1 Configuración y Carga de Datos

##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: MARTIN SARMIENTO ####
### CARRERA: INGENIERÍA EN PETRÓLEOS #####


#### VARIABLE LATITUD ####
## DATASET ##
setwd("~/R/LATITUD")
# Cargar dataset
Datos <- read.csv("DataSet_prov.csv", sep = ";", dec = ",", fileEncoding = "latin1")
# Estructura de los datos
str(Datos)
## 'data.frame':    5075 obs. of  30 variables:
##  $ FID_                  : int  0 2 3 4 5 6 10 11 12 13 ...
##  $ OBJECTID              : int  127 129 130 131 132 133 137 138 139 140 ...
##  $ code                  : chr  "00127-ARG-P" "00129-ARG-G" "00130-ARG-P" "00131-ARG-P" ...
##  $ plant_name            : chr  "Aconcagua solar farm" "Altiplano 200 Solar Power Plant" "Altiplano 200 Solar Power Plant" "Anchoris solar farm" ...
##  $ country               : chr  "Argentina" "Argentina" "Argentina" "Argentina" ...
##  $ operational_status    : chr  "announced" "operating" "operating" "construction" ...
##  $ longitude             : num  -68.9 -66.9 -66.9 -68.9 -70.3 ...
##  $ latitude              : num  -33 -24.1 -24.1 -33.3 -37.4 ...
##  $ elevation             : int  929 4000 4000 937 865 858 570 1612 665 3989 ...
##  $ area                  : num  250 4397290 5774 645 241 ...
##  $ size                  : chr  "Pequeña" "Grande" "Pequeña" "Pequeña" ...
##  $ slope                 : num  0.574 1.603 6.243 0.903 1.791 ...
##  $ slope_type            : chr  "Plano o casi plano" "Plano o casi plano" "Moderado" "Plano o casi plano" ...
##  $ curvature             : num  0.000795 -0.002781 -0.043699 0.002781 -0.002384 ...
##  $ curvature_type        : chr  "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies cóncavas / Valles" "Superficies planas o intermedias" ...
##  $ aspect                : num  55.1 188.7 270.9 108.4 239.3 ...
##  $ aspect_type           : chr  "Northeast" "South" "West" "East" ...
##  $ dist_to_road          : num  127 56015 52697 336 34 ...
##  $ ambient_temperature   : num  12.6 6.8 6.8 13.1 11.4 ...
##  $ ghi                   : num  6.11 8.01 7.88 6.12 6.22 ...
##  $ humidity              : num  53.7 53.7 53.7 53.7 53.7 ...
##  $ wind_speed            : num  3.78 7.02 8.33 3.87 6.56 ...
##  $ wind_direction        : num  55.1 55.1 55.1 55.1 55.1 ...
##  $ dt_wind               : chr  "Northeast" "Northeast" "Northeast" "Northeast" ...
##  $ solar_aptitude        : num  0.746 0.8 0.727 0.595 0.657 ...
##  $ solar_aptitude_rounded: int  7 8 7 6 7 7 7 8 7 8 ...
##  $ solar_aptittude_class : chr  "Alta" "Alta" "Alta" "Media" ...
##  $ capacity              : num  25 101 107 180 20 ...
##  $ optimal_tilt          : int  31 26 26 31 33 30 31 29 31 27 ...
##  $ pv_potential          : num  4.98 6.39 6.39 4.97 5 ...
# Cargamos las librerias
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(gt)
library(e1071)

2 Cálculo de Intervalos y Frecuencias

# Extraer variable
Variable <- na.omit(Datos$latitude)
N <- length(Variable)

# CÁLCULO LÍMITES DECIMALES 
min_dec <- min(Variable)
max_dec <- max(Variable)
k_dec <- floor(1 + 3.322 * log10(N))
rango_dec <- max(Variable) - min(Variable)
amplitud_dec <- rango_dec / k_dec

# Cortes exactos
cortes_dec <- seq(min(Variable), max(Variable), length.out = k_dec + 1)
cortes_dec[length(cortes_dec)] <- max(Variable) + 0.0001

# Frecuencias
inter_dec <- cut(Variable, breaks = cortes_dec, include.lowest = TRUE, right = FALSE)
ni_dec <- as.vector(table(inter_dec))

# CÁLCULOS MATEMÁTICOS 
hi_dec <- (ni_dec / N) * 100
Ni_asc_dec <- cumsum(ni_dec)
Hi_asc_dec <- cumsum(hi_dec) 
Ni_desc_dec <- rev(cumsum(rev(ni_dec)))
Hi_desc_dec <- rev(cumsum(rev(hi_dec)))

# Dataframe Decimal 
TDF_Decimal <- data.frame(
  Li = cortes_dec[1:k_dec],
  Ls = cortes_dec[2:(k_dec+1)],
  MC = (cortes_dec[1:k_dec] + cortes_dec[2:(k_dec+1)]) / 2,
  ni = ni_dec,
  hi = hi_dec,            
  Ni_asc = Ni_asc_dec,
  Ni_desc = Ni_desc_dec,
  Hi_asc = Hi_asc_dec,    
  Hi_desc = Hi_desc_dec)


# CÁLCULO LÍMITES ENTEROS
BASE <- 10
min_int <- floor(min(Variable) / BASE) * BASE
max_int <- ceiling(max(Variable) / BASE) * BASE
k_int_sug <- floor(1 + 3.322 * log10(N))
Rango_int <- max_int - min_int
Amplitud_raw <- Rango_int / k_int_sug

Amplitud_int <- ceiling(Amplitud_raw / 10) * 10
if(Amplitud_int == 0) Amplitud_int <- 10

cortes_int <- seq(from = min_int, by = Amplitud_int, length.out = k_int_sug + 2)
cortes_int <- cortes_int[cortes_int <= (max_int + Amplitud_int)]

while(max(cortes_int) < max(Variable)) {
  cortes_int <- c(cortes_int, max(cortes_int) + Amplitud_int)
}

K_real <- length(cortes_int) - 1
lim_inf_int <- cortes_int[1:K_real]
lim_sup_int <- cortes_int[2:(K_real+1)]

# Frecuencias
inter_int <- cut(Variable, breaks = cortes_int, include.lowest = TRUE, right = FALSE)
ni_int <- as.vector(table(inter_int))

# CÁLCULOS MATEMÁTICOS
hi_int <- (ni_int / N) * 100
Ni_asc_int <- cumsum(ni_int)
Hi_asc_int <- cumsum(hi_int)
Ni_desc_int <- rev(cumsum(rev(ni_int)))
Hi_desc_int <- rev(cumsum(rev(hi_int)))

# Dataframe Entero 
TDF_Enteros <- data.frame(
  Li = lim_inf_int,
  Ls = lim_sup_int,
  MC = (lim_inf_int + lim_sup_int) / 2,
  ni = ni_int,
  hi = hi_int,
  Ni_asc = Ni_asc_int,
  Ni_desc = Ni_desc_int,
  Hi_asc = Hi_asc_int,
  Hi_desc = Hi_desc_int)

3 Tabla de Distribución de Frecuencias

3.1 Tabla con Límites Decimales

# Crear Dataframe
TDF_Dec_Final <- data.frame(
  Li      = as.character(round(TDF_Decimal$Li, 2)),
  Ls      = as.character(round(TDF_Decimal$Ls, 2)),
  MC      = as.character(round(TDF_Decimal$MC, 2)),
  ni      = as.character(TDF_Decimal$ni),
  hi      = as.character(round(TDF_Decimal$hi, 2)),
  Ni_asc  = as.character(TDF_Decimal$Ni_asc),
  Ni_desc = as.character(TDF_Decimal$Ni_desc),
  Hi_asc  = as.character(round(TDF_Decimal$Hi_asc, 2)), 
  Hi_desc = as.character(round(TDF_Decimal$Hi_desc, 2))
)

# Calcular Totales 
totales_dec <- c("TOTAL", "-", "-", sum(TDF_Decimal$ni), round(sum(TDF_Decimal$hi), 2), "-", "-", "-", "-")
TDF_Dec_Final <- rbind(TDF_Dec_Final, totales_dec)

# Generar GT
TDF_Dec_Final %>%
  gt() %>%
  tab_header(title = md("**Tabla N°1 de Distribución de Frecuencias de Latitud (°) de las Plantas Solares**")) %>%
  cols_label(
    Li = "Lim. Inf", 
    Ls = "Lim. Sup", 
    MC = "Marca Clase", 
    ni = "Frec. Abs (ni)", 
    hi = "Frec. Rel (%)", 
    Ni_asc = "Ni (Asc)", 
    Ni_desc = "Ni (Desc)", 
    Hi_asc = "Hi Asc (%)", 
    Hi_desc = "Hi Desc (%)"
  ) %>%
  cols_align(align = "center", columns = everything()) %>%
  tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°1 de Distribución de Frecuencias de Latitud (°) de las Plantas Solares
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
-53.15 -48.16 -50.66 1 0.02 1 5075 0.02 100
-48.16 -43.17 -45.67 0 0 1 5074 0.02 99.98
-43.17 -38.18 -40.68 1 0.02 2 5074 0.04 99.98
-38.18 -33.19 -35.69 148 2.92 150 5073 2.96 99.96
-33.19 -28.2 -30.7 154 3.03 304 4925 5.99 97.04
-28.2 -23.21 -25.71 195 3.84 499 4771 9.83 94.01
-23.21 -18.22 -20.72 657 12.95 1156 4576 22.78 90.17
-18.22 -13.23 -15.73 1343 26.46 2499 3919 49.24 77.22
-13.23 -8.24 -10.74 913 17.99 3412 2576 67.23 50.76
-8.24 -3.25 -5.75 1135 22.36 4547 1663 89.6 32.77
-3.25 1.74 -0.76 139 2.74 4686 528 92.33 10.4
1.74 6.73 4.23 223 4.39 4909 389 96.73 7.67
6.73 11.71 9.22 166 3.27 5075 166 100 3.27
TOTAL - - 5075 100 - - - -

3.2 Tabla con Límites Enteros

# Crear Dataframe 
TDF_Int_Final <- data.frame(
  Li      = as.character(TDF_Enteros$Li), 
  Ls      = as.character(TDF_Enteros$Ls),
  MC      = as.character(TDF_Enteros$MC),
  ni      = as.character(TDF_Enteros$ni),
  hi      = as.character(round(TDF_Enteros$hi, 2)),
  Ni_asc  = as.character(TDF_Enteros$Ni_asc),
  Ni_desc = as.character(TDF_Enteros$Ni_desc),
  Hi_asc  = as.character(round(TDF_Enteros$Hi_asc, 2)),
  Hi_desc = as.character(round(TDF_Enteros$Hi_desc, 2))
)

# Calcular Totales 
totales_int <- c("TOTAL", "-", "-", sum(TDF_Enteros$ni), round(sum(TDF_Enteros$hi), 2), "-", "-", "-", "-")
TDF_Int_Final <- rbind(TDF_Int_Final, totales_int)

# Generar GT
TDF_Int_Final %>%
  gt() %>%
  tab_header(title = md("**Tabla N°2 de Distribución de Frecuencias de Latitud (°) de las Plantas Solares**")) %>%
  cols_label(
    Li = "Lim. Inf", 
    Ls = "Lim. Sup", 
    MC = "Marca Clase", 
    ni = "Frec. Abs (ni)", 
    hi = "Frec. Rel (%)", 
    Ni_asc = "Ni (Asc)",
    Ni_desc = "Ni (Desc)", 
    Hi_asc = "Hi Asc (%)", 
    Hi_desc = "Hi Desc (%)"
  ) %>%
  cols_align(align = "center", columns = everything()) %>%
  tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°2 de Distribución de Frecuencias de Latitud (°) de las Plantas Solares
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
-60 -50 -55 1 0.02 1 5075 0.02 100
-50 -40 -45 0 0 1 5074 0.02 99.98
-40 -30 -35 261 5.14 262 5074 5.16 99.98
-30 -20 -25 647 12.75 909 4813 17.91 94.84
-20 -10 -15 2024 39.88 2933 4166 57.79 82.09
-10 0 -5 1729 34.07 4662 2142 91.86 42.21
0 10 5 356 7.01 5018 413 98.88 8.14
10 20 15 57 1.12 5075 57 100 1.12
20 30 25 0 0 5075 0 100 0
TOTAL - - 5075 100 - - - -

4 Análisis Gráfico

4.1 Histogramas de Cantidad

par(mar = c(8, 5, 4, 2)) 
barplot(TDF_Enteros$ni, 
        names.arg = TDF_Enteros$MC,
        main = "",
        xlab = "", 
        ylab = "Cantidad",
        col = "#B0C4DE",
        space = 0,
        las = 2, 
        cex.names = 0.7)
mtext("Latitud (°)", side = 1, line = 4)

mtext("Gráfica N°1: Distribución de Cantidad de Plantas Solares por Latitud", 
      side = 3, 
      line = 2, 
      adj = 0.5,
      cex = 0.9, 
      font = 2)

par(mar = c(8, 5, 4, 2))
barplot(TDF_Enteros$ni, 
        main="",,
        xlab = "",
        ylab = "Cantidad",
        names.arg = TDF_Enteros$MC,
        col = "#B0C4DE",
        space = 0,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, sum(TDF_Enteros$ni))) 
mtext("Latitud (°)", side = 1, line = 4)

mtext("Gráfica N°2: Distribución de Cantidad de Plantas Solares por Latitud", 
      side = 3, 
      line = 2, 
      adj = 0.5,
      cex = 0.9,
      font = 2)

4.2 Histogramas Porcentuales

par(mar = c(8, 5, 5, 2))
bp3 <- barplot(TDF_Enteros$hi, 
        main = "", 
        xlab = "",
        ylab = "Porcentaje (%)",
        col = "#B0C4DE",
        space = 0,
        names.arg = TDF_Enteros$MC,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, max(TDF_Enteros$hi) * 1.15))
mtext("Latitud (°)", side = 1, line = 4)

mtext("Gráfica N°3: Distribución Porcentual de las Plantas Solares por Latitud", 
      side = 3, 
      line = 2, 
      adj = 0.5,
      cex = 0.9, 
      font = 2)

text(x = bp3, 
     y = TDF_Enteros$hi, 
     labels = paste0(round(TDF_Enteros$hi, 1), "%"), 
     pos = 3,   
     cex = 0.6,    
     col = "black")

par(mar = c(8, 5, 5, 2))
bp4 <- barplot(TDF_Enteros$hi, 
        main = "", 
        xlab = "",
        ylab = "Porcentaje (%)",
        col = "#B0C4DE",
        space = 0,
        names.arg = TDF_Enteros$MC,
        las = 2,
        cex.names = 0.7,
        ylim = c(0, 100))
mtext("Latitud (°)", side = 1, line = 4)

mtext("Gráfica N°4: Distribución Porcentual de las Plantas Solares por Latitud", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

text(x = bp4, 
     y = TDF_Enteros$hi, 
     labels = paste0(round(TDF_Enteros$hi, 1), "%"), 
     pos = 3, 
     cex = 0.6,
     col = "black")

4.3 Diagrama de Cajas (Boxplot)

par(mar = c(5, 5, 4, 2))
boxplot(Variable, 
        horizontal = TRUE,
        col = "#B0C4DE",
        xlab = "Latitud (°)",
        cex.main = 0.9,
        main = "Gráfica N°5: Distribución de la Latitud en las Plantas Solares")

4.4 Ojivas

par(mar = c(5, 5, 7, 10), xpd = TRUE)

# Coordenadas
x_asc <- TDF_Enteros$Ls  
x_desc <- TDF_Enteros$Li 
y_asc <- TDF_Enteros$Ni_asc
y_desc <- TDF_Enteros$Ni_desc

# 1. Dibujar la Ascendente 
plot(x_asc, y_asc,
     type = "b", 
     main = "",
     xlab = "Latitud (°)",
     ylab = "Frecuencia Acumulada",
     col = "black",
     pch = 19, 
     xlim = c(min(x_desc), max(x_asc)), 
     ylim = c(0, sum(TDF_Enteros$ni)))

# 2. Agregar la Descendente 
lines(x_desc, y_desc, col = "blue", type = "b", pch = 19)

grid()
mtext("Gráfica N°6: Ojivas Ascendentes y Descendentes de la\nDistribución de la Latitud en las Plantas Solares", 
      side = 3, 
      line = 3, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

legend("right", 
       legend = c("Ascendente", "Descendente"), 
       col = c("black", "blue"), 
       lty = 1, 
       pch = 1, 
       cex = 0.6, 
       inset = c(0.05, 0.05),
       bty = "n")

5 Indicadores Estadísticos

## INDICADORES DE TENDENCIA CENTRAL
# Media aritmética
media <- round(mean(Variable), 2)

# Mediana
mediana <- round(median(Variable), 2)

# Moda 
max_frecuencia <- max(TDF_Enteros$ni)
moda_vals <- TDF_Enteros$MC[TDF_Enteros$ni == max_frecuencia]
moda_txt <- paste(round(moda_vals, 2), collapse = ", ")

## INDICADORES DE DISPERSIÓN 
# Varianza
varianza <- var(Variable)

# Desviación Estándar
sd_val <- sd(Variable)

# Coeficiente de Variación
cv <- round((sd_val / abs(media)) * 100, 2)

## INDICADORES DE FORMA 
# Coeficiente de Asimetría
asimetria <- skewness(Variable, type = 2)

# Curtosis
curtosis <- kurtosis(Variable)

# Outliers
Q1 <- quantile(Variable, 0.25)
Q3 <- quantile(Variable, 0.75)
IQR_val <- Q3 - Q1
lim_inf <- Q1 - 1.5 * IQR_val
lim_sup <- Q3 + 1.5 * IQR_val

outliers_data <- Variable[Variable < lim_inf | Variable > lim_sup]
num_outliers <- length(outliers_data)

if(num_outliers > 0){
  rango_outliers <- paste0(num_outliers, " [", round(min(outliers_data), 2), "; ", round(max(outliers_data), 2), "]")
} else {
  rango_outliers <- "0 [Sin Outliers]"
}

tabla_indicadores <- data.frame(
  "Variable" = c("Latitud (°)"),
  "Rango_MinMax" = paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]"),
  "X" = c(media),
  "Me" = c(mediana),
  "Mo" = c(moda_txt),
  "V" = c(varianza),
  "Sd" = c(sd_val),
  "Cv" = c(cv),
  "As" = c(asimetria),
  "K" = c(curtosis),
  "Outliers" = rango_outliers)

# Generar Tabla GT
tabla_conclusiones_gt <- tabla_indicadores %>%
  gt() %>%
  tab_header(title = md("**Tabla N°3 de Conclusiones de Latitud de las Plantas Solares**")) %>%
  tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
  cols_label(
    Variable = "Variable",
    Rango_MinMax = "Rango",
    X = "Media (X)",
    Me = "Mediana (Me)",
    Mo = "Moda (Mo)",
    V = "Varianza (V)",
    Sd = "Desv. Est. (Sd)",
    Cv = "C.V. (%)",
    As = "Asimetría (As)",
    K = "Curtosis (K)",
    Outliers = "Outliers [Intervalo]"
  ) %>%
  tab_options(
    heading.title.font.size = px(16),
    column_labels.background.color = "#F0F0F0"
  )

tabla_conclusiones_gt
Tabla N°3 de Conclusiones de Latitud de las Plantas Solares
Variable Rango Media (X) Mediana (Me) Moda (Mo) Varianza (V) Desv. Est. (Sd) C.V. (%) Asimetría (As) Curtosis (K) Outliers [Intervalo]
Latitud (°) [-53.15; 11.71] -12.58 -12.81 -15 87.95034 9.378184 74.55 -0.03780367 0.3554595 99 [-53.15; 11.71]
Autor: Martin Sarmiento

6 Conclusiones

La variable “Latitud” fluctúa entre -53.15° y 11.71° y sus valores se encuentran alrededor de -12.81°, con una desviación estándar de 9.378184, siendo una variable heterogénea, cuyos valores se concentran en la parte media alta de la variable con la agregación de valores atípicos de 99 outliers; por todo lo anterior, el comportamiento de la variable es regular.