data(flights)
flights %>% skimr::skim()
| Name | Piped data |
| Number of rows | 336776 |
| Number of columns | 19 |
| _______________________ | |
| Column type frequency: | |
| character | 4 |
| numeric | 14 |
| POSIXct | 1 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| carrier | 0 | 1.00 | 2 | 2 | 0 | 16 | 0 |
| tailnum | 2512 | 0.99 | 5 | 6 | 0 | 4043 | 0 |
| origin | 0 | 1.00 | 3 | 3 | 0 | 3 | 0 |
| dest | 0 | 1.00 | 3 | 3 | 0 | 105 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| year | 0 | 1.00 | 2013.00 | 0.00 | 2013 | 2013 | 2013 | 2013 | 2013 | ▁▁▇▁▁ |
| month | 0 | 1.00 | 6.55 | 3.41 | 1 | 4 | 7 | 10 | 12 | ▇▆▆▆▇ |
| day | 0 | 1.00 | 15.71 | 8.77 | 1 | 8 | 16 | 23 | 31 | ▇▇▇▇▆ |
| dep_time | 8255 | 0.98 | 1349.11 | 488.28 | 1 | 907 | 1401 | 1744 | 2400 | ▁▇▆▇▃ |
| sched_dep_time | 0 | 1.00 | 1344.25 | 467.34 | 106 | 906 | 1359 | 1729 | 2359 | ▁▇▇▇▃ |
| dep_delay | 8255 | 0.98 | 12.64 | 40.21 | -43 | -5 | -2 | 11 | 1301 | ▇▁▁▁▁ |
| arr_time | 8713 | 0.97 | 1502.05 | 533.26 | 1 | 1104 | 1535 | 1940 | 2400 | ▁▃▇▇▇ |
| sched_arr_time | 0 | 1.00 | 1536.38 | 497.46 | 1 | 1124 | 1556 | 1945 | 2359 | ▁▃▇▇▇ |
| arr_delay | 9430 | 0.97 | 6.90 | 44.63 | -86 | -17 | -5 | 14 | 1272 | ▇▁▁▁▁ |
| flight | 0 | 1.00 | 1971.92 | 1632.47 | 1 | 553 | 1496 | 3465 | 8500 | ▇▃▃▁▁ |
| air_time | 9430 | 0.97 | 150.69 | 93.69 | 20 | 82 | 129 | 192 | 695 | ▇▂▂▁▁ |
| distance | 0 | 1.00 | 1039.91 | 733.23 | 17 | 502 | 872 | 1389 | 4983 | ▇▃▂▁▁ |
| hour | 0 | 1.00 | 13.18 | 4.66 | 1 | 9 | 13 | 17 | 23 | ▁▇▇▇▅ |
| minute | 0 | 1.00 | 26.23 | 19.30 | 0 | 8 | 29 | 44 | 59 | ▇▃▆▃▅ |
Variable type: POSIXct
| skim_variable | n_missing | complete_rate | min | max | median | n_unique |
|---|---|---|---|---|---|---|
| time_hour | 0 | 1 | 2013-01-01 05:00:00 | 2013-12-31 23:00:00 | 2013-07-03 10:00:00 | 6936 |
ncol_num <- flights %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
ncol_num
## [1] 14
count_ncol_numeric <- function(.data) {
# Body
ncol_num <- .data %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
# Return new vatible
return(ncol_num)
}
flights %>% count_ncol_numeric()
## [1] 14
flights %>% .[1:10, 1:5] %>% count_ncol_numeric()
## [1] 5
flights %>% .[1:10, -1:-13] %>% count_ncol_numeric()
## [1] 4
count_ncol_type <- function(.data, type_data = "numeric") {
# If statement for type of variables
if(type_data == "numeric") {
# Body
ncol_type <- .data %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
} else if(type_data == "character") {
# Body
ncol_type <- .data %>%
# Select a type of variables
select(where(is.character)) %>%
# Count columns
ncol()
}
# Return new vatible
return(ncol_type)
}
flights %>% count_ncol_type()
## [1] 14
flights %>% count_ncol_type(type_data = "character")
## [1] 4
flights %>% .[1:10, 1:5] %>% count_ncol_type(type_data = "character")
## [1] 0
nrow_num <- flights %>%
# filter rows that meet a condition
filter(carrier == "UA") %>%
# Count rows
nrow()
nrow_num
## [1] 58665
count_num_flights_by_carrier <- function(.data, carrier_name) {
# Body
nrow_num <- .data %>%
# filter rows that meet a condition
filter(carrier == carrier_name) %>%
# Count rows
nrow()
# Return the new varible
return(nrow_num)
}
flights %>% .[1:10, "carrier"] %>%
count_num_flights_by_carrier(carrier_name = "AA")
## [1] 2
flights %>% .[1:10, "carrier"] %>% count_num_flights_by_carrier(carrier_name = "AA")
## [1] 2
data <- read_csv("../00_data/MyData.csv")
## Rows: 882 Columns: 69
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (22): EXPID, PEAKID, SEASON_FACTOR, HOST_FACTOR, ROUTE1, ROUTE2, NATION...
## dbl (17): YEAR, SEASON, HOST, SMTDAYS, TOTDAYS, TERMREASON, HIGHPOINT, CAMP...
## lgl (27): ROUTE3, ROUTE4, SUCCESS1, SUCCESS2, SUCCESS3, SUCCESS4, ASCENT3, ...
## date (3): BCDATE, SMTDATE, TERMDATE
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data
## # A tibble: 882 × 69
## EXPID PEAKID YEAR SEASON SEASON_FACTOR HOST HOST_FACTOR ROUTE1 ROUTE2
## <chr> <chr> <dbl> <dbl> <chr> <dbl> <chr> <chr> <chr>
## 1 EVER20101 EVER 2020 1 Spring 2 China N Col-N… <NA>
## 2 EVER20102 EVER 2020 1 Spring 2 China N Col-N… <NA>
## 3 EVER20103 EVER 2020 1 Spring 2 China N Col-N… <NA>
## 4 AMAD20301 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 5 AMAD20302 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 6 AMAD20303 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 7 AMAD20304 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 8 AMAD20305 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 9 AMAD20306 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## 10 AMAD20307 AMAD 2020 3 Autumn 1 Nepal SW Ridge <NA>
## # ℹ 872 more rows
## # ℹ 60 more variables: ROUTE3 <lgl>, ROUTE4 <lgl>, NATION <chr>, LEADERS <chr>,
## # SPONSOR <chr>, SUCCESS1 <lgl>, SUCCESS2 <lgl>, SUCCESS3 <lgl>,
## # SUCCESS4 <lgl>, ASCENT1 <chr>, ASCENT2 <chr>, ASCENT3 <lgl>, ASCENT4 <lgl>,
## # CLAIMED <lgl>, DISPUTED <lgl>, COUNTRIES <chr>, APPROACH <chr>,
## # BCDATE <date>, SMTDATE <date>, SMTTIME <chr>, SMTDAYS <dbl>, TOTDAYS <dbl>,
## # TERMDATE <date>, TERMREASON <dbl>, TERMREASON_FACTOR <chr>, …
Use the filter() function to select rows that meet a condition. Refer to Chapter 5.2 Filter rows with filter()
nrow_num <- data %>%
filter(PEAKID == "EVER") %>%
nrow()
nrow_num
## [1] 189
PEAKID_by_HOST <- function(data, HOST) {
nrow_num <- data %>%
filter("PEAKID" == HOST) %>%
nrow()
return(nrow_num)
}
data %>% .[1:10, "HOST"] %>%
PEAKID_by_HOST (HOST = "AA")
## [1] 0