1 Configuración y Carga de Datos

##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: MARTIN SARMIENTO ####
### CARRERA: INGENIERÍA EN PETRÓLEOS #####


#### VARIABLE LONGITUD ####
## DATASET ##
setwd("~/R/LONGITUD")
# Cargar dataset
Datos <- read.csv("DataSet_.csv", sep = ";", fileEncoding = "latin1")
# Estructura de los datos
str(Datos)
## 'data.frame':    7142 obs. of  26 variables:
##  $ fid                  : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ objectid             : int  127 128 129 130 131 132 133 134 135 136 ...
##  $ code                 : chr  "Arg-00001" "Arg-00002" "Arg-00003" "Arg-00004" ...
##  $ country              : chr  "Argentina" "Argentina" "Argentina" "Argentina" ...
##  $ plant_name           : chr  "Aconcagua solar farm" "Aconcagua solar farm" "Altiplano 200 Solar Power Plant" "Altiplano 200 Solar Power Plant" ...
##  $ operational_status   : chr  "announced" "announced" "operating" "operating" ...
##  $ longitude            : num  -68.9 -68.9 -66.9 -66.9 -68.9 ...
##  $ latitude             : num  -33 -33 -24.1 -24.1 -33.3 ...
##  $ elevation            : int  929 929 4000 4000 937 865 858 858 858 858 ...
##  $ area                 : num  0 0 4397290 5774 0 ...
##  $ slope                : num  0.574 0.574 1.603 6.243 0.903 ...
##  $ slope_type           : chr  "Plano o casi plano" "Plano o casi plano" "Plano o casi plano" "Moderado" ...
##  $ curvature            : num  0.000795 0.000795 -0.002781 -0.043699 0.002781 ...
##  $ curvature_type       : chr  "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies cóncavas / Valles" ...
##  $ aspect               : num  55.1 55.1 188.7 270.9 108.4 ...
##  $ aspect_type          : chr  "Northeast" "Northeast" "South" "West" ...
##  $ ghi                  : num  6.11 6.11 8.01 7.88 6.12 ...
##  $ solar_aptitude       : num  0.746 0.746 0.8 0.727 0.595 ...
##  $ solar_aptittude_class: chr  "Alta" "Alta" "Alta" "Alta" ...
##  $ humidity             : num  0 0 53.7 53.7 0 ...
##  $ wind_speed           : num  3.78 3.78 7.02 8.33 3.87 ...
##  $ wind_direction       : num  0 0 55.1 55.1 0 ...
##  $ ambient_temperature  : num  12.6 12.6 6.8 6.8 13.1 ...
##  $ optimal_tilt         : int  31 31 26 26 31 33 30 30 30 30 ...
##  $ peak_power_per_hour  : num  4.98 4.98 6.39 6.39 4.97 ...
##  $ total_power          : num  25 66.2 101 107 180 ...
# Cargamos las librerias
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(gt)
library(e1071)

2 Cálculo de Intervalos y Frecuencias

#Extraer variable
Variable <- na.omit(Datos$longitude)
N <- length(Variable)

# Cálculo Límites Decimales #
# Cálculos básicos
min_dec <- min(Variable)
max_dec <- max(Variable)
k_dec <- floor(1 + 3.322 * log10(N))
rango_dec <- max(Variable) - min(Variable)
amplitud_dec <- rango_dec / k_dec

# Generamos los cortes exactos
cortes_dec <- seq(min(Variable), max(Variable), length.out = k_dec + 1)
cortes_dec[length(cortes_dec)] <- max(Variable) + 0.0001

# Frecuencias
inter_dec <- cut(Variable, breaks = cortes_dec, include.lowest = TRUE, right = FALSE)
ni_dec <- as.vector(table(inter_dec))
hi_dec <- (ni_dec/N)*100

# Cálculos de Frecuencias
sum_ni <- sum(ni_dec)
hi_dec <- (ni_dec / sum_ni) * 100
Ni_asc_dec <- cumsum(ni_dec)
Hi_asc_dec <- cumsum(hi_dec)
Ni_desc_dec <- rev(cumsum(rev(ni_dec)))
Hi_desc_dec <- rev(cumsum(rev(hi_dec)))

# Construcción del Dataframe Decimal
TDF_Decimal <- data.frame(
 Li = round(cortes_dec[1:k_dec], 2),
 Ls = round(cortes_dec[2:(k_dec+1)], 2),
 MC = round((cortes_dec[1:k_dec] + cortes_dec[2:(k_dec+1)]) / 2, 2),
 ni = ni_dec,
 hi = round(hi_dec, 2),
 Ni_asc = cumsum(ni_dec),
 Ni_desc = rev(cumsum(rev(ni_dec))),
 Hi_asc = cumsum(round(hi_dec, 2)),
 Hi_desc = rev(cumsum(rev(round(hi_dec, 2)))))


# Cálculo Límites Enteros #
BASE <- 10
# Cálculos básicos
min_int <- floor(min(Variable) / BASE) * BASE
max_int <- ceiling(max(Variable) / BASE) * BASE
k_int_sug <- floor(1 + 3.322 * log10(N))
Rango_int <- max_int - min_int
Amplitud_raw <- Rango_int / k_int_sug

Amplitud_int <- ceiling(Amplitud_raw / 10) * 10
if(Amplitud_int == 0) Amplitud_int <- 10

# Generar cortes enteros
cortes_int <- seq(from = min_int, by = Amplitud_int, length.out = k_int_sug + 2)

cortes_int <- cortes_int[cortes_int <= (max_int + Amplitud_int)]

# Asegurar cobertura del máximo
while(max(cortes_int) < max(Variable)) {
 cortes_int <- c(cortes_int, max(cortes_int) + Amplitud_int)
}

K_real <- length(cortes_int) - 1
lim_inf_int <- cortes_int[1:K_real]
lim_sup_int <- cortes_int[2:(K_real+1)]

# Frecuencias
inter_int <- cut(Variable, breaks = cortes_int, include.lowest = TRUE, right = FALSE)
ni_int <- as.vector(table(inter_int))

# Cálculos de Frecuencias
hi_int <- (ni_int / N) * 100
Ni_asc_int <- cumsum(ni_int)
Ni_desc_int <- rev(cumsum(rev(ni_int)))
Hi_asc_int <- cumsum(hi_int)
Hi_desc_int <- rev(cumsum(rev(hi_int)))

# Construcción del Dataframe Entero
TDF_Enteros <- data.frame(
 Li = lim_inf_int,
 Ls = lim_sup_int,
 MC = (lim_inf_int + lim_sup_int) / 2,
 ni = ni_int,
 hi = round(hi_int, 2),
 Ni_asc = Ni_asc_int,
 Ni_desc = Ni_desc_int,
 Hi_asc = round(Hi_asc_int, 2),
 Hi_desc = round(Hi_desc_int, 2))

3 Tabla de Distribución de Frecuencias

3.1 Tabla con Límites Decimales

#### Crear de fila de totales ####
totales_dec <- c("TOTAL", "-", "-", sum(TDF_Decimal$ni), 100, "-", "-", "-", "-")
TDF_Dec_Final <- rbind(mutate(TDF_Decimal, across(everything(), as.character)), totales_dec)

# Generar GT Decimal
TDF_Dec_Final %>%
 gt() %>%
 tab_header(title = md("**Tabla N°1 de Distribución de Frecuencias de Longitud (°)**")) %>%
 cols_label(
  Li = "Lim. Inf",
  Ls = "Lim. Sup",
  MC = "Marca Clase",
  ni = "Frec. Abs (ni)",
  hi = "Frec. Rel (%)",
  Ni_asc = "Ni (Asc)",
  Ni_desc = "Ni (Desc)",
  Hi_asc = "Hi Asc (%)",
  Hi_desc = "Hi Desc (%)"
 ) %>%
 tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°1 de Distribución de Frecuencias de Longitud (°)
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
-109.43 -103.69 -106.56 1 0.01 1 7141 0.01 100
-103.69 -97.96 -100.82 0 0 1 7140 0.01 99.99
-97.96 -92.22 -95.09 0 0 1 7140 0.01 99.99
-92.22 -86.48 -89.35 2 0.03 3 7140 0.04 99.99
-86.48 -80.75 -83.61 5 0.07 8 7138 0.11 99.96
-80.75 -75.01 -77.88 328 4.59 336 7133 4.7 99.89
-75.01 -69.27 -72.14 866 12.13 1202 6805 16.83 95.3
-69.27 -63.53 -66.4 153 2.14 1355 5939 18.97 83.17
-63.53 -57.8 -60.67 64 0.9 1419 5786 19.87 81.03
-57.8 -52.06 -54.93 542 7.59 1961 5722 27.46 80.13
-52.06 -46.32 -49.19 1026 14.37 2987 5180 41.83 72.54
-46.32 -40.59 -43.46 2824 39.55 5811 4154 81.38 58.17
-40.59 -34.85 -37.72 1330 18.62 7141 1330 100 18.62
TOTAL - - 7141 100 - - - -

3.2 Tabla con Límites Enteros

#### Crear de fila de totales ####
totales_int <- c("TOTAL", "-", "-", sum(TDF_Enteros$ni), 100, "-", "-", "-", "-")
TDF_Int_Final <- rbind(mutate(TDF_Enteros, across(everything(), as.character)), totales_int)

# Generar GT Enteros
TDF_Int_Final %>%
 gt() %>%
 tab_header(
  title = md("**Tabla N°2 de Distribución de Frecuencias de Longitud (°)**")) %>%
 cols_label(
  Li = "Lim. Inf",
  Ls = "Lim. Sup",
  MC = "Marca Clase",
  ni = "Frec. Abs (ni)",
  hi = "Frec. Rel (%)",
  Ni_asc = "Ni (Asc)",
  Ni_desc = "Ni (Desc)",
  Hi_asc = "Hi Asc (%)",
  Hi_desc = "Hi Desc (%)"
 ) %>%

 fmt_number(columns = c(Li, Ls), decimals = 0) %>%
 fmt_number(columns = c(hi, Hi_asc, Hi_desc), decimals = 2) %>%
 tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°2 de Distribución de Frecuencias de Longitud (°)
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
-110 -100 -105 1 0.01 1 7141 0.01 100
-100 -90 -95 2 0.03 3 7140 0.04 99.99
-90 -80 -85 15 0.21 18 7138 0.25 99.96
-80 -70 -75 1104 15.46 1122 7123 15.71 99.75
-70 -60 -65 253 3.54 1375 6019 19.26 84.29
-60 -50 -55 854 11.96 2229 5766 31.21 80.74
-50 -40 -45 3756 52.6 5985 4912 83.81 68.79
-40 -30 -35 1156 16.19 7141 1156 100 16.19
-30 -20 -25 0 0 7141 0 100 0
TOTAL - - 7141 100 - - - -

4 Gráficos

4.1 Gráfico 1 – Frecuencia Local

color_sutil <- "#FF6961"

par(mar = c(8, 5, 4, 2)) 
barplot(TDF_Enteros$ni, 
        names.arg = TDF_Enteros$MC,
        main = "Gráfica N°1: Distribución de Cantidad de Plantas Solares por Longitud",
        cex.main = 1,
        xlab = "", 
        ylab = "Cantidad",
        col = color_sutil,
        space = 0, 
        las = 2, 
        cex.names = 0.7)
mtext("Longitud (°)", side = 1, line = 4)

4.2 Gráfico 2 – Frecuencia Global

color_grafico <- "#FF6961"

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$ni, 
        main="Gráfica N°2: Distribución de Cantidades Globales de las Plantas Solares por Longitud",
        cex.main = 0.9,
        xlab = "",
        ylab = "Cantidad",
        names.arg = TDF_Enteros$MC,
        col = color_sutil,
        space = 0,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, sum(TDF_Enteros$ni))) 
mtext("Longitud (°)", side = 1, line = 4)

4.3 Gráfico 3 – Porcentaje Local

color_grafico <- "#FF6961"

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$hi, 
        main="Gráfica N°3: Distribución Porcentual de las Plantas Solares por Longitud",
        cex.main = 1,
        xlab = "",
        ylab = "Porcentaje (%)",
        col = color_sutil,
        space = 0,
        names.arg = TDF_Enteros$MC,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, max(TDF_Enteros$hi) * 1.1))
mtext("Longitud (°)", side = 1, line = 4)

4.4 Gráfico 4 – Porcentaje Global

color_grafico <- "#FF6961"

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$hi, 
        main="Gráfica N°4: Distribución Porcentual Global de las Plantas Solares por Longitud",
        cex.main = 1,
        xlab = "",
        ylab = "Porcentaje (%)",
        col = color_sutil,
        space = 0,
        names.arg = TDF_Enteros$MC,
        las = 2,
        cex.names = 0.7,
        ylim = c(0, 100)) 
mtext("Longitud (°)", side = 1, line = 4)

4.5 Gráfico 5 – Diagrama de Cajas (Boxplot)

par(mar = c(5, 5, 4, 2))
boxplot(Variable, 
        horizontal = TRUE,
        col = color_sutil,
        xlab = "Longitud (°)",
        cex.main = 0.9,
        main = "Gráfica N°5: Distribución de la Longitud en las Plantas Solares")

4.6 Gráfico 6 – Ojivas de Frecuencia Acumulada

par(mar = c(5, 5, 4, 10), xpd = TRUE)

# Coordenadas
x_asc <- TDF_Enteros$Ls
x_desc <- TDF_Enteros$Li
y_asc <- TDF_Enteros$Ni_asc
y_desc <- TDF_Enteros$Ni_desc

# 1. Dibujar la Ascendente 
plot(x_asc, y_asc,
     type = "b", 
     main = "Gráfica N°6: Ojivas Ascendentes y Descendentes de la Distribución de la Longitud en las Plantas Solares",
     cex.main = 0.7,
     xlab = "Longitud (°)",
     ylab = "Frecuencia Acumulada",
     col = "black",
     pch = 19, 
     xlim = c(min(TDF_Enteros$Li), max(x_asc)), 
     ylim = c(0, sum(TDF_Enteros$ni)),
)

grid()

# 2. Agregar la Descendente 
lines(x_desc, y_desc, col = "red", type = "b", pch = 19)

grid()
legend("left", 
       legend = c("Ascendente", "Descendente"), 
       col = c("black", "red"), 
       lty = 1, 
       pch = 1, 
       cex = 0.6, 
       inset = c(0.05, 0.05),
       bty = "n")

5 Indicadores Estadísticos

## INDICADORES DE TENDENCIA CENTRAL
# Media aritmética
media <- round(mean(Variable), 2)

# Mediana
mediana <- round(median(Variable), 2)

# Moda
max_frecuencia <- max(TDF_Enteros$ni)
moda_vals <- TDF_Enteros$MC[TDF_Enteros$ni == max_frecuencia]
moda_txt <- paste(round(moda_vals, 2), collapse = ", ")

## INDICADORES DE DISPERSIÓN
# Varianza
varianza <- var(Variable)

# Desviación Estándar
sd_val <- sd(Variable)

# Coeficiente de Variación
cv <- round((sd_val / abs(media)) * 100, 2)

## INDICADORES DE FORMA
# Coeficiente de Asimetría
asimetria <- skewness(Variable, type = 2)

# Curtosis
curtosis <- kurtosis(Variable)

# Outliers
outliers_data <- boxplot.stats(Variable)$out

if(length(outliers_data) > 0) {
 num_out <- length(outliers_data)
 min_out <- round(min(outliers_data), 2)
 max_out <- round(max(outliers_data), 2)

 # Formato Total [Min; Max]
 msg_atipicos <- paste0(" ", num_out, " [", min_out, " ; ", max_out, "]")
} else {
 msg_atipicos <- "No hay presencia de valores atípicos"
}


tabla_indicadores <- data.frame(
 "Variable" = c("Longitud (°)"),
 "Rango_MinMax" = paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]"),
 "X" = c(media),
 "Me" = c(mediana),
 "Mo" = c(moda_txt),
 "V" = c(varianza),
 "Sd" = c(sd_val),
 "Cv" = c(cv),
 "As" = c(asimetria),
 "K" = c(curtosis),
 "Outliers" = msg_atipicos
)

# Generar Tabla GT
tabla_conclusiones_gt <- tabla_indicadores %>%
 gt() %>%
 tab_header(title = md("**Tabla N°3 de Conclusiones**")) %>%
 tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
 cols_label(
  Variable = "Variable",
  Rango_MinMax = "Rango",
  X = "Media (X)",
  Me = "Mediana (Me)",
  Mo = "Moda (Mo)",
  V = "Varianza (V)",
  Sd = "Desv. Est. (Sd)",
  Cv = "C.V. (%)",
  As = "Asimetría (As)",
  K = "Curtosis (K)",
  Outliers = "Outliers"
 ) %>%
 tab_options(
  heading.title.font.size = px(16),
  column_labels.background.color = "#f0f0f0"
 )

tabla_conclusiones_gt
Tabla N°3 de Conclusiones
Variable Rango Media (X) Mediana (Me) Moda (Mo) Varianza (V) Desv. Est. (Sd) C.V. (%) Asimetría (As) Curtosis (K) Outliers
Longitud (°) [-109.43; -34.85] -49.83 -45.07 -45 146.8878 12.11973 24.32 -1.137053 -0.01998213 1127 [-109.43 ; -69.94]
Autor: Martin Sarmiento

6 Conclusiones

La variable “Longitud” fluctúa entre -109.43° y -34.85° y sus valores se encuentran alrededor de -45.07°, con una desviación estándar de 12.11973, siendo una variable homogénea, cuyos valores se concentran en la parte media alta de la variable con la agregación de valores atípicos de 1127 outliers; por todo lo anterior, el comportamiento de la variable es perjudicial.