In this homework, you will apply logistic regression to a real-world dataset: the Pima Indians Diabetes Database. This dataset contains medical records from 768 women of Pima Indian heritage, aged 21 or older, and is used to predict the onset of diabetes (binary outcome: 0 = no diabetes, 1 = diabetes) based on physiological measurements.
The data is publicly available from the UCI Machine Learning Repository and can be imported directly.
Dataset URL: https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv
Columns (no header in the CSV, so we need to assign them manually):
Task Overview: You will load the data, build a logistic regression model to predict diabetes onset using a subset of predictors (Glucose, BMI, Age), interpret the model, evaluate it with a confusion matrix and metrics, and analyze the ROC curve and AUC.
Cleaning the dataset Don’t change the following code
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.6
## ✔ forcats 1.0.1 ✔ stringr 1.5.2
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.2.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
url <- "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
data <- read.csv(url, header = FALSE)
colnames(data) <- c("Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", "DiabetesPedigreeFunction", "Age", "Outcome")
data$Outcome <- as.factor(data$Outcome)
# Handle missing values (replace 0s with NA because 0 makes no sense here)
data$Glucose[data$Glucose == 0] <- NA
data$BloodPressure[data$BloodPressure == 0] <- NA
data$BMI[data$BMI == 0] <- NA
colSums(is.na(data))
## Pregnancies Glucose BloodPressure
## 0 5 35
## SkinThickness Insulin BMI
## 0 0 11
## DiabetesPedigreeFunction Age Outcome
## 0 0 0
Question 1: Create and Interpret a Logistic Regression Model - Fit a logistic regression model to predict Outcome using Glucose, BMI, and Age.
Provide the model summary.
Calculate and interpret R²: 1 - (model\(deviance / model\)null.deviance). What does it indicate about the model’s explanatory power?
## Enter your code here
logistic <- glm(Outcome ~ Glucose + BMI + Age, data=data, family="binomial")
summary(logistic)
##
## Call:
## glm(formula = Outcome ~ Glucose + BMI + Age, family = "binomial",
## data = data)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -9.032377 0.711037 -12.703 < 2e-16 ***
## Glucose 0.035548 0.003481 10.212 < 2e-16 ***
## BMI 0.089753 0.014377 6.243 4.3e-10 ***
## Age 0.028699 0.007809 3.675 0.000238 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 974.75 on 751 degrees of freedom
## Residual deviance: 724.96 on 748 degrees of freedom
## (16 observations deleted due to missingness)
## AIC: 732.96
##
## Number of Fisher Scoring iterations: 4
r_square <- 1 - (logistic$deviance/logistic$null.deviance)
r_square
## [1] 0.25626
What does the intercept represent (log-odds of diabetes when predictors are zero)?
The intercept is indicating the log-odds of having diabetes when every predictor are at 0.
For each predictor (Glucose, BMI, Age), does a one-unit increase raise or lower the odds of diabetes? Are they significant (p-value < 0.05)?
All predictors have their positive coefficients, if there’s a one unit increase in each one, it will raise the odds of diabetes. Since its below 0.05, the predictors are statistically significant.
Question 2: Confusion Matrix and Important Metric
Predict probabilities using the fitted model.
Create predicted classes with a 0.5 threshold (1 if probability > 0.5, else 0).
Build a confusion matrix (Predicted vs. Actual Outcome).
Calculate and report the metrics:
Accuracy: (TP + TN) / Total Sensitivity (Recall): TP / (TP + FN) Specificity: TN / (TN + FP) Precision: TP / (TP + FP)
Use the following starter code
# Keep only rows with no missing values in Glucose, BMI, or Age
data_subset <- data[complete.cases(data[, c("Glucose", "BMI", "Age")]), ]
#Create a numeric version of the outcome (0 = no diabetes, 1 = diabetes).This is required for calculating confusion matrices.
data_subset$Outcome_num <- ifelse(data_subset$Outcome == "1", 1, 0)
# Predicted probabilities
predicted.probs <- logistic$fitted.values
# Predicted classes
predicted.classes <- ifelse(predicted.probs > 0.5, 1, 0)
# Confusion matrix
confusion <- table(
Predicted = factor(predicted.classes, levels = c(0, 1)),
Actual = factor(data_subset$Outcome_num, levels = c(0, 1))
)
confusion
## Actual
## Predicted 0 1
## 0 429 114
## 1 59 150
#Extract Values:
TN <- 429
FP <- 59
FN <- 114
TP <- 150
#Metrics
accuracy <- (TP + TN) / (TP + TN + FP + FN)
sensitivity <- TP / (TP + FN)
specificity <- TN / (TN + FP)
precision <- TP / (TP + FP)
cat("Accuracy:", round(accuracy, 3), "\nSensitivity:", round(sensitivity, 3), "\nSpecificity:", round(specificity, 3), "\nPrecision:", round(precision, 3))
## Accuracy: 0.77
## Sensitivity: 0.568
## Specificity: 0.879
## Precision: 0.718
Interpret: How well does the model perform? Is it better at detecting diabetes (sensitivity) or non-diabetes (specificity)? Why might this matter for medical diagnosis?
The model has the accuracy of 77%, therefore its performing well, it is noticeably better in terms of identifying non-diabetic individuals. However, there’s risks for missing cases for patients who actually have diabetes.
Question 3: ROC Curve, AUC, and Interpretation
Plot the ROC curve, use the “data_subset” from Q2.
Calculate AUC.
#Enter your code here
library(pROC)
## Warning: package 'pROC' was built under R version 4.5.2
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
roc_obj <- roc(response = data_subset$Outcome,
predictor = logistic$fitted.values,
levels = c("0", "1"),
direction = "<")
auc_val <- auc(roc_obj); auc_val
## Area under the curve: 0.828
plot.roc(roc_obj, print.auc = TRUE, legacy.axes = TRUE,
xlab = "False Positive Rate (1 - Specificity)",
ylab = "True Positive Rate (Sensitivity)")
What does AUC indicate (0.5 = random, 1.0 = perfect)?
The AUC of 0.828 (82.8%) indicates that the model can distinguish well between diabetic and non-diabetic individuals.
For diabetes diagnosis, prioritize sensitivity (catching cases) or specificity (avoiding false positives)? Suggest a threshold and explain.
In terms of medical screenings, sensitivity must be prioritized because the case of missing actual diabetic patients can be risky as their treatment can be delayed. My threshold suggestion should be around 0.3 as it can increase sensitivity and lower the false negatives, from there it will allow the model to find out more individuals who may have diabetes, even if there may be some false positives.