1 Configuración y Carga de Datos

##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: MARTIN SARMIENTO ####
### CARRERA: INGENIERÍA EN PETRÓLEOS #####


#### VARIABLE POTENCIAL FOTOVOLTAICO ####
## DATASET ##
setwd("~/R/PV_POTENTIAL")
# Cargar dataset
Datos <- read.csv("DataSet_prov.csv", sep = ";", dec = ",", fileEncoding = "latin1")
# Estructura de los datos
str(Datos)
## 'data.frame':    5075 obs. of  30 variables:
##  $ FID_                  : int  0 2 3 4 5 6 10 11 12 13 ...
##  $ OBJECTID              : int  127 129 130 131 132 133 137 138 139 140 ...
##  $ code                  : chr  "00127-ARG-P" "00129-ARG-G" "00130-ARG-P" "00131-ARG-P" ...
##  $ plant_name            : chr  "Aconcagua solar farm" "Altiplano 200 Solar Power Plant" "Altiplano 200 Solar Power Plant" "Anchoris solar farm" ...
##  $ country               : chr  "Argentina" "Argentina" "Argentina" "Argentina" ...
##  $ operational_status    : chr  "announced" "operating" "operating" "construction" ...
##  $ longitude             : num  -68.9 -66.9 -66.9 -68.9 -70.3 ...
##  $ latitude              : num  -33 -24.1 -24.1 -33.3 -37.4 ...
##  $ elevation             : int  929 4000 4000 937 865 858 570 1612 665 3989 ...
##  $ area                  : num  250 4397290 5774 645 241 ...
##  $ size                  : chr  "Pequeña" "Grande" "Pequeña" "Pequeña" ...
##  $ slope                 : num  0.574 1.603 6.243 0.903 1.791 ...
##  $ slope_type            : chr  "Plano o casi plano" "Plano o casi plano" "Moderado" "Plano o casi plano" ...
##  $ curvature             : num  0.000795 -0.002781 -0.043699 0.002781 -0.002384 ...
##  $ curvature_type        : chr  "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies cóncavas / Valles" "Superficies planas o intermedias" ...
##  $ aspect                : num  55.1 188.7 270.9 108.4 239.3 ...
##  $ aspect_type           : chr  "Northeast" "South" "West" "East" ...
##  $ dist_to_road          : num  127 56015 52697 336 34 ...
##  $ ambient_temperature   : num  12.6 6.8 6.8 13.1 11.4 ...
##  $ ghi                   : num  6.11 8.01 7.88 6.12 6.22 ...
##  $ humidity              : num  53.7 53.7 53.7 53.7 53.7 ...
##  $ wind_speed            : num  3.78 7.02 8.33 3.87 6.56 ...
##  $ wind_direction        : num  55.1 55.1 55.1 55.1 55.1 ...
##  $ dt_wind               : chr  "Northeast" "Northeast" "Northeast" "Northeast" ...
##  $ solar_aptitude        : num  0.746 0.8 0.727 0.595 0.657 ...
##  $ solar_aptitude_rounded: int  7 8 7 6 7 7 7 8 7 8 ...
##  $ solar_aptittude_class : chr  "Alta" "Alta" "Alta" "Media" ...
##  $ capacity              : num  25 101 107 180 20 ...
##  $ optimal_tilt          : int  31 26 26 31 33 30 31 29 31 27 ...
##  $ pv_potential          : num  4.98 6.39 6.39 4.97 5 ...
# Cargamos las librerias
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(gt)
library(e1071)

2 Cálculo de Intervalos y Frecuencias

# Extraer variable
Variable <- na.omit(Datos$pv_potential)
N <- length(Variable)

# CÁLCULO LÍMITES DECIMALES
min_dec <- min(Variable)
max_dec <- max(Variable)
k_dec <- floor(1 + 3.322 * log10(N))
rango_dec <- max(Variable) - min(Variable)
amplitud_dec <- rango_dec / k_dec

# Cortes exactos
cortes_dec <- seq(min(Variable), max(Variable), length.out = k_dec + 1)
cortes_dec[length(cortes_dec)] <- max(Variable) + 0.0001

# Frecuencias
inter_dec <- cut(Variable, breaks = cortes_dec, include.lowest = TRUE, right = FALSE)
ni_dec <- as.vector(table(inter_dec))

# CÁLCULOS MATEMÁTICOS 
hi_dec <- (ni_dec / N) * 100
Ni_asc_dec <- cumsum(ni_dec)
Hi_asc_dec <- cumsum(hi_dec)
Ni_desc_dec <- rev(cumsum(rev(ni_dec)))
Hi_desc_dec <- rev(cumsum(rev(hi_dec)))

# Dataframe Decimal
TDF_Decimal <- data.frame(
  Li = cortes_dec[1:k_dec],
  Ls = cortes_dec[2:(k_dec+1)],
  MC = (cortes_dec[1:k_dec] + cortes_dec[2:(k_dec+1)]) / 2,
  ni = ni_dec,
  hi = hi_dec,
  Ni_asc = Ni_asc_dec,
  Ni_desc = Ni_desc_dec,
  Hi_asc = Hi_asc_dec,
  Hi_desc = Hi_desc_dec)


# CÁLCULO LÍMITES ENTEROS 
BASE <- 1
min_int <- floor(min(Variable) / BASE) * BASE
max_int <- ceiling(max(Variable) / BASE) * BASE
k_int_sug <- floor(1 + 3.322 * log10(N))
Rango_int <- max_int - min_int
Amplitud_raw <- Rango_int / k_int_sug

Amplitud_int <- 1

cortes_int <- seq(from = min_int, by = Amplitud_int, length.out = 15) 

cortes_int <- cortes_int[cortes_int <= (max(Variable) + Amplitud_int)]

if(max(cortes_int) < max(Variable)) {
  cortes_int <- c(cortes_int, max(cortes_int) + Amplitud_int)
}

K_real <- length(cortes_int) - 1
lim_inf_int <- cortes_int[1:K_real]
lim_sup_int <- cortes_int[2:(K_real+1)]

# Frecuencias
inter_int <- cut(Variable, breaks = cortes_int, include.lowest = TRUE, right = FALSE)
ni_int <- as.vector(table(inter_int))

# CÁLCULOS MATEMÁTICOS 
hi_int <- (ni_int / N) * 100
Ni_asc_int <- cumsum(ni_int)
Hi_asc_int <- cumsum(hi_int)
Ni_desc_int <- rev(cumsum(rev(ni_int)))
Hi_desc_int <- rev(cumsum(rev(hi_int)))

# Dataframe Entero
TDF_Enteros <- data.frame(
  Li = lim_inf_int,
  Ls = lim_sup_int,
  MC = (lim_inf_int + lim_sup_int) / 2,
  ni = ni_int,
  hi = hi_int,
  Ni_asc = Ni_asc_int,
  Ni_desc = Ni_desc_int,
  Hi_asc = Hi_asc_int,
  Hi_desc = Hi_desc_int)

3 Tabla de Distribución de Frecuencias

3.1 Tabla con Límites Decimales

# Crear Dataframe
TDF_Dec_Final <- data.frame(
  Li      = as.character(round(TDF_Decimal$Li, 2)),
  Ls      = as.character(round(TDF_Decimal$Ls, 2)),
  MC      = as.character(round(TDF_Decimal$MC, 2)),
  ni      = as.character(TDF_Decimal$ni),
  hi      = as.character(round(TDF_Decimal$hi, 2)),
  Ni_asc  = as.character(TDF_Decimal$Ni_asc),
  Ni_desc = as.character(TDF_Decimal$Ni_desc),
  Hi_asc  = as.character(round(TDF_Decimal$Hi_asc, 2)),
  Hi_desc = as.character(round(TDF_Decimal$Hi_desc, 2))
)

# Calcular Totales
totales_dec <- c("TOTAL", "-", "-", sum(TDF_Decimal$ni), round(sum(TDF_Decimal$hi), 2), "-", "-", "-", "-")
TDF_Dec_Final <- rbind(TDF_Dec_Final, totales_dec)

# Generar GT
TDF_Dec_Final %>%
  gt() %>%
  tab_header(title = md("**Tabla N°1 de Distribución de Frecuencias del Potencial Fotovoltaico (kWh/kWp)**")) %>%
  cols_label(
    Li = "Lim. Inf", 
    Ls = "Lim. Sup",
    MC = "Marca Clase",
    ni = "Frec. Abs (ni)", 
    hi = "Frec. Rel (%)",
    Ni_asc = "Ni (Asc)", 
    Ni_desc = "Ni (Desc)",
    Hi_asc = "Hi Asc (%)", 
    Hi_desc = "Hi Desc (%)"
  ) %>%
  cols_align(align = "center", columns = everything()) %>%
  tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°1 de Distribución de Frecuencias del Potencial Fotovoltaico (kWh/kWp)
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
0 0.49 0.25 1 0.02 1 5075 0.02 100
0.49 0.98 0.74 0 0 1 5074 0.02 99.98
0.98 1.48 1.23 0 0 1 5074 0.02 99.98
1.48 1.97 1.72 0 0 1 5074 0.02 99.98
1.97 2.46 2.21 0 0 1 5074 0.02 99.98
2.46 2.95 2.71 0 0 1 5074 0.02 99.98
2.95 3.44 3.2 16 0.32 17 5074 0.33 99.98
3.44 3.93 3.69 86 1.69 103 5058 2.03 99.67
3.93 4.43 4.18 891 17.56 994 4972 19.59 97.97
4.43 4.92 4.67 3792 74.72 4786 4081 94.31 80.41
4.92 5.41 5.16 108 2.13 4894 289 96.43 5.69
5.41 5.9 5.66 105 2.07 4999 181 98.5 3.57
5.9 6.39 6.15 76 1.5 5075 76 100 1.5
TOTAL - - 5075 100 - - - -

3.2 Tabla con Límites Enteros

# Crear Dataframe
TDF_Int_Final <- data.frame(
  Li      = as.character(TDF_Enteros$Li),
  Ls      = as.character(TDF_Enteros$Ls),
  MC      = as.character(TDF_Enteros$MC),
  ni      = as.character(TDF_Enteros$ni),
  hi      = as.character(round(TDF_Enteros$hi, 2)),
  Ni_asc  = as.character(TDF_Enteros$Ni_asc),
  Ni_desc = as.character(TDF_Enteros$Ni_desc),
  Hi_asc  = as.character(round(TDF_Enteros$Hi_asc, 2)),
  Hi_desc = as.character(round(TDF_Enteros$Hi_desc, 2))
)

# Calcular Totales
totales_int <- c("TOTAL", "-", "-", sum(TDF_Enteros$ni), round(sum(TDF_Enteros$hi), 2), "-", "-", "-", "-")
TDF_Int_Final <- rbind(TDF_Int_Final, totales_int)

# Generar GT
TDF_Int_Final %>%
  gt() %>%
  tab_header(title = md("**Tabla N°2 de Distribución de Frecuencias del Potencial Fotovoltaico (kWh/kWp)**")) %>%
  cols_label(
    Li = "Lim. Inf", 
    Ls = "Lim. Sup", 
    MC = "Marca Clase",
    ni = "Frec. Abs (ni)", 
    hi = "Frec. Rel (%)",
    Ni_asc = "Ni (Asc)", 
    Ni_desc = "Ni (Desc)",
    Hi_asc = "Hi Asc (%)", 
    Hi_desc = "Hi Desc (%)"
  ) %>%
  cols_align(align = "center", columns = everything()) %>%
  tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°2 de Distribución de Frecuencias del Potencial Fotovoltaico (kWh/kWp)
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
0 1 0.5 1 0.02 1 5075 0.02 100
1 2 1.5 0 0 1 5074 0.02 99.98
2 3 2.5 2 0.04 3 5074 0.06 99.98
3 4 3.5 146 2.88 149 5072 2.94 99.94
4 5 4.5 4667 91.96 4816 4926 94.9 97.06
5 6 5.5 209 4.12 5025 259 99.01 5.1
6 7 6.5 50 0.99 5075 50 100 0.99
TOTAL - - 5075 100 - - - -

4 Análisis Gráfico

4.1 Histogramas de Cantidad

par(mar = c(8, 5, 5, 2)) 
barplot(TDF_Enteros$ni, 
        names.arg = TDF_Enteros$MC,
        main = "",
        xlab = "", 
        ylab = "Cantidad",
        col = "#B3EE3A",
        space = 0,
        las = 2, 
        cex.names = 0.7)
mtext("Potencial Fotovoltaico (kWh/kWp)", side = 1, line = 4)

mtext("Gráfica N°1: Distribución de Cantidad de Plantas Solares por Potencial Fotovoltaico", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

par(mar = c(8, 5, 5, 2))
barplot(TDF_Enteros$ni, 
        main="",
        xlab = "",
        ylab = "Cantidad",
        names.arg = TDF_Enteros$MC,
        col = "#B3EE3A",
        space = 0,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, sum(TDF_Enteros$ni))) 
mtext("Potencial Fotovoltaico (kWh/kWp)", side = 1, line = 4)

mtext("Gráfica N°2: Distribución de Cantidad de Plantas Solares por Potencial Fotovoltaico", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

4.2 Histogramas Porcentuales

par(mar = c(8, 5, 5, 2))
bp3 <- barplot(TDF_Enteros$hi, 
        main = "", 
        xlab = "", 
        ylab = "Porcentaje (%)", 
        col = "#B3EE3A", 
        space = 0, 
        names.arg = TDF_Enteros$MC, 
        cex.names = 0.7, 
        las = 2, 
        ylim = c(0, max(TDF_Enteros$hi) * 1.2))
mtext("Potencial Fotovoltaico (kWh/kWp)", side = 1, line = 4)

mtext("Gráfica N°3: Distribución Porcentual de las Plantas Solares por Potencial Fotovoltaico", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

text(x = bp3, 
     y = TDF_Enteros$hi, 
     labels = paste0(round(TDF_Enteros$hi, 1), "%"), 
     pos = 3, cex = 0.6, col = "black")

par(mar = c(8, 5, 5, 2))
bp4 <- barplot(TDF_Enteros$hi, 
        main = "", 
        xlab = "", 
        ylab = "Porcentaje (%)", 
        col = "#B3EE3A", 
        space = 0, 
        names.arg = TDF_Enteros$MC, 
        las = 2, 
        cex.names = 0.7, 
        ylim = c(0, 100))
mtext("Potencial Fotovoltaico (kWh/kWp)", side = 1, line = 4)

mtext("Gráfica N°4: Distribución Porcentual de las Plantas Solares por Potencial Fotovoltaico", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

text(x = bp4, 
     y = TDF_Enteros$hi, 
     labels = paste0(round(TDF_Enteros$hi, 1), "%"), 
     pos = 3, cex = 0.6, col = "black")

4.3 Diagrama de Cajas (Boxplot)

par(mar = c(5, 5, 4, 2))
boxplot(Variable, 
        horizontal = TRUE,
        col = "#B3EE3A",
        xlab = "Potencial Fotovoltaico (kWh/kWp)",
        cex.main = 0.9,
        main = "Gráfica N°5: Distribución del Potencial Fotovoltaico en las Plantas Solares")

4.4 Ojivas

par(mar = c(5, 5, 7, 10), xpd = TRUE)

# Coordenadas
x_asc <- TDF_Enteros$Ls
x_desc <- TDF_Enteros$Li
y_asc <- TDF_Enteros$Ni_asc
y_desc <- TDF_Enteros$Ni_desc

# 1. Dibujar la Ascendente 
plot(x_asc, y_asc,
     type = "b", 
     main = "",
     xlab = "Potencial Fotovoltaico (kWh/kWp)",
     ylab = "Frecuencia acumulada",
     col = "black",
     pch = 19, 
     xlim = c(min(TDF_Enteros$Li), max(x_asc)), 
     ylim = c(0, sum(TDF_Enteros$ni)),
     bty = "l"
)

# 2. Agregar la Descendente 
lines(x_desc, y_desc, col = "#9ACD32", type = "b", pch = 19)

grid()
mtext("Gráfica N°6: Ojivas Ascendentes y Descendentes de la\nDistribución del Potencial Fotovoltaico en las Plantas Solares", 
      side = 3, line = 3, adj = 0.5, cex = 0.9, font = 2)

legend("right", 
       legend = c("Ascendente", "Descendente"), 
       col = c("black", "#9ACD32"), 
       lty = 1, 
       pch = 1, 
       cex = 0.6, 
       inset = c(0.05, 0.05),
       bty = "n")

5 Indicadores Estadísticos

## INDICADORES DE TENDENCIA CENTRAL
# Media aritmética
media <- round(mean(Variable), 2)

# Mediana
mediana <- round(median(Variable), 2)

# Moda
max_frecuencia <- max(TDF_Enteros$ni)
moda_vals <- TDF_Enteros$MC[TDF_Enteros$ni == max_frecuencia]
moda_txt <- paste(round(moda_vals, 2), collapse = ", ")

## INDICADORES DE DISPERSIÓN
# Varianza
varianza <- var(Variable)

# Desviación Estándar
sd_val <- sd(Variable)

# Coeficiente de Variación
cv <- round((sd_val / abs(media)) * 100, 2)

## INDICADORES DE FORMA
# Coeficiente de Asimetría
asimetria <- skewness(Variable, type = 2)

# Curtosis
curtosis <- kurtosis(Variable)

# Outliers
Q1 <- quantile(Variable, 0.25)
Q3 <- quantile(Variable, 0.75)
IQR_val <- Q3 - Q1
lim_inf <- Q1 - 1.5 * IQR_val
lim_sup <- Q3 + 1.5 * IQR_val

outliers_data <- Variable[Variable < lim_inf | Variable > lim_sup]
num_outliers <- length(outliers_data)

if(num_outliers > 0){
  rango_outliers <- paste0(num_outliers, " [", round(min(outliers_data), 2), "; ", round(max(outliers_data), 2), "]")
} else {
  rango_outliers <- "0 [Sin Outliers]"
}

tabla_indicadores <- data.frame(
 "Variable" = c("Potencial Fotovoltaico"),
 "Rango_MinMax" = paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]"),
 "X" = c(media),
 "Me" = c(mediana),
 "Mo" = c(moda_txt),
 "V" = c(varianza),
 "Sd" = c(sd_val),
 "Cv" = c(cv),
 "As" = c(asimetria),
 "K" = c(curtosis),
 "Outliers" = rango_outliers)

# Generar Tabla GT
tabla_conclusiones_gt <- tabla_indicadores %>%
 gt() %>%
 tab_header(title = md("**Tabla N°3 de Conclusiones de Potencial Fotovoltaico de las Plantas Solares**")) %>%
 tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
 cols_label(
  Variable = "Variable",
  Rango_MinMax = "Rango",
  X = "Media (X)",
  Me = "Mediana (Me)",
  Mo = "Moda (Mo)",
  V = "Varianza (V)",
  Sd = "Desv. Est. (Sd)",
  Cv = "C.V. (%)",
  As = "Asimetría (As)",
  K = "Curtosis (K)",
  Outliers = "Outliers [Intervalo]"
 ) %>%
 tab_options(
  heading.title.font.size = px(16),
  column_labels.background.color = "#F0F0F0"
 )

tabla_conclusiones_gt
Tabla N°3 de Conclusiones de Potencial Fotovoltaico de las Plantas Solares
Variable Rango Media (X) Mediana (Me) Moda (Mo) Varianza (V) Desv. Est. (Sd) C.V. (%) Asimetría (As) Curtosis (K) Outliers [Intervalo]
Potencial Fotovoltaico [0; 6.39] 4.62 4.63 4.5 0.1242386 0.3524749 7.63 0.6821283 11.68307 435 [0; 6.39]
Autor: Martin Sarmiento

6 Conclusiones

La variable “Potencial Fotovoltaico” fluctúa entre 0 y 6.39 y sus valores se encuentran alrededor de 4.63, con una desviación estándar de 0.3524749, siendo una variable homogénea, cuyos valores se concentran en la parte media alta de la variable con la agregación de valores atípicos de 435 outliers; por todo lo anterior, el comportamiento de la variable es perjudicial.