Import your data

data("mtcars")
mtcars <- as_tibble(mtcars)
data <- read_csv("../00_data/myData.csv")
## Rows: 882 Columns: 69
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (22): EXPID, PEAKID, SEASON_FACTOR, HOST_FACTOR, ROUTE1, ROUTE2, NATION...
## dbl  (17): YEAR, SEASON, HOST, SMTDAYS, TOTDAYS, TERMREASON, HIGHPOINT, CAMP...
## lgl  (27): ROUTE3, ROUTE4, SUCCESS1, SUCCESS2, SUCCESS3, SUCCESS4, ASCENT3, ...
## date  (3): BCDATE, SMTDATE, TERMDATE
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data
## # A tibble: 882 × 69
##    EXPID     PEAKID  YEAR SEASON SEASON_FACTOR  HOST HOST_FACTOR ROUTE1   ROUTE2
##    <chr>     <chr>  <dbl>  <dbl> <chr>         <dbl> <chr>       <chr>    <chr> 
##  1 EVER20101 EVER    2020      1 Spring            2 China       N Col-N… <NA>  
##  2 EVER20102 EVER    2020      1 Spring            2 China       N Col-N… <NA>  
##  3 EVER20103 EVER    2020      1 Spring            2 China       N Col-N… <NA>  
##  4 AMAD20301 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
##  5 AMAD20302 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
##  6 AMAD20303 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
##  7 AMAD20304 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
##  8 AMAD20305 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
##  9 AMAD20306 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
## 10 AMAD20307 AMAD    2020      3 Autumn            1 Nepal       SW Ridge <NA>  
## # ℹ 872 more rows
## # ℹ 60 more variables: ROUTE3 <lgl>, ROUTE4 <lgl>, NATION <chr>, LEADERS <chr>,
## #   SPONSOR <chr>, SUCCESS1 <lgl>, SUCCESS2 <lgl>, SUCCESS3 <lgl>,
## #   SUCCESS4 <lgl>, ASCENT1 <chr>, ASCENT2 <chr>, ASCENT3 <lgl>, ASCENT4 <lgl>,
## #   CLAIMED <lgl>, DISPUTED <lgl>, COUNTRIES <chr>, APPROACH <chr>,
## #   BCDATE <date>, SMTDATE <date>, SMTTIME <chr>, SMTDAYS <dbl>, TOTDAYS <dbl>,
## #   TERMDATE <date>, TERMREASON <dbl>, TERMREASON_FACTOR <chr>, …

Repeat the same operation over different columns of a data frame

Case of numeric variables

mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(.f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(.f = mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
# Adding an argument
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% map_dbl(mean, trim = 0.1)
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% select(.data = ., mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # ℹ 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # ℹ 22 more rows

Create your own function

# Double values in columns
double_by_vector <- function(x, factor) {x * factor}
10 %>% double_by_vector(factor = 2)
## [1] 20
mtcars %>% map_dfr(.x = ., .f = ~double_by_vector(x = .x, factor = 10))
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows
mtcars %>% map_dfr(double_by_vector, factor = 10)
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows

Repeat the same operation over different elements of a list

When you have a grouping variable (factor)

mtcars %>% lm(formula = mpg ~wt, data = .)
## 
## Call:
## lm(formula = mpg ~ wt, data = .)
## 
## Coefficients:
## (Intercept)           wt  
##      37.285       -5.344
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
##     cyl
##   <dbl>
## 1     6
## 2     4
## 3     8
reg_coeff_tbl <- mtcars %>% 
    
    # Split it into a list of dataf rames
    split(.$cyl) %>%
    
    # Repeat regression over each group
    map(~lm(formula = mpg ~ wt, data = .x)) %>%
    
    # Extract coefficients from regression results
    map(broom::tidy, conf.int = TRUE) %>% 
    
    # Convert to tibble
    bind_rows(.id = "cyl") %>%
    
    # Filter or wt coefficients
    filter(term == "wt")
reg_coeff_tbl %>% 
    
    mutate(estimate = -estimate,
           conf.low = -conf.low,
           conf.high = -conf.high) %>%
    
    ggplot(aes(x = estimate, y = cyl)) +
    geom_point() + 
    geom_errorbar(aes(xmin = conf.low, xmax = conf.high))

Create your own

Choose either one of the two cases above and apply it to your data

data %>% 
    
        mutate(SUCCESS1, SUCCESS1,
               NATION = NATION) %>%
    
    ggplot(aes(x = ROUTE1, y = NATION)) +
    geom_point() + 
    geom_errorbar(aes(xmin = NATION, xmax = ROUTE1))