1 Configuración y Carga de Datos

##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: MARTIN SARMIENTO ####
### CARRERA: INGENIERÍA EN PETRÓLEOS #####


#### VARIABLE INCLINACIÓN ÓPTIMA ####
## DATASET ##
setwd("~/R/OPTIMAL_TILT")
# Cargar dataset
Datos <- read.csv("DataSet_prov.csv", sep = ";", dec = ",", fileEncoding = "latin1")
# Estructura de los datos
str(Datos)
## 'data.frame':    5075 obs. of  30 variables:
##  $ FID_                  : int  0 2 3 4 5 6 10 11 12 13 ...
##  $ OBJECTID              : int  127 129 130 131 132 133 137 138 139 140 ...
##  $ code                  : chr  "00127-ARG-P" "00129-ARG-G" "00130-ARG-P" "00131-ARG-P" ...
##  $ plant_name            : chr  "Aconcagua solar farm" "Altiplano 200 Solar Power Plant" "Altiplano 200 Solar Power Plant" "Anchoris solar farm" ...
##  $ country               : chr  "Argentina" "Argentina" "Argentina" "Argentina" ...
##  $ operational_status    : chr  "announced" "operating" "operating" "construction" ...
##  $ longitude             : num  -68.9 -66.9 -66.9 -68.9 -70.3 ...
##  $ latitude              : num  -33 -24.1 -24.1 -33.3 -37.4 ...
##  $ elevation             : int  929 4000 4000 937 865 858 570 1612 665 3989 ...
##  $ area                  : num  250 4397290 5774 645 241 ...
##  $ size                  : chr  "Pequeña" "Grande" "Pequeña" "Pequeña" ...
##  $ slope                 : num  0.574 1.603 6.243 0.903 1.791 ...
##  $ slope_type            : chr  "Plano o casi plano" "Plano o casi plano" "Moderado" "Plano o casi plano" ...
##  $ curvature             : num  0.000795 -0.002781 -0.043699 0.002781 -0.002384 ...
##  $ curvature_type        : chr  "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies cóncavas / Valles" "Superficies planas o intermedias" ...
##  $ aspect                : num  55.1 188.7 270.9 108.4 239.3 ...
##  $ aspect_type           : chr  "Northeast" "South" "West" "East" ...
##  $ dist_to_road          : num  127 56015 52697 336 34 ...
##  $ ambient_temperature   : num  12.6 6.8 6.8 13.1 11.4 ...
##  $ ghi                   : num  6.11 8.01 7.88 6.12 6.22 ...
##  $ humidity              : num  53.7 53.7 53.7 53.7 53.7 ...
##  $ wind_speed            : num  3.78 7.02 8.33 3.87 6.56 ...
##  $ wind_direction        : num  55.1 55.1 55.1 55.1 55.1 ...
##  $ dt_wind               : chr  "Northeast" "Northeast" "Northeast" "Northeast" ...
##  $ solar_aptitude        : num  0.746 0.8 0.727 0.595 0.657 ...
##  $ solar_aptitude_rounded: int  7 8 7 6 7 7 7 8 7 8 ...
##  $ solar_aptittude_class : chr  "Alta" "Alta" "Alta" "Media" ...
##  $ capacity              : num  25 101 107 180 20 ...
##  $ optimal_tilt          : int  31 26 26 31 33 30 31 29 31 27 ...
##  $ pv_potential          : num  4.98 6.39 6.39 4.97 5 ...
# Cargamos las librerias
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(gt)
library(e1071)

2 Cálculo de Intervalos y Frecuencias

#Extraer variable
Variable <- na.omit(Datos$optimal_tilt)
N <- length(Variable)

# Cálculo Límites Decimales #
# Cálculos básicos
min_dec <- min(Variable)
max_dec <- max(Variable)
k_dec <- floor(1 + 3.322 * log10(N))
rango_dec <- max(Variable) - min(Variable)
amplitud_dec <- rango_dec / k_dec

# Generamos los cortes exactos
cortes_dec <- seq(min(Variable), max(Variable), length.out = k_dec + 1)
cortes_dec[length(cortes_dec)] <- max(Variable) + 0.0001

# Frecuencias
inter_dec <- cut(Variable, breaks = cortes_dec, include.lowest = TRUE, right = FALSE)
ni_dec <- as.vector(table(inter_dec))
hi_dec <- (ni_dec/N)*100

# Cálculos de Frecuencias
sum_ni <- sum(ni_dec)
hi_dec <- (ni_dec / sum_ni) * 100
Ni_asc_dec <- cumsum(ni_dec)
Hi_asc_dec <- cumsum(hi_dec)
Ni_desc_dec <- rev(cumsum(rev(ni_dec)))
Hi_desc_dec <- rev(cumsum(rev(hi_dec)))

# Construcción del Dataframe Decimal
TDF_Decimal <- data.frame(
 Li = round(cortes_dec[1:k_dec], 2),
 Ls = round(cortes_dec[2:(k_dec+1)], 2),
 MC = round((cortes_dec[1:k_dec] + cortes_dec[2:(k_dec+1)]) / 2, 2),
 ni = ni_dec,
 hi = round(hi_dec, 2),
 Ni_asc = cumsum(ni_dec),
 Ni_desc = rev(cumsum(rev(ni_dec))),
 Hi_asc = cumsum(round(hi_dec, 2)),
 Hi_desc = rev(cumsum(rev(round(hi_dec, 2)))))


# Cálculo Límites Enteros #
BASE <- 10

# Cálculos básicos
min_int <- floor(min(Variable) / BASE) * BASE
max_int <- ceiling(max(Variable) / BASE) * BASE
k_int_sug <- floor(1 + 3.322 * log10(N))
Rango_int <- max_int - min_int
Amplitud_raw <- Rango_int / k_int_sug

Amplitud_int <- ceiling(Amplitud_raw / 10) * 10
if(Amplitud_int == 0) Amplitud_int <- 10

# Generar cortes enteros
cortes_int <- seq(from = min_int, by = Amplitud_int, length.out = k_int_sug + 2)

cortes_int <- cortes_int[cortes_int <= (max_int + Amplitud_int)]

# Asegurar cobertura del máximo
while(max(cortes_int) < max(Variable)) {
 cortes_int <- c(cortes_int, max(cortes_int) + Amplitud_int)
}

K_real <- length(cortes_int) - 1
lim_inf_int <- cortes_int[1:K_real]
lim_sup_int <- cortes_int[2:(K_real+1)]

# Frecuencias
inter_int <- cut(Variable, breaks = cortes_int, include.lowest = TRUE, right = FALSE)
ni_int <- as.vector(table(inter_int))

# Cálculos de Frecuencias
hi_int <- (ni_int / N) * 100
Ni_asc_int <- cumsum(ni_int)
Ni_desc_int <- rev(cumsum(rev(ni_int)))
Hi_asc_int <- cumsum(hi_int)
Hi_desc_int <- rev(cumsum(rev(hi_int)))

# Construcción del Dataframe Entero
TDF_Enteros <- data.frame(
 Li = lim_inf_int,
 Ls = lim_sup_int,
 MC = (lim_inf_int + lim_sup_int) / 2,
 ni = ni_int,
 hi = round(hi_int, 2),
 Ni_asc = Ni_asc_int,
 Ni_desc = Ni_desc_int,
 Hi_asc = round(Hi_asc_int, 2),
 Hi_desc = round(Hi_desc_int, 2))

3 Tabla de Distribución de Frecuencias

3.1 Tabla con Límites Decimales

#### Crear de fila de totales ####
totales_dec <- c("TOTAL", "-", "-", sum(TDF_Decimal$ni), 100, "-", "-", "-", "-")
TDF_Dec_Final <- rbind(mutate(TDF_Decimal, across(everything(), as.character)), totales_dec)

# Generar GT Decimal
TDF_Dec_Final %>%
 gt() %>%
 tab_header(title = md("**Tabla N°1 de Distribución de Frecuencias de Inclinación Óptima (°) de las Plantas Solares**")) %>%
 cols_label(
  Li = "Lim. Inf",
  Ls = "Lim. Sup",
  MC = "Marca Clase",
  ni = "Frec. Abs (ni)",
  hi = "Frec. Rel (%)",
  Ni_asc = "Ni (Asc)",
  Ni_desc = "Ni (Desc)",
  Hi_asc = "Hi Asc (%)",
  Hi_desc = "Hi Desc (%)"
 ) %>%
 tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°1 de Distribución de Frecuencias de Inclinación Óptima (°) de las Plantas Solares
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
-9999 -9227.23 -9613.12 1 0.02 1 5075 0.02 100
-9227.23 -8455.46 -8841.35 0 0 1 5074 0.02 99.98
-8455.46 -7683.69 -8069.58 0 0 1 5074 0.02 99.98
-7683.69 -6911.92 -7297.81 0 0 1 5074 0.02 99.98
-6911.92 -6140.15 -6526.04 0 0 1 5074 0.02 99.98
-6140.15 -5368.38 -5754.27 0 0 1 5074 0.02 99.98
-5368.38 -4596.62 -4982.5 0 0 1 5074 0.02 99.98
-4596.62 -3824.85 -4210.73 0 0 1 5074 0.02 99.98
-3824.85 -3053.08 -3438.96 0 0 1 5074 0.02 99.98
-3053.08 -2281.31 -2667.19 0 0 1 5074 0.02 99.98
-2281.31 -1509.54 -1895.42 0 0 1 5074 0.02 99.98
-1509.54 -737.77 -1123.65 0 0 1 5074 0.02 99.98
-737.77 34 -351.88 5074 99.98 5075 5074 100 99.98
TOTAL - - 5075 100 - - - -

3.2 Tabla con Límites Enteros

#### Crear de fila de totales ####
totales_int <- c("TOTAL", "-", "-", sum(TDF_Enteros$ni), 100, "-", "-", "-", "-")
TDF_Int_Final <- rbind(mutate(TDF_Enteros, across(everything(), as.character)), totales_int)

# Generar GT Enteros
TDF_Int_Final %>%
 gt() %>%
 tab_header(
  title = md("**Tabla N°2 de Distribución de Frecuencias de Inclinación Óptima (°) de las Plantas Solares**")) %>%
 cols_label(
  Li = "Lim. Inf",
  Ls = "Lim. Sup",
  MC = "Marca Clase",
  ni = "Frec. Abs (ni)",
  hi = "Frec. Rel (%)",
  Ni_asc = "Ni (Asc)",
  Ni_desc = "Ni (Desc)",
  Hi_asc = "Hi Asc (%)",
  Hi_desc = "Hi Desc (%)"
 ) %>%

 fmt_number(columns = c(Li, Ls), decimals = 0) %>%
 fmt_number(columns = c(hi, Hi_asc, Hi_desc), decimals = 2) %>%
 tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°2 de Distribución de Frecuencias de Inclinación Óptima (°) de las Plantas Solares
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
-10000 -9220 -9610 1 0.02 1 5075 0.02 100
-9220 -8440 -8830 0 0 1 5074 0.02 99.98
-8440 -7660 -8050 0 0 1 5074 0.02 99.98
-7660 -6880 -7270 0 0 1 5074 0.02 99.98
-6880 -6100 -6490 0 0 1 5074 0.02 99.98
-6100 -5320 -5710 0 0 1 5074 0.02 99.98
-5320 -4540 -4930 0 0 1 5074 0.02 99.98
-4540 -3760 -4150 0 0 1 5074 0.02 99.98
-3760 -2980 -3370 0 0 1 5074 0.02 99.98
-2980 -2200 -2590 0 0 1 5074 0.02 99.98
-2200 -1420 -1810 0 0 1 5074 0.02 99.98
-1420 -640 -1030 0 0 1 5074 0.02 99.98
-640 140 -250 5074 99.98 5075 5074 100 99.98
TOTAL - - 5075 100 - - - -

4 Análisis Gráfico

4.1 Histogramas de Cantidad

color_sutil <- "#C6E2FF"

par(mar = c(8, 5, 4, 2)) 
barplot(TDF_Enteros$ni, 
        names.arg = TDF_Enteros$MC,
        main = "Gráfica N°1: Distribución de Cantidad de Plantas Solares por Inclinación Óptima",
        cex.main = 1,
        xlab = "", 
        ylab = "Cantidad",
        col = color_sutil,
        space = 0, 
        las = 2, 
        cex.names = 0.7)
mtext("Inclinación (°)", side = 1, line = 4)

color_grafico <- "#C6E2FF"

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$ni, 
        main="Gráfica N°2: Distribución de Cantidad de Plantas Solares por Inclinación Óptima",
        cex.main = 0.8,
        xlab = "",
        ylab = "Cantidad",
        names.arg = TDF_Enteros$MC,
        col = color_sutil,
        space = 0,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, sum(TDF_Enteros$ni))) 
mtext("Inclinación (°)", side = 1, line = 4)

4.2 Histogramas Porcentuales

color_grafico <- "#C6E2FF"

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$hi, 
        main="Gráfica N°3: Distribución Porcentual de las Plantas Solares por Inclinación Óptima",
        cex.main = 0.9,
        xlab = "",
        ylab = "Porcentaje (%)",
        col = color_sutil,
        space = 0,
        names.arg = TDF_Enteros$MC,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, max(TDF_Enteros$hi) * 1.1))
mtext("Inclinación (°)", side = 1, line = 4)

color_grafico <- "#C6E2FF"

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$hi, 
        main="Gráfica N°4: Distribución Porcentual de las Plantas Solares por Inclinación Óptima",
        cex.main = 0.8,
        xlab = "",
        ylab = "Porcentaje (%)",
        col = color_sutil,
        space = 0,
        names.arg = TDF_Enteros$MC,
        las = 2,
        cex.names = 0.7,
        ylim = c(0, 100)) 
mtext("Inclinación (°)", side = 1, line = 4)

4.3 Diagrama de Cajas (Boxplot)

par(mar = c(5, 5, 4, 2))
boxplot(Variable, 
        horizontal = TRUE,
        col = color_sutil,
        xlab = "Inclinación Óptima (°)",
        cex.main = 0.9,
        main = "Gráfica N°5: Distribución de la Inclinación Óptima en las Plantas Solares")

4.4 Ojivas

par(mar = c(5, 5, 4, 10), xpd = TRUE)

# Coordenadas
x_asc <- TDF_Enteros$Ls
x_desc <- TDF_Enteros$Li
y_asc <- TDF_Enteros$Ni_asc
y_desc <- TDF_Enteros$Ni_desc

# 1. Dibujar la Ascendente 
plot(x_asc, y_asc,
     type = "b", 
     main = "Gráfica N°6: Ojivas Ascendentes y Descendentes de la Distribución de la Inclinación Óptima en las Plantas Solares",
     cex.main = 0.6,
     xlab = "Inclinación (°)",
     ylab = "Frecuencia acumulada",
     col = "black",
     pch = 19, 
     xlim = c(min(TDF_Enteros$Li), max(x_asc)), 
     ylim = c(0, sum(TDF_Enteros$ni)),
     bty = "l"
)

# 2. Agregar la Descendente 
lines(x_desc, y_desc, col = "#9FB6CD", type = "b", pch = 19)

grid()
legend("left", 
       legend = c("Ascendente", "Descendente"), 
       col = c("black", "#9FB6CD"), 
       lty = 1, 
       pch = 1, 
       cex = 0.6, 
       inset = c(0.05, 0.05),
       bty = "n")

5 Indicadores Estadísticos

## INDICADORES DE TENDENCIA CENTRAL
# Media aritmética
media <- round(mean(Variable), 2)

# Mediana
mediana <- round(median(Variable), 2)

# Moda
max_frecuencia <- max(TDF_Enteros$ni)
moda_vals <- TDF_Enteros$MC[TDF_Enteros$ni == max_frecuencia]
moda_txt <- paste(round(moda_vals, 2), collapse = ", ")

## INDICADORES DE DISPERSIÓN
# Varianza
varianza <- var(Variable)

# Desviación Estándar
sd_val <- sd(Variable)

# Coeficiente de Variación
cv <- round((sd_val / abs(media)) * 100, 2)

## INDICADORES DE FORMA
# Coeficiente de Asimetría
asimetria <- skewness(Variable, type = 2)

# Curtosis
curtosis <- kurtosis(Variable)

# Outliers
outliers_data <- boxplot.stats(Variable)$out

if(length(outliers_data) > 0) {
 num_out <- length(outliers_data)
 min_out <- round(min(outliers_data), 2)
 max_out <- round(max(outliers_data), 2)

 # Formato Total [Min; Max]
 msg_atipicos <- paste0(" ", num_out, " [", min_out, " ; ", max_out, "]")
} else {
 msg_atipicos <- "No hay presencia de valores atípicos"
}


tabla_indicadores <- data.frame(
 "Variable" = c("Inclinación Óptima (°)"),
 "Rango_MinMax" = paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]"),
 "X" = c(media),
 "Me" = c(mediana),
 "Mo" = c(moda_txt),
 "V" = c(varianza),
 "Sd" = c(sd_val),
 "Cv" = c(cv),
 "As" = c(asimetria),
 "K" = c(curtosis),
 "Outliers" = msg_atipicos
)

# Generar Tabla GT
tabla_conclusiones_gt <- tabla_indicadores %>%
 gt() %>%
 tab_header(title = md("**Tabla N°3 de Conclusiones de Inclinación Óptima de las Plantas Solares**")) %>%
 tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
 cols_label(
  Variable = "Variable",
  Rango_MinMax = "Rango",
  X = "Media (X)",
  Me = "Mediana (Me)",
  Mo = "Moda (Mo)",
  V = "Varianza (V)",
  Sd = "Desv. Est. (Sd)",
  Cv = "C.V. (%)",
  As = "Asimetría (As)",
  K = "Curtosis (K)",
  Outliers = "Outliers"
 ) %>%
 tab_options(
  heading.title.font.size = px(16),
  column_labels.background.color = "#f0f0f0"
 )

tabla_conclusiones_gt
Tabla N°3 de Conclusiones de Inclinación Óptima de las Plantas Solares
Variable Rango Media (X) Mediana (Me) Moda (Mo) Varianza (V) Desv. Est. (Sd) C.V. (%) Asimetría (As) Curtosis (K) Outliers
Inclinación Óptima (°) [-9999; 34] 13.95 17 -250 19813.23 140.7595 1009.03 -70.96975 5042.47 1 [-9999 ; -9999]
Autor: Martin Sarmiento

6 Conclusiones

La variable “Inclinación Óptima” fluctúa entre -9999° y 34° y sus valores se encuentran alrededor de 17°, con una desviación estándar de 140.7595, siendo una variable muy heterogénea, cuyos valores se concentran en la parte media alta de la variable con la agregación de valores atípicos de 1 outlier; por todo lo anterior, el comportamiento de la variable es regular.