Cargar datos
library(readr)
redwine <- read_csv("winequality-red.csv")
redwine <- as.data.frame(lapply(redwine, as.numeric))
Limpiar nombres y vista inicial de data
redwine <- clean_names(redwine)
str(redwine)
## 'data.frame': 1599 obs. of 12 variables:
## $ fixed_acidity : num 7.4 7.8 7.8 11.2 7.4 7.4 7.9 7.3 7.8 7.5 ...
## $ volatile_acidity : num 0.7 0.88 0.76 0.28 0.7 0.66 0.6 0.65 0.58 0.5 ...
## $ citric_acid : num 0 0 0.04 0.56 0 0 0.06 0 0.02 0.36 ...
## $ residual_sugar : num 1.9 2.6 2.3 1.9 1.9 1.8 1.6 1.2 2 6.1 ...
## $ chlorides : num 0.076 0.098 0.092 0.075 0.076 0.075 0.069 0.065 0.073 0.071 ...
## $ free_sulfur_dioxide : num 11 25 15 17 11 13 15 15 9 17 ...
## $ total_sulfur_dioxide: num 34 67 54 60 34 40 59 21 18 102 ...
## $ density : num 0.998 0.997 0.997 0.998 0.998 ...
## $ p_h : num 3.51 3.2 3.26 3.16 3.51 3.51 3.3 3.39 3.36 3.35 ...
## $ sulphates : num 0.56 0.68 0.65 0.58 0.56 0.56 0.46 0.47 0.57 0.8 ...
## $ alcohol : num 9.4 9.8 9.8 9.8 9.4 9.4 9.4 10 9.5 10.5 ...
## $ quality : num 5 5 5 6 5 5 5 7 7 5 ...
summary(redwine)
## fixed_acidity volatile_acidity citric_acid residual_sugar
## Min. : 4.60 Min. :0.1200 Min. :0.000 Min. : 0.900
## 1st Qu.: 7.10 1st Qu.:0.3900 1st Qu.:0.090 1st Qu.: 1.900
## Median : 7.90 Median :0.5200 Median :0.260 Median : 2.200
## Mean : 8.32 Mean :0.5278 Mean :0.271 Mean : 2.539
## 3rd Qu.: 9.20 3rd Qu.:0.6400 3rd Qu.:0.420 3rd Qu.: 2.600
## Max. :15.90 Max. :1.5800 Max. :1.000 Max. :15.500
## chlorides free_sulfur_dioxide total_sulfur_dioxide density
## Min. :0.01200 Min. : 1.00 Min. : 6.00 Min. :0.9901
## 1st Qu.:0.07000 1st Qu.: 7.00 1st Qu.: 22.00 1st Qu.:0.9956
## Median :0.07900 Median :14.00 Median : 38.00 Median :0.9968
## Mean :0.08747 Mean :15.87 Mean : 46.47 Mean :0.9967
## 3rd Qu.:0.09000 3rd Qu.:21.00 3rd Qu.: 62.00 3rd Qu.:0.9978
## Max. :0.61100 Max. :72.00 Max. :289.00 Max. :1.0037
## p_h sulphates alcohol quality
## Min. :2.740 Min. :0.3300 Min. : 8.40 Min. :3.000
## 1st Qu.:3.210 1st Qu.:0.5500 1st Qu.: 9.50 1st Qu.:5.000
## Median :3.310 Median :0.6200 Median :10.20 Median :6.000
## Mean :3.311 Mean :0.6581 Mean :10.42 Mean :5.636
## 3rd Qu.:3.400 3rd Qu.:0.7300 3rd Qu.:11.10 3rd Qu.:6.000
## Max. :4.010 Max. :2.0000 Max. :14.90 Max. :8.000
Histogramas de cada variable
columnas <- dim(redwine)[2]
par(mfrow=c(3,columnas/3))
for (i in 1:columnas) {
if (is.numeric(redwine[,i])==TRUE)
{
hist(redwine[,i],
main = names(redwine)[i], # ← aquí le dices el título
xlab = names(redwine)[i], # opcional: etiqueta del eje X
col = "steelblue",
border = "white")
}
else
{
pie(table(redwine[,i]))
}
}

Gráficos Calidad vs …
variables <- names(redwine)[names(redwine) != "quality"]
for (var in variables) {
p <- ggplot(redwine, aes(x = quality, y = .data[[var]])) +
geom_point(color = "green", alpha = 0.6) +
geom_smooth(method = "lm", color = "red", se = FALSE, linetype = "dashed") +
geom_smooth(method = "loess", color = "blue", se = TRUE) +
geom_smooth(method = "gam", color = "darkgreen", formula = y ~ s(x), se = FALSE) +
labs(title = paste("Calidad vs", var),
x = "Calidad", y = var) +
theme_minimal()
print(p)
}










