bb <- getbb("Florida")
tmp <- c(2,1,4,3)
sb_bb <- bb[tmp]
test <- get_inat_obs(
taxon_id = 551307,
place_id = 21,
maxresults = 3512,
bounds = sb_bb,
geo = TRUE,
meta = FALSE)
mypoints <- test[
test$coordinates_obscured == "false" &
test$quality_grade == "research", ]
library(readxl)
setwd("~/UNC 25-26/Fall/GEOG 391")
library(readr)
Sharks <- read_csv("C:/Users/Kendall/OneDrive/Documents/UNC 25-26/Fall/Geog 391/Sharks.csv")
## Rows: 34 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): NAME
## dbl (5): totalsight, totalbite, avgseverity, fatal, beach
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(Sharks)
attach(Sharks)
par(xpd=TRUE)
ggplot(data = Sharks, mapping = aes(x=beach, y=totalbite))+
geom_point(aes(color=NAME, size=beach))+
geom_smooth()+
geom_smooth(method = 'lm')+
xlab("Coastline Length (miles)")+
ylab("Number of Shark Attacks")+
ggtitle("Number of Shark Attacks by County Coastline Length")+
theme(legend.text = element_text(size = 8),
legend.box.spacing = unit(0.25, "cm"),
legend.key.size = unit(.25, "cm"),
legend.title = element_text(size = 14, face = "bold"))
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
par(xpd=TRUE)
ggplot(data = Sharks, mapping = aes(x=beach, y=totalsight))+
geom_point(aes(color=NAME, size=beach))+
geom_smooth()+
geom_smooth(method = 'lm')+
xlab("Coastline Length (miles)")+
ylab("Number of Shark Sightings")+
ggtitle("Number of Shark Sightings by County Coastline Length")+
theme(legend.text = element_text(size = 8),
legend.box.spacing = unit(0.25, "cm"),
legend.key.size = unit(.25, "cm"),
legend.title = element_text(size = 14, face = "bold"))
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
p = ggplot(data=Sharks)+
geom_point(mapping=aes(x=beach, y=totalbite), color="red", shape=15, size=2.5)+
geom_smooth(mapping=aes(x=beach, y=totalbite), color="red")+
geom_point(mapping=aes(x=beach, y=totalsight), color="dodgerblue", shape=16, size=2.5)+
geom_smooth(mapping=aes(x=beach, y=totalsight), color="dodgerblue")+
xlab("Length of Coastline")+
ylab("Number of Bites and Sightings by Coastline Length")+
ggtitle("Scatterplot of Number of Bites/Sightings by Type per Coasline Length")+
theme_gray()
ggplotly(p)
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
lmbite <- lm(Sharks$totalbite~Sharks$beach)
summary(lmbite)
##
## Call:
## lm(formula = Sharks$totalbite ~ Sharks$beach)
##
## Residuals:
## Min 1Q Median 3Q Max
## -63.882 -21.939 -1.329 9.022 285.188
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.0915 15.4779 -0.587 0.56107
## Sharks$beach 1.3915 0.5067 2.746 0.00982 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.29 on 32 degrees of freedom
## Multiple R-squared: 0.1907, Adjusted R-squared: 0.1654
## F-statistic: 7.54 on 1 and 32 DF, p-value: 0.009818
lmsight <- lm(Sharks$totalsight~Sharks$beach)
summary(lmsight)
##
## Call:
## lm(formula = Sharks$totalsight ~ Sharks$beach)
##
## Residuals:
## Min 1Q Median 3Q Max
## -101.27 -30.28 -11.84 4.39 477.46
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.4245 25.8380 -0.133 0.8954
## Sharks$beach 1.9230 0.8459 2.273 0.0299 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 92.3 on 32 degrees of freedom
## Multiple R-squared: 0.139, Adjusted R-squared: 0.1121
## F-statistic: 5.168 on 1 and 32 DF, p-value: 0.02986
btst <- lm(Sharks$totalsight~Sharks$totalbite)
summary(btst)
##
## Call:
## lm(formula = Sharks$totalsight ~ Sharks$totalbite)
##
## Residuals:
## Min 1Q Median 3Q Max
## -72.89 -32.84 -24.71 -1.00 524.42
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.1043 18.2389 2.034 0.0503 .
## Sharks$totalbite 0.2406 0.2829 0.851 0.4014
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 98.37 on 32 degrees of freedom
## Multiple R-squared: 0.02211, Adjusted R-squared: -0.008453
## F-statistic: 0.7234 on 1 and 32 DF, p-value: 0.4014
multi <- lm(Sharks$totalbite~Sharks$totalsight+Sharks$beach)
summary(multi)
##
## Call:
## lm(formula = Sharks$totalbite ~ Sharks$totalsight + Sharks$beach)
##
## Residuals:
## Min 1Q Median 3Q Max
## -64.630 -22.337 -1.343 9.068 284.747
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.12624 15.72757 -0.580 0.5659
## Sharks$totalsight -0.01016 0.10757 -0.094 0.9254
## Sharks$beach 1.41099 0.55478 2.543 0.0162 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56.17 on 31 degrees of freedom
## Multiple R-squared: 0.1909, Adjusted R-squared: 0.1387
## F-statistic: 3.658 on 2 and 31 DF, p-value: 0.03748
#Table of results
| Regression | t-value | p-value | Multiple r2 |
|---|---|---|---|
| Bite | 2.746 | 0.00982** | 0.1907 |
| Sight | 2.273 | 0.0299* | 0.139 |
| Bite~Sight | 0.851 | 0.4014 | 0.02211 |
| Multi | -0.58 | 0.03748 | 0.1909* |