1 Configuración y Carga de Datos

##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: MARTIN SARMIENTO ####
### CARRERA: INGENIERÍA EN PETRÓLEOS #####


#### VARIABLE CAPACIDAD ####
## DATASET ##
setwd("~/R/CAPACITY")
# Cargar dataset
Datos <- read.csv("DataSet_prov.csv", sep = ";", dec = ",", fileEncoding = "latin1")
# Estructura de los datos
str(Datos)
## 'data.frame':    5075 obs. of  30 variables:
##  $ FID_                  : int  0 2 3 4 5 6 10 11 12 13 ...
##  $ OBJECTID              : int  127 129 130 131 132 133 137 138 139 140 ...
##  $ code                  : chr  "00127-ARG-P" "00129-ARG-G" "00130-ARG-P" "00131-ARG-P" ...
##  $ plant_name            : chr  "Aconcagua solar farm" "Altiplano 200 Solar Power Plant" "Altiplano 200 Solar Power Plant" "Anchoris solar farm" ...
##  $ country               : chr  "Argentina" "Argentina" "Argentina" "Argentina" ...
##  $ operational_status    : chr  "announced" "operating" "operating" "construction" ...
##  $ longitude             : num  -68.9 -66.9 -66.9 -68.9 -70.3 ...
##  $ latitude              : num  -33 -24.1 -24.1 -33.3 -37.4 ...
##  $ elevation             : int  929 4000 4000 937 865 858 570 1612 665 3989 ...
##  $ area                  : num  250 4397290 5774 645 241 ...
##  $ size                  : chr  "Pequeña" "Grande" "Pequeña" "Pequeña" ...
##  $ slope                 : num  0.574 1.603 6.243 0.903 1.791 ...
##  $ slope_type            : chr  "Plano o casi plano" "Plano o casi plano" "Moderado" "Plano o casi plano" ...
##  $ curvature             : num  0.000795 -0.002781 -0.043699 0.002781 -0.002384 ...
##  $ curvature_type        : chr  "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies cóncavas / Valles" "Superficies planas o intermedias" ...
##  $ aspect                : num  55.1 188.7 270.9 108.4 239.3 ...
##  $ aspect_type           : chr  "Northeast" "South" "West" "East" ...
##  $ dist_to_road          : num  127 56015 52697 336 34 ...
##  $ ambient_temperature   : num  12.6 6.8 6.8 13.1 11.4 ...
##  $ ghi                   : num  6.11 8.01 7.88 6.12 6.22 ...
##  $ humidity              : num  53.7 53.7 53.7 53.7 53.7 ...
##  $ wind_speed            : num  3.78 7.02 8.33 3.87 6.56 ...
##  $ wind_direction        : num  55.1 55.1 55.1 55.1 55.1 ...
##  $ dt_wind               : chr  "Northeast" "Northeast" "Northeast" "Northeast" ...
##  $ solar_aptitude        : num  0.746 0.8 0.727 0.595 0.657 ...
##  $ solar_aptitude_rounded: int  7 8 7 6 7 7 7 8 7 8 ...
##  $ solar_aptittude_class : chr  "Alta" "Alta" "Alta" "Media" ...
##  $ capacity              : num  25 101 107 180 20 ...
##  $ optimal_tilt          : int  31 26 26 31 33 30 31 29 31 27 ...
##  $ pv_potential          : num  4.98 6.39 6.39 4.97 5 ...
# Cargamos las librerias
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(gt)
library(e1071)

2 Cálculo de Intervalos y Frecuencias

#Extraer variable
Variable <- na.omit(Datos$capacity)
N <- length(Variable)

# Cálculo Límites Decimales #
# Cálculos básicos
min_dec <- min(Variable)
max_dec <- max(Variable)
k_dec <- floor(1 + 3.322 * log10(N))
rango_dec <- max(Variable) - min(Variable)
amplitud_dec <- rango_dec / k_dec

# Generamos los cortes exactos
cortes_dec <- seq(min(Variable), max(Variable), length.out = k_dec + 1)
cortes_dec[length(cortes_dec)] <- max(Variable) + 0.0001

# Frecuencias
inter_dec <- cut(Variable, breaks = cortes_dec, include.lowest = TRUE, right = FALSE)
ni_dec <- as.vector(table(inter_dec))
hi_dec <- (ni_dec/N)*100

# Cálculos de Frecuencias
sum_ni <- sum(ni_dec)
hi_dec <- (ni_dec / sum_ni) * 100
Ni_asc_dec <- cumsum(ni_dec)
Hi_asc_dec <- cumsum(hi_dec)
Ni_desc_dec <- rev(cumsum(rev(ni_dec)))
Hi_desc_dec <- rev(cumsum(rev(hi_dec)))

# Construcción del Dataframe Decimal
TDF_Decimal <- data.frame(
 Li = round(cortes_dec[1:k_dec], 2),
 Ls = round(cortes_dec[2:(k_dec+1)], 2),
 MC = round((cortes_dec[1:k_dec] + cortes_dec[2:(k_dec+1)]) / 2, 2),
 ni = ni_dec,
 hi = round(hi_dec, 2),
 Ni_asc = cumsum(ni_dec),
 Ni_desc = rev(cumsum(rev(ni_dec))),
 Hi_asc = cumsum(round(hi_dec, 2)),
 Hi_desc = rev(cumsum(rev(round(hi_dec, 2)))))


# Cálculo Límites Enteros #
BASE <- 10

# Cálculos básicos
min_int <- floor(min(Variable) / BASE) * BASE
max_int <- ceiling(max(Variable) / BASE) * BASE
k_int_sug <- floor(1 + 3.322 * log10(N))
Rango_int <- max_int - min_int
Amplitud_raw <- Rango_int / k_int_sug

Amplitud_int <- ceiling(Amplitud_raw / 10) * 10
if(Amplitud_int == 0) Amplitud_int <- 10

# Generar cortes enteros
cortes_int <- seq(from = min_int, by = Amplitud_int, length.out = k_int_sug + 2)

cortes_int <- cortes_int[cortes_int <= (max_int + Amplitud_int)]

# Asegurar cobertura del máximo
while(max(cortes_int) < max(Variable)) {
 cortes_int <- c(cortes_int, max(cortes_int) + Amplitud_int)
}

K_real <- length(cortes_int) - 1
lim_inf_int <- cortes_int[1:K_real]
lim_sup_int <- cortes_int[2:(K_real+1)]

# Frecuencias
inter_int <- cut(Variable, breaks = cortes_int, include.lowest = TRUE, right = FALSE)
ni_int <- as.vector(table(inter_int))

# Cálculos de Frecuencias
hi_int <- (ni_int / N) * 100
Ni_asc_int <- cumsum(ni_int)
Ni_desc_int <- rev(cumsum(rev(ni_int)))
Hi_asc_int <- cumsum(hi_int)
Hi_desc_int <- rev(cumsum(rev(hi_int)))

# Construcción del Dataframe Entero
TDF_Enteros <- data.frame(
 Li = lim_inf_int,
 Ls = lim_sup_int,
 MC = (lim_inf_int + lim_sup_int) / 2,
 ni = ni_int,
 hi = round(hi_int, 2),
 Ni_asc = Ni_asc_int,
 Ni_desc = Ni_desc_int,
 Hi_asc = round(Hi_asc_int, 2),
 Hi_desc = round(Hi_desc_int, 2))

3 Tabla de Distribución de Frecuencias

3.1 Tabla con Límites Decimales

#### Crear de fila de totales ####
totales_dec <- c("TOTAL", "-", "-", sum(TDF_Decimal$ni), 100, "-", "-", "-", "-")
TDF_Dec_Final <- rbind(mutate(TDF_Decimal, across(everything(), as.character)), totales_dec)

# Generar GT Decimal
TDF_Dec_Final %>%
 gt() %>%
 tab_header(title = md("**Tabla N°1 de Distribución de Frecuencias de Capacidad de las Plantas Solares (MW)**")) %>%
 cols_label(
  Li = "Lim. Inf",
  Ls = "Lim. Sup",
  MC = "Marca Clase",
  ni = "Frec. Abs (ni)",
  hi = "Frec. Rel (%)",
  Ni_asc = "Ni (Asc)",
  Ni_desc = "Ni (Desc)",
  Hi_asc = "Hi Asc (%)",
  Hi_desc = "Hi Desc (%)"
 ) %>%
 tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°1 de Distribución de Frecuencias de Capacidad de las Plantas Solares (MW)
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
1 539.38 270.19 5045 99.41 5045 5075 99.41 100
539.38 1077.77 808.58 26 0.51 5071 30 99.92 0.59
1077.77 1616.15 1346.96 1 0.02 5072 4 99.94 0.08
1616.15 2154.54 1885.35 1 0.02 5073 3 99.96 0.06
2154.54 2692.92 2423.73 0 0 5073 2 99.96 0.04
2692.92 3231.31 2962.12 0 0 5073 2 99.96 0.04
3231.31 3769.69 3500.5 0 0 5073 2 99.96 0.04
3769.69 4308.08 4038.88 0 0 5073 2 99.96 0.04
4308.08 4846.46 4577.27 0 0 5073 2 99.96 0.04
4846.46 5384.85 5115.65 0 0 5073 2 99.96 0.04
5384.85 5923.23 5654.04 1 0.02 5074 2 99.98 0.04
5923.23 6461.62 6192.42 0 0 5074 1 99.98 0.02
6461.62 7000 6730.81 1 0.02 5075 1 100 0.02
TOTAL - - 5075 100 - - - -

3.2 Tabla con Límites Enteros

#### Crear de fila de totales ####
totales_int <- c("TOTAL", "-", "-", sum(TDF_Enteros$ni), 100, "-", "-", "-", "-")
TDF_Int_Final <- rbind(mutate(TDF_Enteros, across(everything(), as.character)), totales_int)

# Generar GT Enteros
TDF_Int_Final %>%
 gt() %>%
 tab_header(
  title = md("**Tabla N°2 de Distribución de Frecuencias de Capacidad de las Plantas Solares (MW)**")) %>%
 cols_label(
  Li = "Lim. Inf",
  Ls = "Lim. Sup",
  MC = "Marca Clase",
  ni = "Frec. Abs (ni)",
  hi = "Frec. Rel (%)",
  Ni_asc = "Ni (Asc)",
  Ni_desc = "Ni (Desc)",
  Hi_asc = "Hi Asc (%)",
  Hi_desc = "Hi Desc (%)"
 ) %>%

 fmt_number(columns = c(Li, Ls), decimals = 0) %>%
 fmt_number(columns = c(hi, Hi_asc, Hi_desc), decimals = 2) %>%
 tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°2 de Distribución de Frecuencias de Capacidad de las Plantas Solares (MW)
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
0 540 270 5045 99.41 5045 5075 99.41 100
540 1080 810 26 0.51 5071 30 99.92 0.59
1080 1620 1350 1 0.02 5072 4 99.94 0.08
1620 2160 1890 1 0.02 5073 3 99.96 0.06
2160 2700 2430 0 0 5073 2 99.96 0.04
2700 3240 2970 0 0 5073 2 99.96 0.04
3240 3780 3510 0 0 5073 2 99.96 0.04
3780 4320 4050 0 0 5073 2 99.96 0.04
4320 4860 4590 0 0 5073 2 99.96 0.04
4860 5400 5130 0 0 5073 2 99.96 0.04
5400 5940 5670 1 0.02 5074 2 99.98 0.04
5940 6480 6210 0 0 5074 1 99.98 0.02
6480 7020 6750 1 0.02 5075 1 100 0.02
TOTAL - - 5075 100 - - - -

4 Análisis Gráfico

4.1 Histogramas de Cantidad

color_sutil <- "#EED5D2"

par(mar = c(8, 5, 4, 2)) 
barplot(TDF_Enteros$ni, 
        names.arg = TDF_Enteros$MC,
        main = "Gráfica N°1: Distribución de Cantidad de Plantas Solares por Capacidad",
        cex.main = 1,
        xlab = "", 
        ylab = "Cantidad",
        col = color_sutil,
        space = 0, 
        las = 2, 
        cex.names = 0.7)
mtext("Capacidad (MW)", side = 1, line = 4)

color_grafico <- "#EED5D2"

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$ni, 
        main="Gráfica N°2: Distribución de Cantidad de Plantas Solares por Potencia Total",
        cex.main = 0.8,
        xlab = "",
        ylab = "Cantidad",
        names.arg = TDF_Enteros$MC,
        col = color_sutil,
        space = 0,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, sum(TDF_Enteros$ni))) 
mtext("Capacidad (MW)", side = 1, line = 4)

4.2 Histogramas Porcentuales

color_grafico <- "#EED5D2"

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$hi, 
        main="Gráfica N°3: Distribución Porcentual de las Plantas Solares por Capacidad",
        cex.main = 1,
        xlab = "",
        ylab = "Porcentaje (%)",
        col = color_sutil,
        space = 0,
        names.arg = TDF_Enteros$MC,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, max(TDF_Enteros$hi) * 1.1))
mtext("Capacidad (MW)", side = 1, line = 4)

color_grafico <- "#EED5D2"

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$hi, 
        main="Gráfica N°4: Distribución Porcentual de las Plantas Solares por Potencia Total",
        cex.main = 1,
        xlab = "",
        ylab = "Porcentaje (%)",
        col = color_sutil,
        space = 0,
        cex.main = 0.9,
        names.arg = TDF_Enteros$MC,
        las = 2,
        cex.names = 0.7,
        ylim = c(0, 100)) 
mtext("Capacidad (MW)", side = 1, line = 4)

4.3 Diagrama de Cajas (Boxplot)

par(mar = c(5, 5, 4, 2))
boxplot(Variable, 
        horizontal = TRUE,
        col = color_sutil,
        xlab = "Capacidad (MW)",
        cex.main = 0.9,
        main = "Gráfica N°5: Distribución de la Potencia Total en las Plantas Solares")

4.4 Ojivas

par(mar = c(5, 5, 4, 10), xpd = TRUE)

# Coordenadas
x_asc <- TDF_Enteros$Ls
x_desc <- TDF_Enteros$Li
y_asc <- TDF_Enteros$Ni_asc
y_desc <- TDF_Enteros$Ni_desc

# 1. Dibujar la Ascendente 
plot(x_asc, y_asc,
     type = "b", 
     main = "Gráfica N°6: Ojivas Ascendentes y Descendentes de la Distribución de la Potencia Total en las Plantas Solares",
     cex.main = 0.7,
     xlab = "Capacidad (MW)",
     ylab = "Frecuencia acumulada",
     col = "black",
     pch = 19, 
     xlim = c(min(TDF_Enteros$Li), max(x_asc)), 
     ylim = c(0, sum(TDF_Enteros$ni)),
     bty = "l"
)

# 2. Agregar la Descendente 
lines(x_desc, y_desc, col = "#CDB7B5", type = "b", pch = 19)

grid()
legend("right", 
       legend = c("Ascendente", "Descendente"), 
       col = c("black", "#CDB7B5"), 
       lty = 1, 
       pch = 1, 
       cex = 0.6, 
       inset = c(0.05, 0.05),
       bty = "n")

5 Indicadores Estadísticos

## INDICADORES DE TENDENCIA CENTRAL
# Media aritmética
media <- round(mean(Variable), 2)

# Mediana
mediana <- round(median(Variable), 2)

# Moda
max_frecuencia <- max(TDF_Enteros$ni)
moda_vals <- TDF_Enteros$MC[TDF_Enteros$ni == max_frecuencia]
moda_txt <- paste(round(moda_vals, 2), collapse = ", ")

## INDICADORES DE DISPERSIÓN
# Varianza
varianza <- var(Variable)

# Desviación Estándar
sd_val <- sd(Variable)

# Coeficiente de Variación
cv <- round((sd_val / abs(media)) * 100, 2)

## INDICADORES DE FORMA
# Coeficiente de Asimetría
asimetria <- skewness(Variable, type = 2)

# Curtosis
curtosis <- kurtosis(Variable)

# Outliers
outliers_data <- boxplot.stats(Variable)$out

if(length(outliers_data) > 0) {
 num_out <- length(outliers_data)
 min_out <- round(min(outliers_data), 2)
 max_out <- round(max(outliers_data), 2)

 # Formato Total [Min; Max]
 msg_atipicos <- paste0(" ", num_out, " [", min_out, " ; ", max_out, "]")
} else {
 msg_atipicos <- "No hay presencia de valores atípicos"
}


tabla_indicadores <- data.frame(
 "Variable" = c("Capacidad (MW)"),
 "Rango_MinMax" = paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]"),
 "X" = c(media),
 "Me" = c(mediana),
 "Mo" = c(moda_txt),
 "V" = c(varianza),
 "Sd" = c(sd_val),
 "Cv" = c(cv),
 "As" = c(asimetria),
 "K" = c(curtosis),
 "Outliers" = msg_atipicos
)

# Generar Tabla GT
tabla_conclusiones_gt <- tabla_indicadores %>%
 gt() %>%
 tab_header(title = md("**Tabla N°3 de Conclusiones de Capacidad de las Plantas Solares**")) %>%
 tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
 cols_label(
  Variable = "Variable",
  Rango_MinMax = "Rango",
  X = "Media (X)",
  Me = "Mediana (Me)",
 Mo = "Moda (Mo)",
  V = "Varianza (V)",
  Sd = "Desv. Est. (Sd)",
  Cv = "C.V. (%)",
  As = "Asimetría (As)",
  K = "Curtosis (K)",
  Outliers = "Outliers"
 ) %>%
 tab_options(
  heading.title.font.size = px(16),
  column_labels.background.color = "#f0f0f0"
 )

tabla_conclusiones_gt
Tabla N°3 de Conclusiones de Capacidad de las Plantas Solares
Variable Rango Media (X) Mediana (Me) Moda (Mo) Varianza (V) Desv. Est. (Sd) C.V. (%) Asimetría (As) Curtosis (K) Outliers
Capacidad (MW) [1; 7000] 45.66 33 270 21654.06 147.1532 322.28 33.28214 1419.085 230 [112.2 ; 7000]
Autor: Martin Sarmiento

6 Conclusiones

La variable “Capacidad” fluctúa entre 1 y 7000 MW y sus valores se encuentran alrededor de 33 MW, con una desviación estándar de 147.1532, siendo una variable muy heterogénea, cuyos valores se concentran en la parte media baja de la variable con la agregación de valores atípicos de 230 outliers; por todo lo anterior, el comportamiento de la variable es muy perjudicial.