# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(ggplot2)
library(timetk)

1 Import stock prices.

symbols <- c("WMT", "TGT", "COST", "HD", "M")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2025-12-06")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "COST" "HD"   "M"    "TGT"  "WMT"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 Ă— 2
##   symbols weights
##   <chr>     <dbl>
## 1 COST       0.25
## 2 HD         0.25
## 3 M          0.2 
## 4 TGT        0.2 
## 5 WMT        0.1

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 156 Ă— 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0378 
##  2 2013-02-28  0.0224 
##  3 2013-03-28  0.0451 
##  4 2013-04-30  0.0405 
##  5 2013-05-31  0.0319 
##  6 2013-06-28 -0.00314
##  7 2013-07-31  0.0328 
##  8 2013-08-30 -0.0715 
##  9 2013-09-30  0.0124 
## 10 2013-10-31  0.0316 
## # ℹ 146 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.009404048
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.05598326
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0037949192 -0.0781037365  0.0115591942  0.0286923947  0.0330604966
##   [6]  0.0022414189 -0.0002638147  0.0105429992 -0.0239615729  0.0250224402
##  [11] -0.0456805679 -0.0139089126  0.0397611114 -0.0747356346 -0.0644503115
##  [16] -0.0201583313  0.0170107722  0.0394875407 -0.0948628738  0.0262406278
##  [21]  0.0372439307 -0.0466512337  0.0491963436 -0.1118704191 -0.0153468858
##  [26]  0.0717957633  0.0588692109  0.0436521424  0.0412608512  0.0192404538
##  [31] -0.0394562359  0.0643716105  0.0625891868 -0.0631324641 -0.0417115080
##  [36]  0.0410055656  0.0264222196  0.0067748925  0.0434502633 -0.0806546799
##  [41] -0.0478840606  0.0004647828  0.0211521649 -0.0040575482  0.0981437848
##  [46]  0.0591006722  0.0415914186 -0.0186397494  0.0112100578  0.0968872666
##  [51] -0.0553058254 -0.0645869218  0.0079473452  0.0010828059 -0.0573440675
##  [56] -0.0101259387  0.0644258793  0.0103408073 -0.0471496567 -0.0681211812
##  [61] -0.0158532312  0.0385085303  0.0224356864  0.0430806128  0.0576806292
##  [66]  0.0175528644  0.0943599990  0.1071336413 -0.0077695046 -0.0137156275
##  [71]  0.0593595841  0.0045701572 -0.0189609827  0.0314271362  0.0895313303
##  [76] -0.0244480627 -0.0679864614  0.0243498424  0.0384604238 -0.0402145206
##  [81] -0.0109573591  0.0221197932 -0.0240287167  0.0331012355 -0.0524913458
##  [86] -0.1471495990  0.0639754741  0.0425480275 -0.0752169920 -0.0112036736
##  [91]  0.0453635567 -0.0585968845 -0.0230144413 -0.0095612620 -0.0487226578
##  [96]  0.0620465043 -0.0538660736  0.0584047961 -0.0060767291 -0.1149124933
## [101] -0.0289738371 -0.0275635431 -0.0678107163 -0.0094197953 -0.0286114791
## [106] -0.0492810636  0.0357617118  0.0708717565 -0.0635830027  0.0653257482
## [111]  0.0204400403  0.0811143199  0.0052422955 -0.0073533135 -0.0937219805
## [116]  0.0299578645 -0.0752363943 -0.0483049841  0.0517757505 -0.0829652516
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 Ă— 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   0.922
##  4   1.01 
##  5   1.03 
##  6   1.03 
##  7   1.00 
##  8   1.000
##  9   1.01 
## 10   0.976
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 Ă— 1
##    growth
##     <dbl>
##  1  1    
##  2  1.00 
##  3  0.925
##  4  0.936
##  5  0.963
##  6  0.995
##  7  0.997
##  8  0.997
##  9  1.01 
## 10  0.983
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] -2.235242

6 Simulation function

simulate_accumulation <- function(init_value, N, mean, stdev) {

    tibble(returns = c(init_value, 1 + rnorm(N, mean, stdev))) %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)

}

simulate_accumulation(1, 120, mean_port_return, stddev_port_return)
## # A tibble: 121 Ă— 1
##    growth
##     <dbl>
##  1   1   
##  2   1.03
##  3   1.08
##  4   1.11
##  5   1.19
##  6   1.13
##  7   1.18
##  8   1.20
##  9   1.20
## 10   1.12
## # ℹ 111 more rows
# Save the function
dump(list = c("simulate_accumulation"), file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste("sim", 1:sims, sep = ""))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%

    # Simulate
    map_dfc(simulate_accumulation,
            N     = 120,
            mean  = mean_port_return,
            stdev = stddev_port_return) %>%

    # Add the column, month
    mutate(month = seq(1:nrow(.))) %>%

    # Arrange column names
    select(month, everything()) %>%
    set_names(c("month", names(starts))) %>%

    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 Ă— 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Calculate the quantiles for simulated values

probs <- c(.005, .025, .25, .5, .75, .975, .995)

monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%

    # Find the quantiles
    quantile(probs = probs) %>%
    round(2)
##  0.5%  2.5%   25%   50%   75% 97.5% 99.5% 
##  1.03  1.05  1.65  2.30  3.58  5.74  6.21

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%

    ggplot(aes(x = month, y = growth, col = sim)) +
    geom_line() +
    theme(legend.position = "none")

sim_summary <- monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

sim_summary
## # A tibble: 1 Ă— 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  6.35   2.30  1.03
monte_carlo_sim_51 %>%

    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
           last(growth) == sim_summary$median |
           last(growth) == sim_summary$min) %>%

    ggplot(aes(month, growth, col = sim)) +
    geom_line() +
    theme()

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?

You should expect roughly $220-$230 from your $100 investment after 20 years. The best case scenario (the green line) reaches about $800. The worst case scenario (the red line) drops below $50. The limitations of the simulation analysis are that it assumed past volatility patterns will continue, which may not reflect the future market. There are only a limited number of scenarios that were simulated, so extreme events might not be captured. The simulation also doesn’t account for fees, taxes, or changes in economic conditions.