727e-01  3.158e-01  1.023e+03
total_revenues_z:poly(tenure_year_c, 3)2     6.526e-01  3.546e-01  5.187e+02
total_revenues_z:poly(tenure_year_c, 3)3    -4.520e-01  1.962e-01  4.782e+02
                                            t value Pr(>|t|)    
(Intercept)                                   3.120 0.004162 ** 
game_time_num_c_2                            -0.089 0.929432    
attendance_school_z                          -0.516 0.606032    
game_result1                                  0.740 0.459698    
s_game_c                                      0.021 0.983414    
conferenceBig10                              -0.021 0.983183    
conferenceBig12                              -0.756 0.460747    
conferencePac12                               0.599 0.557238    
conferenceSEC                                -1.679 0.112782    
area_classification1                         -2.295 0.027586 *  
total_revenues_z                              4.053 0.000106 ***
poly(tenure_year_c, 3)1                      -1.214 0.260153    
poly(tenure_year_c, 3)2                      -0.715 0.501835    
poly(tenure_year_c, 3)3                       4.131 4.62e-05 ***
conferenceBig10:poly(tenure_year_c, 3)1       0.832 0.430274    
conferenceBig12:poly(tenure_year_c, 3)1       0.416 0.689892    
conferencePac12:poly(tenure_year_c, 3)1       0.852 0.420602    
conferenceSEC:poly(tenure_year_c, 3)1        -0.889 0.398487    
conferenceBig10:poly(tenure_year_c, 3)2       0.163 0.875898    
conferenceBig12:poly(tenure_year_c, 3)2      -0.606 0.564628    
conferencePac12:poly(tenure_year_c, 3)2       0.603 0.568158    
conferenceSEC:poly(tenure_year_c, 3)2        -2.697 0.029748 *  
conferenceBig10:poly(tenure_year_c, 3)3      -5.457 9.27e-08 ***
conferenceBig12:poly(tenure_year_c, 3)3      -2.875 0.004942 ** 
conferencePac12:poly(tenure_year_c, 3)3      -4.429 1.87e-05 ***
conferenceSEC:poly(tenure_year_c, 3)3        -8.249 6.96e-15 ***
attendance_school_z:poly(tenure_year_c, 3)1   2.888 0.003943 ** 
attendance_school_z:poly(tenure_year_c, 3)2  -0.718 0.472839    
attendance_school_z:poly(tenure_year_c, 3)3  -2.387 0.017153 *  
area_classification1:total_revenues_z        -3.469 0.000790 ***
total_revenues_z:poly(tenure_year_c, 3)1     -2.130 0.033384 *  
total_revenues_z:poly(tenure_year_c, 3)2      1.840 0.066275 .  
total_revenues_z:poly(tenure_year_c, 3)3     -2.304 0.021634 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 33 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it

2. Model Performance

performance::model_performance(m_school_r_2,estimator = "ML")
# Indices of model performance

AIC     |    AICc |     BIC | R2 (cond.) | R2 (marg.) |   ICC |  RMSE | Sigma
-----------------------------------------------------------------------------
-1723.3 | -1722.8 | -1641.2 |      0.885 |      0.086 | 0.875 | 0.108 | 0.110
performance::model_performance(m_school_inter_r_2,estimator = "ML")
# Indices of model performance

AIC     |    AICc |     BIC | R2 (cond.) | R2 (marg.) |   ICC |  RMSE | Sigma
-----------------------------------------------------------------------------
-1760.7 | -1760.0 | -1658.2 |      0.887 |      0.100 | 0.875 | 0.106 | 0.108
performance::model_performance(m_school_polytenure_inter_r_2,estimator = "ML")
# Indices of model performance

AIC     |    AICc |     BIC | R2 (cond.) | R2 (marg.) |   ICC |  RMSE | Sigma
-----------------------------------------------------------------------------
-1961.3 | -1958.6 | -1756.2 |      0.908 |      0.312 | 0.867 | 0.095 | 0.097