1 Configuración y Carga de Datos

##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: MARTIN SARMIENTO ####
### CARRERA: INGENIERÍA EN PETRÓLEOS #####


#### VARIABLE INCLINACIÓN ÓPTIMA ####
## DATASET ##
setwd("~/R/OPTIMAL_TILT")
# Cargar dataset
Datos <- read.csv("DataSet_prov.csv", sep = ";", dec = ",", fileEncoding = "latin1")
# Estructura de los datos
str(Datos)
## 'data.frame':    5075 obs. of  30 variables:
##  $ FID_                  : int  0 2 3 4 5 6 10 11 12 13 ...
##  $ OBJECTID              : int  127 129 130 131 132 133 137 138 139 140 ...
##  $ code                  : chr  "00127-ARG-P" "00129-ARG-G" "00130-ARG-P" "00131-ARG-P" ...
##  $ plant_name            : chr  "Aconcagua solar farm" "Altiplano 200 Solar Power Plant" "Altiplano 200 Solar Power Plant" "Anchoris solar farm" ...
##  $ country               : chr  "Argentina" "Argentina" "Argentina" "Argentina" ...
##  $ operational_status    : chr  "announced" "operating" "operating" "construction" ...
##  $ longitude             : num  -68.9 -66.9 -66.9 -68.9 -70.3 ...
##  $ latitude              : num  -33 -24.1 -24.1 -33.3 -37.4 ...
##  $ elevation             : int  929 4000 4000 937 865 858 570 1612 665 3989 ...
##  $ area                  : num  250 4397290 5774 645 241 ...
##  $ size                  : chr  "Small" "Big" "Small" "Small" ...
##  $ slope                 : num  0.574 1.603 6.243 0.903 1.791 ...
##  $ slope_type            : chr  "Plano o casi plano" "Plano o casi plano" "Moderado" "Plano o casi plano" ...
##  $ curvature             : num  0.000795 -0.002781 -0.043699 0.002781 -0.002384 ...
##  $ curvature_type        : chr  "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies cóncavas / Valles" "Superficies planas o intermedias" ...
##  $ aspect                : num  55.1 188.7 270.9 108.4 239.3 ...
##  $ aspect_type           : chr  "Northeast" "South" "West" "East" ...
##  $ dist_to_road          : num  127 56015 52697 336 34 ...
##  $ ambient_temperature   : num  12.6 6.8 6.8 13.1 11.4 ...
##  $ ghi                   : chr  "6,11" "8,012" "7,878" "6,119" ...
##  $ humidity              : num  53.7 53.7 53.7 53.7 53.7 ...
##  $ wind_speed            : num  3.78 7.02 8.33 3.87 6.56 ...
##  $ wind_direction        : num  55.1 55.1 55.1 55.1 55.1 ...
##  $ dt_wind               : chr  "Northeast" "Northeast" "Northeast" "Northeast" ...
##  $ solar_aptitude        : num  0.746 0.8 0.727 0.595 0.657 ...
##  $ solar_aptitude_rounded: int  7 8 7 6 7 7 7 8 7 8 ...
##  $ solar_aptittude_class : chr  "Alta" "Alta" "Alta" "Media" ...
##  $ capacity              : num  25 101 107 180 20 ...
##  $ optimal_tilt          : int  31 26 26 31 33 30 31 29 31 27 ...
##  $ pv_potential          : num  4.98 6.39 6.39 4.97 5 ...
# Cargamos las librerias
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(gt)
library(e1071)

2 Cálculo de Intervalos y Frecuencias

#Extraer variable
Variable <- na.omit(Datos$optimal_tilt)
N <- length(Variable)

# Cálculo Límites Decimales #
# Cálculos básicos
min_dec <- min(Variable)
max_dec <- max(Variable)
k_dec <- floor(1 + 3.322 * log10(N))
rango_dec <- max(Variable) - min(Variable)
amplitud_dec <- rango_dec / k_dec

# Generamos los cortes exactos
cortes_dec <- seq(min(Variable), max(Variable), length.out = k_dec + 1)
cortes_dec[length(cortes_dec)] <- max(Variable) + 0.0001

# Frecuencias
inter_dec <- cut(Variable, breaks = cortes_dec, include.lowest = TRUE, right = FALSE)
ni_dec <- as.vector(table(inter_dec))
hi_dec <- (ni_dec/N)*100

# Cálculos de Frecuencias
sum_ni <- sum(ni_dec)
hi_dec <- (ni_dec / sum_ni) * 100
Ni_asc_dec <- cumsum(ni_dec)
Hi_asc_dec <- cumsum(hi_dec)
Ni_desc_dec <- rev(cumsum(rev(ni_dec)))
Hi_desc_dec <- rev(cumsum(rev(hi_dec)))

# Construcción del Dataframe Decimal
TDF_Decimal <- data.frame(
 Li = round(cortes_dec[1:k_dec], 2),
 Ls = round(cortes_dec[2:(k_dec+1)], 2),
 MC = round((cortes_dec[1:k_dec] + cortes_dec[2:(k_dec+1)]) / 2, 2),
 ni = ni_dec,
 hi = round(hi_dec, 2),
 Ni_asc = cumsum(ni_dec),
 Ni_desc = rev(cumsum(rev(ni_dec))),
 Hi_asc = cumsum(round(hi_dec, 2)),
 Hi_desc = rev(cumsum(rev(round(hi_dec, 2)))))


# Cálculo Límites Enteros #
BASE <- 10

# Cálculos básicos
min_int <- floor(min(Variable) / BASE) * BASE
max_int <- ceiling(max(Variable) / BASE) * BASE
k_int_sug <- floor(1 + 3.322 * log10(N))
Rango_int <- max_int - min_int
Amplitud_raw <- Rango_int / k_int_sug

Amplitud_int <- ceiling(Amplitud_raw / 10) * 10
if(Amplitud_int == 0) Amplitud_int <- 10

# Generar cortes enteros
cortes_int <- seq(from = min_int, by = Amplitud_int, length.out = k_int_sug + 2)

cortes_int <- cortes_int[cortes_int <= (max_int + Amplitud_int)]

# Asegurar cobertura del máximo
while(max(cortes_int) < max(Variable)) {
 cortes_int <- c(cortes_int, max(cortes_int) + Amplitud_int)
}

K_real <- length(cortes_int) - 1
lim_inf_int <- cortes_int[1:K_real]
lim_sup_int <- cortes_int[2:(K_real+1)]

# Frecuencias
inter_int <- cut(Variable, breaks = cortes_int, include.lowest = TRUE, right = FALSE)
ni_int <- as.vector(table(inter_int))

# Cálculos de Frecuencias
hi_int <- (ni_int / N) * 100
Ni_asc_int <- cumsum(ni_int)
Ni_desc_int <- rev(cumsum(rev(ni_int)))
Hi_asc_int <- cumsum(hi_int)
Hi_desc_int <- rev(cumsum(rev(hi_int)))

# Construcción del Dataframe Entero
TDF_Enteros <- data.frame(
 Li = lim_inf_int,
 Ls = lim_sup_int,
 MC = (lim_inf_int + lim_sup_int) / 2,
 ni = ni_int,
 hi = round(hi_int, 2),
 Ni_asc = Ni_asc_int,
 Ni_desc = Ni_desc_int,
 Hi_asc = round(Hi_asc_int, 2),
 Hi_desc = round(Hi_desc_int, 2))

3 Tabla de Distribución de Frecuencias

3.1 Tabla con Límites Decimales

#### Crear de fila de totales ####
totales_dec <- c("TOTAL", "-", "-", sum(TDF_Decimal$ni), 100, "-", "-", "-", "-")
TDF_Dec_Final <- rbind(mutate(TDF_Decimal, across(everything(), as.character)), totales_dec)

# Generar GT Decimal
TDF_Dec_Final %>%
 gt() %>%
 tab_header(title = md("**Tabla N°1 de Distribución de Frecuencias de Inclinación Óptima (°) de las Plantas Solares**")) %>%
 cols_label(
  Li = "Lim. Inf",
  Ls = "Lim. Sup",
  MC = "Marca Clase",
  ni = "Frec. Abs (ni)",
  hi = "Frec. Rel (%)",
  Ni_asc = "Ni (Asc)",
  Ni_desc = "Ni (Desc)",
  Hi_asc = "Hi Asc (%)",
  Hi_desc = "Hi Desc (%)"
 ) %>%
 tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°1 de Distribución de Frecuencias de Inclinación Óptima (°) de las Plantas Solares
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
1 4.23 2.62 63 1.24 63 5075 1.24 100
4.23 7.46 5.85 637 12.55 700 5012 13.79 98.76
7.46 10.69 9.08 962 18.96 1662 4375 32.75 86.21
10.69 13.92 12.31 498 9.81 2160 3413 42.56 67.25
13.92 17.15 15.54 589 11.61 2749 2915 54.17 57.44
17.15 20.38 18.77 651 12.83 3400 2326 67 45.83
20.38 23.62 22 904 17.81 4304 1675 84.81 33
23.62 26.85 25.23 452 8.91 4756 771 93.72 15.19
26.85 30.08 28.46 288 5.67 5044 319 99.39 6.28
30.08 33.31 31.69 29 0.57 5073 31 99.96 0.61
33.31 36.54 34.92 1 0.02 5074 2 99.98 0.04
36.54 39.77 38.15 0 0 5074 1 99.98 0.02
39.77 43 41.38 1 0.02 5075 1 100 0.02
TOTAL - - 5075 100 - - - -

3.2 Tabla con Límites Enteros

#### Crear de fila de totales ####
totales_int <- c("TOTAL", "-", "-", sum(TDF_Enteros$ni), 100, "-", "-", "-", "-")
TDF_Int_Final <- rbind(mutate(TDF_Enteros, across(everything(), as.character)), totales_int)

# Generar GT Enteros
TDF_Int_Final %>%
 gt() %>%
 tab_header(
  title = md("**Tabla N°2 de Distribución de Frecuencias de Inclinación Óptima (°) de las Plantas Solares**")) %>%
 cols_label(
  Li = "Lim. Inf",
  Ls = "Lim. Sup",
  MC = "Marca Clase",
  ni = "Frec. Abs (ni)",
  hi = "Frec. Rel (%)",
  Ni_asc = "Ni (Asc)",
  Ni_desc = "Ni (Desc)",
  Hi_asc = "Hi Asc (%)",
  Hi_desc = "Hi Desc (%)"
 ) %>%

 fmt_number(columns = c(Li, Ls), decimals = 0) %>%
 fmt_number(columns = c(hi, Hi_asc, Hi_desc), decimals = 2) %>%
 tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°2 de Distribución de Frecuencias de Inclinación Óptima (°) de las Plantas Solares
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
0 10 5 1545 30.44 1545 5075 30.44 100
10 20 15 1508 29.71 3053 3530 60.16 69.56
20 30 25 1957 38.56 5010 2022 98.72 39.84
30 40 35 64 1.26 5074 65 99.98 1.28
40 50 45 1 0.02 5075 1 100 0.02
50 60 55 0 0 5075 0 100 0
TOTAL - - 5075 100 - - - -

4 Análisis Gráfico

4.1 Histogramas de Cantidad

par(mar = c(8, 5, 5, 2)) 
barplot(TDF_Enteros$ni, 
        names.arg = TDF_Enteros$MC,
        main = "",
        xlab = "", 
        ylab = "Cantidad",
        col = "#C6E2FF",
        space = 0, 
        las = 2, 
        cex.names = 0.7)
mtext("Inclinación Óptima (°)", side = 1, line = 4)

mtext("Gráfica N°1: Distribución de Cantidad de Plantas Solares por Inclinación Óptima", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$ni, 
        main="",
        xlab = "",
        ylab = "Cantidad",
        names.arg = TDF_Enteros$MC,
        col = "#C6E2FF",
        space = 0,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, sum(TDF_Enteros$ni))) 
mtext("Inclinación Óptima (°)", side = 1, line = 4)

mtext("Gráfica N°2: Distribución de Cantidad de Plantas Solares por Inclinación Óptima", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

4.2 Histogramas Porcentuales

par(mar = c(8, 5, 5, 2))
bp3 <- barplot(TDF_Enteros$hi, 
        main = "", 
        xlab = "", 
        ylab = "Porcentaje (%)", 
        col = "#C6E2FF", 
        space = 0, 
        names.arg = TDF_Enteros$MC, 
        cex.names = 0.7, 
        las = 2, 
        ylim = c(0, max(TDF_Enteros$hi) * 1.2))
mtext("Inclinación Óptima (°)", side = 1, line = 4)

mtext("Gráfica N°3: Distribución Porcentual de las Plantas Solares por Inclinación Óptima", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

text(x = bp3, 
     y = TDF_Enteros$hi, 
     labels = paste0(round(TDF_Enteros$hi, 1), "%"), 
     pos = 3, cex = 0.6, col = "black")

par(mar = c(8, 5, 5, 2))
bp4 <- barplot(TDF_Enteros$hi, 
        main = "", 
        xlab = "", 
        ylab = "Porcentaje (%)", 
        col = "#C6E2FF", 
        space = 0, 
        names.arg = TDF_Enteros$MC, 
        las = 2, 
        cex.names = 0.7, 
        ylim = c(0, 100)) 
mtext("Inclinación Óptima(°)", side = 1, line = 4)

mtext("Gráfica N°4: Distribución Porcentual de las Plantas Solares por Inclinación", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

text(x = bp4, 
     y = TDF_Enteros$hi, 
     labels = paste0(round(TDF_Enteros$hi, 1), "%"), 
     pos = 3, cex = 0.6, col = "black")

4.3 Diagrama de Cajas (Boxplot)

par(mar = c(5, 5, 4, 2))
boxplot(Variable, 
        horizontal = TRUE,
        col = "#C6E2FF",
        xlab = "Inclinación Óptima (°)",
        cex.main = 0.9,
        main = "Gráfica N°5: Distribución de la Inclinación Óptima en las Plantas Solares")

4.4 Ojivas

par(mar = c(5, 5, 7, 10), xpd = TRUE)

# Coordenadas
x_asc <- TDF_Enteros$Ls
x_desc <- TDF_Enteros$Li
y_asc <- TDF_Enteros$Ni_asc
y_desc <- TDF_Enteros$Ni_desc

# 1. Dibujar la Ascendente 
plot(x_asc, y_asc,
     type = "b", 
     main = "",
     xlab = "Inclinación Óptima (°)",
     ylab = "Frecuencia acumulada",
     col = "black",
     pch = 19, 
     xlim = c(min(TDF_Enteros$Li), max(x_asc)), 
     ylim = c(0, sum(TDF_Enteros$ni)),
     bty = "l"
)

# 2. Agregar la Descendente 
lines(x_desc, y_desc, col = "#9FB6CD", type = "b", pch = 19)

grid()
mtext("Gráfica N°6: Ojivas Ascendentes y Descendentes de la\nDistribución de la Inclinación Óptima en las Plantas Solares", 
      side = 3, 
      line = 3, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

legend("left", 
       legend = c("Ascendente", "Descendente"), 
       col = c("black", "#9FB6CD"), 
       lty = 1, 
       pch = 1, 
       cex = 0.6, 
       inset = c(0.05, 0.05),
       bty = "n")

5 Indicadores Estadísticos

## INDICADORES DE TENDENCIA CENTRAL
# Media aritmética
media <- round(mean(Variable), 2)

# Mediana
mediana <- round(median(Variable), 2)

# Moda
max_frecuencia <- max(TDF_Enteros$ni)
moda_vals <- TDF_Enteros$MC[TDF_Enteros$ni == max_frecuencia]
moda_txt <- paste(round(moda_vals, 2), collapse = ", ")

## INDICADORES DE DISPERSIÓN
# Varianza
varianza <- var(Variable)

# Desviación Estándar
sd_val <- sd(Variable)

# Coeficiente de Variación
cv <- round((sd_val / abs(media)) * 100, 2)

## INDICADORES DE FORMA
# Coeficiente de Asimetría
asimetria <- skewness(Variable, type = 2)

# Curtosis
curtosis <- kurtosis(Variable)

# Outliers
Q1 <- quantile(Variable, 0.25)
Q3 <- quantile(Variable, 0.75)
IQR_val <- Q3 - Q1
lim_inf <- Q1 - 1.5 * IQR_val
lim_sup <- Q3 + 1.5 * IQR_val

outliers_data <- Variable[Variable < lim_inf | Variable > lim_sup]
num_outliers <- length(outliers_data)

if(num_outliers > 0){
  rango_outliers <- paste0(num_outliers, " [", round(min(outliers_data), 2), "; ", round(max(outliers_data), 2), "]")
} else {
  rango_outliers <- "0 [Sin Outliers]"
}

tabla_indicadores <- data.frame(
 "Variable" = c("Inclinación Óptima (°)"),
 "Rango_MinMax" = paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]"),
 "X" = c(media),
 "Me" = c(mediana),
 "Mo" = c(moda_txt),
 "V" = c(varianza),
 "Sd" = c(sd_val),
 "Cv" = c(cv),
 "As" = c(asimetria),
 "K" = c(curtosis),
 "Outliers" = rango_outliers)

# Generar Tabla GT
tabla_conclusiones_gt <- tabla_indicadores %>%
 gt() %>%
 tab_header(title = md("**Tabla N°3 de Conclusiones de Inclinación Óptima de las Plantas Solares**")) %>%
 tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
 cols_label(
  Variable = "Variable",
  Rango_MinMax = "Rango",
  X = "Media (X)",
  Me = "Mediana (Me)",
  Mo = "Moda (Mo)",
  V = "Varianza (V)",
  Sd = "Desv. Est. (Sd)",
  Cv = "C.V. (%)",
  As = "Asimetría (As)",
  K = "Curtosis (K)",
  Outliers = "Outliers [Intervalo]"
 ) %>%
 tab_options(
  heading.title.font.size = px(16),
  column_labels.background.color = "#F0F0F0"
 )

tabla_conclusiones_gt
Tabla N°3 de Conclusiones de Inclinación Óptima de las Plantas Solares
Variable Rango Media (X) Mediana (Me) Moda (Mo) Varianza (V) Desv. Est. (Sd) C.V. (%) Asimetría (As) Curtosis (K) Outliers [Intervalo]
Inclinación Óptima (°) [1; 43] 15.93 17 25 50.04666 7.074366 44.41 0.07502187 -1.181107 1 [43; 43]
Autor: Martin Sarmiento

6 Conclusiones

La variable “Inclinación Óptima” fluctúa entre y 43° y sus valores se encuentran alrededor de 17°, con una desviación estándar de 7.074366, siendo una variable muy heterogénea, cuyos valores se concentran en la parte media alta de la variable con la agregación de valores atípicos de 1 outlier; por todo lo anterior, el comportamiento de la variable es regular.