library(readxl)
actitud_adultos <- read_excel("actitud_adultos.xlsx")
datos_raw <- actitud_adultos
head(datos_raw)
## # A tibble: 6 × 47
##     P01   P02   P03   P04   P05   P06   P07   P08   P09   P10   P11   P12   P13
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     4     5     2     3     3     2     3     2     2     4     3     4     5
## 2     3     3     4     3     4     1     3     1     1     3     3     3     3
## 3     3     4     5     4     4     2     3     4     3     3     4     4     3
## 4     3     4     4     4     5     1     4     2     3     4     3     4     4
## 5     3     4     3     3     2     2     3     3     2     3     3     4     4
## 6     2     4     2     3     4     2     3     2     2     3     3     4     4
## # ℹ 34 more variables: P14 <dbl>, P15 <dbl>, P16 <dbl>, P17 <dbl>, P18 <dbl>,
## #   P19 <dbl>, P20 <dbl>, P21 <dbl>, P22 <dbl>, P23 <dbl>, P24 <dbl>,
## #   P25 <dbl>, P26 <dbl>, P27 <dbl>, P28 <dbl>, P29 <dbl>, P30 <dbl>,
## #   P31 <dbl>, P32 <dbl>, P33 <dbl>, P34 <dbl>, P35 <dbl>, P36 <dbl>,
## #   P37 <dbl>, P38 <dbl>, P39 <dbl>, P40 <dbl>, P41 <dbl>, P42 <dbl>,
## #   P43 <dbl>, P44 <dbl>, P45 <dbl>, P46 <dbl>, P47 <dbl>
glimpse(datos_raw)
## Rows: 156
## Columns: 47
## $ P01 <dbl> 4, 3, 3, 3, 3, 2, 3, 3, 2, 4, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 2, …
## $ P02 <dbl> 5, 3, 4, 4, 4, 4, 3, 2, 4, 4, 5, 4, 4, 4, 4, 4, 5, 4, 5, 3, 4, 4, …
## $ P03 <dbl> 2, 4, 5, 4, 3, 2, 3, 2, 4, 4, 5, 4, 2, 3, 4, 4, 4, 3, 5, 4, 5, 4, …
## $ P04 <dbl> 3, 3, 4, 4, 3, 3, 4, 2, 4, 5, 4, 4, 3, 4, 3, 3, 5, 3, 4, 3, 5, 4, …
## $ P05 <dbl> 3, 4, 4, 5, 2, 4, 1, 2, 4, 5, 3, 3, 2, 2, 3, 4, 4, 2, 5, 4, 2, 4, …
## $ P06 <dbl> 2, 1, 2, 1, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 4, 3, 1, 2, …
## $ P07 <dbl> 3, 3, 3, 4, 3, 3, 1, 3, 3, 4, 5, 3, 2, 3, 3, 4, 3, 3, 5, 2, 4, 3, …
## $ P08 <dbl> 2, 1, 4, 2, 3, 2, 3, 3, 2, 4, 2, 3, 2, 4, 2, 4, 3, 4, 4, 3, 4, 3, …
## $ P09 <dbl> 2, 1, 3, 3, 2, 2, 1, 3, 2, 3, 4, 4, 3, 5, 3, 2, 2, 2, 5, 4, 1, 3, …
## $ P10 <dbl> 4, 3, 3, 4, 3, 3, 5, 3, 4, 5, 2, 4, 2, 4, 3, 4, 3, 3, 4, 3, 4, 4, …
## $ P11 <dbl> 3, 3, 4, 3, 3, 3, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, 3, 2, 5, 4, 3, 3, …
## $ P12 <dbl> 4, 3, 4, 4, 4, 4, 4, 3, 4, 5, 4, 3, 2, 4, 2, 4, 3, 5, 4, 3, 4, 4, …
## $ P13 <dbl> 5, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 2, 4, 2, 4, 5, 3, 4, 3, …
## $ P14 <dbl> 2, 3, 3, 3, 4, 2, 4, 4, 5, 2, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 3, …
## $ P15 <dbl> 2, 3, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 3, 2, 3, 3, 2, 2, 5, 4, 1, 3, …
## $ P16 <dbl> 3, 3, 4, 3, 3, 4, 3, 3, 4, 5, 4, 4, 3, 3, 3, 3, 1, 3, 4, 3, 3, 3, …
## $ P17 <dbl> 3, 3, 4, 2, 4, 2, 3, 3, 2, 5, 2, 2, 2, 2, 2, 3, 1, 3, 5, 3, 4, 4, …
## $ P18 <dbl> 4, 3, 5, 4, 4, 4, 3, 4, 5, 4, 4, 4, 2, 2, 4, 4, 5, 4, 4, 4, 4, 4, …
## $ P19 <dbl> 3, 3, 3, 2, 2, 4, 3, 3, 1, 3, 2, 2, 3, 4, 3, 3, 2, 2, 5, 4, 2, 2, …
## $ P20 <dbl> 3, 3, 4, 4, 2, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, …
## $ P21 <dbl> 3, 3, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 5, 3, 1, 1, …
## $ P22 <dbl> 3, 3, 3, 4, 3, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 1, 3, 5, 3, 3, 2, …
## $ P23 <dbl> 2, 3, 2, 1, 3, 2, 5, 3, 2, 4, 2, 2, 4, 2, 3, 3, 2, 1, 2, 3, 2, 2, …
## $ P24 <dbl> 4, 3, 4, 4, 3, 4, 3, 3, 4, 4, 4, 2, 3, 4, 4, 4, 4, 5, 5, 4, 4, 4, …
## $ P25 <dbl> 2, 3, 3, 2, 2, 1, 3, 3, 2, 4, 3, 4, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, …
## $ P26 <dbl> 3, 3, 3, 2, 3, 1, 2, 3, 1, 4, 2, 3, 3, 2, 4, 3, 2, 2, 2, 3, 2, 3, …
## $ P27 <dbl> 3, 3, 1, 2, 3, 1, 4, 3, 1, 2, 2, 2, 4, 3, 4, 3, 2, 3, 2, 2, 2, 2, …
## $ P28 <dbl> 4, 3, 3, 4, 4, 4, 2, 3, 4, 4, 4, 4, 2, 3, 2, 3, 3, 4, 5, 3, 4, 3, …
## $ P29 <dbl> 4, 3, 3, 4, 4, 4, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 5, 3, 3, 3, …
## $ P30 <dbl> 4, 3, 3, 4, 3, 3, 2, 3, 4, 5, 3, 3, 2, 4, 3, 3, 3, 4, 5, 2, 3, 3, …
## $ P31 <dbl> 2, 3, 2, 2, 2, 1, 3, 3, 1, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, …
## $ P32 <dbl> 2, 3, 2, 2, 2, 2, 3, 3, 1, 3, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, …
## $ P33 <dbl> 3, 3, 2, 2, 2, 2, 3, 3, 1, 2, 4, 3, 3, 1, 2, 3, 2, 2, 2, 4, 2, 3, …
## $ P34 <dbl> 4, 3, 4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 4, 5, 3, 4, 3, …
## $ P35 <dbl> 2, 3, 1, 2, 2, 2, 3, 3, 1, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, …
## $ P36 <dbl> 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 2, 4, 1, 3, 3, 4, 5, 3, 3, 4, …
## $ P37 <dbl> 3, 3, 3, 2, 2, 2, 3, 3, 1, 1, 2, 2, 3, 2, 4, 3, 2, 2, 2, 4, 2, 3, …
## $ P38 <dbl> 2, 3, 3, 2, 2, 2, 3, 3, 1, 2, 2, 2, 3, 1, 4, 3, 2, 2, 2, 3, 4, 3, …
## $ P39 <dbl> 4, 3, 4, 4, 4, 3, 3, 3, 3, 5, 4, 4, 2, 4, 2, 3, 3, 4, 5, 2, 4, 3, …
## $ P40 <dbl> 3, 3, 3, 4, 4, 2, 3, 4, 4, 4, 3, 4, 2, 4, 2, 3, 3, 3, 2, 3, 4, 3, …
## $ P41 <dbl> 3, 3, 2, 2, 3, 3, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 4, 3, …
## $ P42 <dbl> 3, 3, 1, 2, 2, 3, 3, 3, 1, 3, 3, 2, 3, 1, 4, 3, 3, 2, 2, 3, 2, 3, …
## $ P43 <dbl> 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 2, 4, 3, 3, 3, 3, 5, 3, 4, 3, …
## $ P44 <dbl> 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 2, 2, 4, 2, 3, 3, 4, 2, 3, 4, 3, …
## $ P45 <dbl> 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 2, 4, 2, 3, 3, 3, 5, 3, 4, 3, …
## $ P46 <dbl> 3, 3, 2, 2, 3, 1, 3, 3, 2, 3, 4, 2, 4, 3, 3, 3, 3, 3, 2, 3, 3, 2, …
## $ P47 <dbl> 3, 3, 4, 2, 3, 3, 3, 3, 2, 4, 2, 2, 4, 3, 3, 3, 1, 3, 5, 3, 4, 3, …
# Ítems AEE y negativos
aee_items <- sprintf("P%02d", 1:25)
aee_neg   <- sprintf("P%02d", c(1, 3, 6, 9, 11, 14, 15, 19, 21, 23, 25))

AEE <- datos_raw |>
  select(all_of(aee_items)) |>
  mutate(across(all_of(aee_neg), ~ 6 - .x))

# Ítems AEC y negativos
aec_items <- sprintf("P%02d", 26:45)
aec_neg   <- sprintf("P%02d", c(26, 27, 31, 32, 33, 35, 37, 38, 41, 42))

AEC <- datos_raw |>
  select(all_of(aec_items)) |>
  mutate(across(all_of(aec_neg), ~ 6 - .x))

# Remover NA
AEE_comp <- drop_na(AEE)
AEC_comp <- drop_na(AEC)
AEE_comp <- AEE_comp |>
  mutate(score_AEE = rowSums(across(all_of(aee_items))))

AEC_comp <- AEC_comp |>
  mutate(score_AEC = rowSums(across(all_of(aec_items))))

psych::describe(AEE_comp$score_AEE)
##    vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 145 90.99 11.03     92   90.76 11.86  66 117    51 0.12    -0.52 0.92
psych::describe(AEC_comp$score_AEC)
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 151 71.93 11.28     74   72.04 10.38  44  99    55 -0.11    -0.32 0.92
summary(AEE_comp$score_AEE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   66.00   83.00   92.00   90.99   98.00  117.00
summary(AEC_comp$score_AEC)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   44.00   63.00   74.00   71.93   79.00   99.00
alpha_AEC <- psych::alpha(AEC_comp[aec_items])

alpha_AEC$total$raw_alpha
## [1] 0.9349434
alpha_AEC$item.stats[, c("mean", "sd", "r.drop")]
##         mean        sd    r.drop
## P26 3.589404 0.9679637 0.5684867
## P27 3.827815 0.9644452 0.7350424
## P28 3.662252 0.7906741 0.6624560
## P29 3.304636 0.7830996 0.5967302
## P30 3.291391 0.7446646 0.5350629
## P31 3.874172 0.8817001 0.6177823
## P32 3.788079 0.8764266 0.6255387
## P33 3.774834 0.9533952 0.6988111
## P34 3.774834 0.6549523 0.6023526
## P35 3.880795 0.8863946 0.7291180
## P36 3.397351 0.7666331 0.5507445
## P37 3.801325 0.8642520 0.6748035
## P38 3.741722 0.9413719 0.6560418
## P39 3.450331 0.8221009 0.7395269
## P40 3.331126 0.7721991 0.6133230
## P41 3.675497 0.8683292 0.5786988
## P42 3.860927 0.9168041 0.6274897
## P43 3.099338 0.7188414 0.4877000
## P44 3.311258 0.8180092 0.5216836
## P45 3.490066 0.7820277 0.6815302
cor_AEC <- cor(AEC_comp[aec_items])
round(cor_AEC, 2)
##      P26  P27  P28  P29  P30  P31  P32  P33  P34  P35  P36  P37  P38  P39  P40
## P26 1.00 0.59 0.26 0.29 0.18 0.49 0.53 0.58 0.31 0.53 0.27 0.37 0.41 0.32 0.31
## P27 0.59 1.00 0.47 0.41 0.26 0.54 0.60 0.65 0.40 0.65 0.34 0.64 0.59 0.47 0.39
## P28 0.26 0.47 1.00 0.52 0.59 0.40 0.25 0.34 0.64 0.41 0.63 0.47 0.32 0.66 0.49
## P29 0.29 0.41 0.52 1.00 0.52 0.28 0.24 0.44 0.45 0.49 0.39 0.31 0.33 0.57 0.47
## P30 0.18 0.26 0.59 0.52 1.00 0.27 0.20 0.32 0.46 0.33 0.51 0.33 0.24 0.52 0.43
## P31 0.49 0.54 0.40 0.28 0.27 1.00 0.63 0.55 0.41 0.64 0.25 0.50 0.49 0.38 0.27
## P32 0.53 0.60 0.25 0.24 0.20 0.63 1.00 0.64 0.31 0.57 0.17 0.60 0.61 0.34 0.23
## P33 0.58 0.65 0.34 0.44 0.32 0.55 0.64 1.00 0.40 0.73 0.23 0.56 0.55 0.45 0.40
## P34 0.31 0.40 0.64 0.45 0.46 0.41 0.31 0.40 1.00 0.32 0.54 0.40 0.33 0.51 0.41
## P35 0.53 0.65 0.41 0.49 0.33 0.64 0.57 0.73 0.32 1.00 0.32 0.56 0.62 0.50 0.38
## P36 0.27 0.34 0.63 0.39 0.51 0.25 0.17 0.23 0.54 0.32 1.00 0.33 0.28 0.61 0.50
## P37 0.37 0.64 0.47 0.31 0.33 0.50 0.60 0.56 0.40 0.56 0.33 1.00 0.63 0.50 0.35
## P38 0.41 0.59 0.32 0.33 0.24 0.49 0.61 0.55 0.33 0.62 0.28 0.63 1.00 0.48 0.36
## P39 0.32 0.47 0.66 0.57 0.52 0.38 0.34 0.45 0.51 0.50 0.61 0.50 0.48 1.00 0.66
## P40 0.31 0.39 0.49 0.47 0.43 0.27 0.23 0.40 0.41 0.38 0.50 0.35 0.36 0.66 1.00
## P41 0.40 0.55 0.27 0.31 0.26 0.39 0.55 0.47 0.20 0.49 0.26 0.53 0.61 0.34 0.30
## P42 0.47 0.56 0.42 0.31 0.24 0.42 0.44 0.50 0.35 0.59 0.37 0.47 0.54 0.42 0.40
## P43 0.28 0.32 0.38 0.37 0.39 0.21 0.27 0.29 0.29 0.29 0.36 0.26 0.21 0.59 0.47
## P44 0.26 0.30 0.50 0.45 0.44 0.28 0.23 0.27 0.47 0.30 0.35 0.23 0.22 0.47 0.50
## P45 0.30 0.43 0.61 0.58 0.59 0.33 0.33 0.33 0.61 0.33 0.55 0.40 0.35 0.72 0.63
##      P41  P42  P43  P44  P45
## P26 0.40 0.47 0.28 0.26 0.30
## P27 0.55 0.56 0.32 0.30 0.43
## P28 0.27 0.42 0.38 0.50 0.61
## P29 0.31 0.31 0.37 0.45 0.58
## P30 0.26 0.24 0.39 0.44 0.59
## P31 0.39 0.42 0.21 0.28 0.33
## P32 0.55 0.44 0.27 0.23 0.33
## P33 0.47 0.50 0.29 0.27 0.33
## P34 0.20 0.35 0.29 0.47 0.61
## P35 0.49 0.59 0.29 0.30 0.33
## P36 0.26 0.37 0.36 0.35 0.55
## P37 0.53 0.47 0.26 0.23 0.40
## P38 0.61 0.54 0.21 0.22 0.35
## P39 0.34 0.42 0.59 0.47 0.72
## P40 0.30 0.40 0.47 0.50 0.63
## P41 1.00 0.51 0.22 0.26 0.30
## P42 0.51 1.00 0.19 0.32 0.35
## P43 0.22 0.19 1.00 0.47 0.54
## P44 0.26 0.32 0.47 1.00 0.58
## P45 0.30 0.35 0.54 0.58 1.00
ggplot(AEC_comp, aes(x = score_AEC)) +
  geom_histogram(binwidth = 2) +
  labs(title = "Distribución del puntaje AEC", x = "Score", y = "Frecuencia")

AEC_mat <- as.matrix(AEC_comp[aec_items])

N <- nrow(AEC_mat)
J <- ncol(AEC_mat)
K <- 5

data_jags <- list(
  N = N,
  J = J,
  K = K,
  y = AEC_mat
)

N; J; K
## [1] 151
## [1] 20
## [1] 5
modelo_grm <- "
model {

  for (i in 1:N) {
    theta[i] ~ dnorm(0,1)
  }

  for (j in 1:J) {

    log_a[j] ~ dnorm(0,0.5)
    a[j] <- exp(log_a[j])

    b_raw[j,1] ~ dnorm(0,0.01)
    b[j,1] <- b_raw[j,1]

    for (k in 2:(K-1)) {
      delta[j,k] ~ dnorm(0,1) T(0,)
      b[j,k] <- b[j,k-1] + delta[j,k]
    }
  }

  for (i in 1:N) {
    for (j in 1:J) {

      for (k in 1:(K-1)) {
        eta[i,j,k] <- a[j] * (theta[i] - b[j,k])
        q[i,j,k]   <- 1 / (1 + exp(-eta[i,j,k]))
      }

      p[i,j,1] <- 1 - q[i,j,1]
      for (k in 2:(K-1)) {
        p[i,j,k] <- max(1.0E-10, q[i,j,k-1] - q[i,j,k])
      }
      p[i,j,K] <- q[i,j,K-1]

      y[i,j] ~ dcat(p[i,j,1:K])
    }
  }
}
"

writeLines(modelo_grm, "grm_2pl_aec.jags")
set.seed(123)

mod <- jags.model(
  file     = "grm_2pl_aec.jags",
  data     = data_jags,
  n.chains = 3,
  n.adapt  = 3000
)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 3020
##    Unobserved stochastic nodes: 251
##    Total graph size: 99999
## 
## Initializing model
update(mod, 7000)

params <- c("a", "b", "theta")

mcmc_samples <- coda.samples(
  model = mod,
  variable.names = params,
  n.iter = 30000,
  thin = 10
)

summary(mcmc_samples)
## 
## Iterations = 10010:40000
## Thinning interval = 10 
## Number of chains = 3 
## Sample size per chain = 3000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## a[1]        1.92157 0.2768 0.002918       0.006135
## a[2]        3.03274 0.4320 0.004554       0.009283
## a[3]        2.46463 0.3395 0.003579       0.006564
## a[4]        2.10008 0.2888 0.003044       0.005989
## a[5]        1.84845 0.2530 0.002667       0.004635
## a[6]        2.35037 0.3511 0.003701       0.008421
## a[7]        2.44964 0.3463 0.003650       0.006828
## a[8]        3.00074 0.4200 0.004427       0.007986
## a[9]        2.22903 0.3145 0.003315       0.006577
## a[10]       3.36787 0.4764 0.005021       0.008598
## a[11]       1.80512 0.2617 0.002758       0.004882
## a[12]       2.74919 0.3839 0.004047       0.006835
## a[13]       2.45581 0.3440 0.003626       0.007519
## a[14]       2.97425 0.4092 0.004313       0.007612
## a[15]       2.14744 0.2918 0.003075       0.005613
## a[16]       2.02937 0.2866 0.003021       0.006778
## a[17]       2.47423 0.3454 0.003641       0.006309
## a[18]       1.53705 0.2196 0.002314       0.003797
## a[19]       1.82397 0.2521 0.002657       0.005217
## a[20]       2.51640 0.3469 0.003657       0.006961
## b[1,1]     -2.60355 0.4006 0.004223       0.011235
## b[2,1]     -2.48957 0.3827 0.004034       0.014892
## b[3,1]     -3.14452 0.5288 0.005575       0.022450
## b[4,1]     -2.44446 0.3625 0.003821       0.009243
## b[5,1]     -3.09205 0.4851 0.005113       0.015823
## b[6,1]     -2.81953 0.4914 0.005180       0.019222
## b[7,1]     -3.09900 0.5730 0.006040       0.027255
## b[8,1]     -2.88815 0.5196 0.005477       0.027567
## b[9,1]     -2.93365 0.4966 0.005234       0.016166
## b[10,1]    -2.95649 0.5830 0.006145       0.037214
## b[11,1]    -2.69622 0.4134 0.004358       0.010694
## b[12,1]    -2.98875 0.5308 0.005595       0.024763
## b[13,1]    -2.67113 0.4570 0.004817       0.017962
## b[14,1]    -2.47967 0.3662 0.003860       0.013257
## b[15,1]    -2.58784 0.3883 0.004093       0.010936
## b[16,1]    -2.93360 0.4937 0.005204       0.018838
## b[17,1]    -3.20031 0.5809 0.006123       0.028672
## b[18,1]    -2.78386 0.4168 0.004394       0.009239
## b[19,1]    -2.82743 0.4367 0.004603       0.012587
## b[20,1]    -2.45253 0.3639 0.003836       0.010705
## b[1,2]     -1.39396 0.2084 0.002197       0.005310
## b[2,2]     -1.25924 0.1607 0.001694       0.004494
## b[3,2]     -1.45123 0.1938 0.002043       0.004909
## b[4,2]     -1.37678 0.1953 0.002059       0.005139
## b[5,2]     -1.56256 0.2206 0.002325       0.005692
## b[6,2]     -1.84183 0.2540 0.002677       0.006949
## b[7,2]     -1.43453 0.1964 0.002070       0.005249
## b[8,2]     -1.19489 0.1562 0.001646       0.004290
## b[9,2]     -2.08481 0.2873 0.003029       0.007070
## b[10,2]    -1.42565 0.1736 0.001830       0.004904
## b[11,2]    -1.86144 0.2644 0.002787       0.006146
## b[12,2]    -1.36927 0.1809 0.001907       0.004735
## b[13,2]    -1.37349 0.1844 0.001944       0.004831
## b[14,2]    -1.19817 0.1550 0.001634       0.004139
## b[15,2]    -1.39980 0.1950 0.002056       0.004869
## b[16,2]    -1.54023 0.2185 0.002303       0.005882
## b[17,2]    -1.58401 0.2081 0.002194       0.005309
## b[18,2]    -1.47866 0.2281 0.002404       0.004801
## b[19,2]    -1.33699 0.2030 0.002139       0.005067
## b[20,2]    -1.50090 0.1928 0.002032       0.005145
## b[1,3]     -0.25855 0.1328 0.001400       0.002787
## b[2,3]     -0.46479 0.1180 0.001244       0.003128
## b[3,3]     -0.40126 0.1232 0.001299       0.002931
## b[4,3]      0.24709 0.1286 0.001355       0.002543
## b[5,3]      0.46115 0.1420 0.001497       0.002661
## b[6,3]     -0.45090 0.1280 0.001349       0.003142
## b[7,3]     -0.50610 0.1279 0.001349       0.003202
## b[8,3]     -0.46406 0.1157 0.001220       0.002981
## b[9,3]     -0.70706 0.1418 0.001494       0.003600
## b[10,3]    -0.48498 0.1138 0.001199       0.002965
## b[11,3]     0.26362 0.1367 0.001441       0.002580
## b[12,3]    -0.53206 0.1233 0.001300       0.003301
## b[13,3]    -0.45080 0.1262 0.001330       0.003032
## b[14,3]    -0.03192 0.1110 0.001170       0.002466
## b[15,3]     0.21842 0.1270 0.001339       0.002534
## b[16,3]    -0.42129 0.1334 0.001407       0.002877
## b[17,3]    -0.42039 0.1238 0.001305       0.002991
## b[18,3]     0.93336 0.1845 0.001945       0.003025
## b[19,3]     0.21761 0.1372 0.001447       0.002683
## b[20,3]    -0.07012 0.1175 0.001238       0.002590
## b[1,4]      1.10531 0.1906 0.002009       0.003428
## b[2,4]      0.60736 0.1262 0.001330       0.002509
## b[3,4]      1.35487 0.1897 0.002000       0.003216
## b[4,4]      2.15134 0.2860 0.003015       0.004412
## b[5,4]      2.10614 0.2915 0.003072       0.004437
## b[6,4]      0.63939 0.1419 0.001496       0.002607
## b[7,4]      0.85881 0.1510 0.001591       0.002652
## b[8,4]      0.66807 0.1312 0.001383       0.002508
## b[9,4]      1.62023 0.2204 0.002323       0.003647
## b[10,4]     0.57434 0.1202 0.001267       0.002433
## b[11,4]     1.98352 0.2794 0.002946       0.004362
## b[12,4]     0.84687 0.1432 0.001510       0.002501
## b[13,4]     0.80924 0.1487 0.001567       0.002695
## b[14,4]     1.51594 0.1916 0.002020       0.003278
## b[15,4]     2.02741 0.2703 0.002849       0.004275
## b[16,4]     1.20226 0.1918 0.002022       0.003172
## b[17,4]     0.58063 0.1353 0.001426       0.002444
## b[18,4]     2.87602 0.4346 0.004581       0.006163
## b[19,4]     2.07858 0.2953 0.003113       0.004822
## b[20,4]     1.67561 0.2190 0.002309       0.003396
## theta[1]   -0.19726 0.1998 0.002106       0.003098
## theta[2]   -0.82864 0.1864 0.001965       0.003381
## theta[3]   -0.03087 0.2100 0.002214       0.003024
## theta[4]    0.41493 0.1984 0.002091       0.002940
## theta[5]    0.13057 0.2022 0.002131       0.002949
## theta[6]    0.14690 0.2117 0.002231       0.003068
## theta[7]   -1.00650 0.1970 0.002076       0.003849
## theta[8]   -0.78615 0.1882 0.001984       0.003683
## theta[9]    0.93151 0.2305 0.002430       0.003170
## theta[10]   0.22390 0.2178 0.002296       0.002919
## theta[11]   0.08575 0.2033 0.002143       0.002966
## theta[12]  -0.04740 0.2043 0.002153       0.003262
## theta[13]  -1.35854 0.1987 0.002095       0.004725
## theta[14]   0.40016 0.2118 0.002232       0.002914
## theta[15]  -1.39700 0.2120 0.002235       0.004908
## theta[16]  -0.83537 0.1892 0.001994       0.003603
## theta[17]  -0.20274 0.1936 0.002041       0.003210
## theta[18]   0.02923 0.2007 0.002116       0.002912
## theta[19]   0.70723 0.2363 0.002491       0.003496
## theta[20]  -1.01778 0.1978 0.002085       0.003878
## theta[21]   0.09512 0.2031 0.002141       0.002922
## theta[22]  -0.72604 0.1895 0.001997       0.003689
## theta[23]   0.17037 0.1975 0.002082       0.002848
## theta[24]   0.13929 0.2013 0.002122       0.003015
## theta[25]   0.20636 0.2083 0.002195       0.003028
## theta[26]  -0.10786 0.2002 0.002110       0.003241
## theta[27]   2.11400 0.3290 0.003468       0.004042
## theta[28]   0.72357 0.2402 0.002532       0.003258
## theta[29]  -0.77194 0.2036 0.002146       0.003618
## theta[30]  -1.54610 0.2109 0.002223       0.005038
## theta[31]   0.22540 0.1995 0.002103       0.002993
## theta[32]   0.54992 0.2253 0.002375       0.003268
## theta[33]   0.87874 0.2163 0.002280       0.003003
## theta[34]   0.06289 0.1981 0.002088       0.002879
## theta[35]   0.53762 0.2146 0.002263       0.003171
## theta[36]  -0.99072 0.1967 0.002074       0.003793
## theta[37]  -1.09222 0.2511 0.002647       0.004642
## theta[38]   1.42869 0.2441 0.002573       0.003431
## theta[39]   0.07490 0.2016 0.002125       0.002945
## theta[40]  -0.06455 0.1986 0.002093       0.003052
## theta[41]  -0.28596 0.1990 0.002097       0.003231
## theta[42]   0.17461 0.2709 0.002856       0.003831
## theta[43]   0.26598 0.1948 0.002054       0.003111
## theta[44]  -1.55803 0.2065 0.002177       0.004965
## theta[45]  -0.61020 0.1974 0.002081       0.003544
## theta[46]  -1.33566 0.2131 0.002247       0.004468
## theta[47]  -0.46789 0.2342 0.002469       0.003753
## theta[48]   0.04321 0.2001 0.002109       0.002950
## theta[49]   0.68935 0.2134 0.002249       0.002963
## theta[50]  -0.61980 0.2270 0.002393       0.003696
## theta[51]   0.10500 0.2046 0.002156       0.002953
## theta[52]  -1.50066 0.2145 0.002261       0.004900
## theta[53]   2.24198 0.3355 0.003537       0.004338
## theta[54]   0.37884 0.2082 0.002195       0.002837
## theta[55]  -0.83045 0.2029 0.002139       0.003843
## theta[56]  -0.98922 0.2483 0.002617       0.004325
## theta[57]  -0.79297 0.1889 0.001991       0.003668
## theta[58]   1.46554 0.2627 0.002770       0.003509
## theta[59]   1.01670 0.2310 0.002435       0.003182
## theta[60]   2.36334 0.3606 0.003801       0.004624
## theta[61]   0.36482 0.1986 0.002093       0.002877
## theta[62]   0.62878 0.2090 0.002203       0.003040
## theta[63]   1.10761 0.2313 0.002438       0.003159
## theta[64]  -0.21554 0.1950 0.002055       0.003310
## theta[65]   0.23777 0.1966 0.002072       0.002869
## theta[66]   0.10497 0.2054 0.002165       0.002997
## theta[67]  -0.51415 0.2010 0.002119       0.003229
## theta[68]  -0.81638 0.2016 0.002125       0.003729
## theta[69]   0.28793 0.2051 0.002162       0.002900
## theta[70]   0.85935 0.2259 0.002381       0.003105
## theta[71]   0.26262 0.2009 0.002117       0.002908
## theta[72]  -1.48942 0.2476 0.002609       0.005278
## theta[73]  -1.09737 0.1994 0.002102       0.003992
## theta[74]  -0.13940 0.1984 0.002092       0.002967
## theta[75]  -0.34617 0.1981 0.002088       0.003330
## theta[76]   0.43872 0.2244 0.002365       0.003407
## theta[77]   0.23397 0.2094 0.002208       0.003106
## theta[78]  -0.41796 0.1953 0.002059       0.003077
## theta[79]  -0.64555 0.2156 0.002273       0.003766
## theta[80]  -0.71679 0.2053 0.002164       0.003540
## theta[81]  -0.98390 0.2007 0.002116       0.003941
## theta[82]   0.05112 0.1954 0.002059       0.003065
## theta[83]   0.54793 0.2242 0.002363       0.003414
## theta[84]  -0.89599 0.1907 0.002010       0.003785
## theta[85]  -0.85943 0.2485 0.002619       0.004191
## theta[86]  -0.61927 0.1967 0.002073       0.003671
## theta[87]   0.62731 0.2287 0.002411       0.003106
## theta[88]  -0.76932 0.2816 0.002969       0.004082
## theta[89]  -0.33276 0.2011 0.002120       0.003254
## theta[90]   0.38453 0.2009 0.002118       0.003035
## theta[91]  -0.06282 0.2536 0.002673       0.003607
## theta[92]  -1.76594 0.2140 0.002256       0.005718
## theta[93]   0.02610 0.2143 0.002259       0.002921
## theta[94]   0.43511 0.2059 0.002170       0.002938
## theta[95]   0.41849 0.2109 0.002223       0.003008
## theta[96]  -1.09777 0.2078 0.002191       0.004052
## theta[97]   0.13343 0.2023 0.002132       0.002856
## theta[98]   0.53757 0.2280 0.002404       0.003121
## theta[99]  -0.63697 0.2075 0.002187       0.003494
## theta[100]  0.90084 0.2172 0.002289       0.003046
## theta[101] -0.14899 0.1913 0.002016       0.003180
## theta[102]  0.01400 0.2219 0.002339       0.003257
## theta[103] -0.01375 0.2029 0.002139       0.003172
## theta[104]  1.50809 0.2519 0.002655       0.003507
## theta[105] -0.14464 0.2387 0.002516       0.003731
## theta[106]  0.35272 0.2004 0.002112       0.002794
## theta[107]  0.67329 0.2073 0.002186       0.003024
## theta[108]  1.18612 0.2314 0.002439       0.003250
## theta[109]  1.33071 0.2469 0.002602       0.003381
## theta[110]  2.76168 0.4224 0.004452       0.004634
## theta[111]  1.11719 0.2286 0.002410       0.003103
## theta[112]  0.24465 0.1960 0.002066       0.002879
## theta[113]  0.41253 0.1977 0.002084       0.002849
## theta[114]  0.43188 0.2068 0.002180       0.002855
## theta[115]  1.18534 0.2327 0.002453       0.003120
## theta[116] -0.39482 0.1978 0.002085       0.003138
## theta[117] -0.05803 0.2144 0.002260       0.003149
## theta[118] -0.06724 0.1948 0.002054       0.002973
## theta[119]  0.81732 0.2170 0.002287       0.003124
## theta[120]  0.31880 0.1996 0.002104       0.002931
## theta[121]  2.03235 0.3039 0.003204       0.004122
## theta[122] -0.35301 0.2019 0.002128       0.003396
## theta[123] -1.08740 0.2118 0.002233       0.004452
## theta[124] -1.01531 0.2050 0.002161       0.004028
## theta[125]  0.08491 0.2074 0.002186       0.003122
## theta[126]  0.47339 0.1990 0.002098       0.002848
## theta[127]  1.06209 0.2239 0.002360       0.003202
## theta[128] -0.15972 0.2081 0.002193       0.002977
## theta[129]  0.96362 0.2156 0.002272       0.003050
## theta[130] -1.08980 0.2081 0.002194       0.004152
## theta[131] -0.88441 0.1922 0.002026       0.003801
## theta[132]  0.24871 0.2088 0.002201       0.002938
## theta[133]  0.39190 0.2013 0.002122       0.002821
## theta[134]  0.32102 0.1973 0.002080       0.002735
## theta[135]  0.52570 0.2066 0.002178       0.002876
## theta[136] -0.55592 0.1975 0.002082       0.003711
## theta[137] -1.38067 0.2131 0.002246       0.004604
## theta[138]  0.12829 0.1956 0.002062       0.002885
## theta[139]  1.06972 0.2350 0.002477       0.003255
## theta[140] -0.38624 0.2001 0.002109       0.003148
## theta[141]  0.07869 0.1938 0.002043       0.002924
## theta[142]  0.22119 0.2052 0.002163       0.003023
## theta[143] -0.45785 0.1955 0.002060       0.003360
## theta[144] -0.31388 0.2052 0.002163       0.003308
## theta[145] -0.60121 0.1928 0.002032       0.003571
## theta[146] -0.72282 0.1889 0.001991       0.003650
## theta[147] -0.63843 0.2016 0.002125       0.003362
## theta[148] -0.25138 0.2085 0.002198       0.003101
## theta[149] -0.33864 0.1946 0.002051       0.003171
## theta[150] -0.25397 0.1922 0.002026       0.003078
## theta[151]  0.21301 0.1968 0.002075       0.002569
## 
## 2. Quantiles for each variable:
## 
##                  2.5%       25%      50%       75%      97.5%
## a[1]        1.4123798  1.727525  1.91151  2.104758  2.4950765
## a[2]        2.2619483  2.730613  3.00877  3.307385  3.9553618
## a[3]        1.8498208  2.226266  2.44947  2.679395  3.1768714
## a[4]        1.5706220  1.902418  2.08358  2.285589  2.7067206
## a[5]        1.3825782  1.674691  1.83305  2.009105  2.3787570
## a[6]        1.7246755  2.101946  2.33368  2.571967  3.1019800
## a[7]        1.8304471  2.208777  2.43269  2.670162  3.1840702
## a[8]        2.2352037  2.716330  2.97778  3.259334  3.9138177
## a[9]        1.6755747  2.011766  2.21217  2.423709  2.8967864
## a[10]       2.5047597  3.027865  3.34126  3.682236  4.3795179
## a[11]       1.3327015  1.621588  1.79139  1.972340  2.3618588
## a[12]       2.0587530  2.480668  2.72494  2.999373  3.5502130
## a[13]       1.8214203  2.218015  2.44267  2.673621  3.1867611
## a[14]       2.2480721  2.688562  2.94709  3.230727  3.8368368
## a[15]       1.6268813  1.944548  2.13255  2.329082  2.7770112
## a[16]       1.5109379  1.830940  2.01412  2.213070  2.6431156
## a[17]       1.8512870  2.231754  2.45820  2.696218  3.1932684
## a[18]       1.1492754  1.384155  1.52592  1.678487  1.9924335
## a[19]       1.3561758  1.646242  1.81090  1.985874  2.3421114
## a[20]       1.8866117  2.272706  2.49900  2.748760  3.2443340
## b[1,1]     -3.5068092 -2.841845 -2.56547 -2.321275 -1.9351517
## b[2,1]     -3.3475646 -2.713868 -2.45080 -2.215325 -1.8655414
## b[3,1]     -4.2918130 -3.475877 -3.09076 -2.762334 -2.2574203
## b[4,1]     -3.2339219 -2.661240 -2.41442 -2.190913 -1.8174259
## b[5,1]     -4.1440455 -3.393032 -3.04718 -2.748134 -2.2589710
## b[6,1]     -3.9665691 -3.108677 -2.76329 -2.475138 -2.0092598
## b[7,1]     -4.4592579 -3.419221 -3.02987 -2.696653 -2.1733036
## b[8,1]     -4.0351403 -3.206599 -2.83978 -2.514002 -2.0280395
## b[9,1]     -4.0480685 -3.245119 -2.88149 -2.579599 -2.1030329
## b[10,1]    -4.2324839 -3.309780 -2.88059 -2.527906 -2.0378384
## b[11,1]    -3.5743200 -2.960571 -2.65575 -2.397258 -1.9809005
## b[12,1]    -4.1997912 -3.297910 -2.93309 -2.609161 -2.0994958
## b[13,1]    -3.7139963 -2.925008 -2.62132 -2.347755 -1.9294974
## b[14,1]    -3.2909322 -2.703895 -2.45195 -2.222742 -1.8526833
## b[15,1]    -3.4439766 -2.819684 -2.55489 -2.313468 -1.9164649
## b[16,1]    -4.0197504 -3.227736 -2.87988 -2.578702 -2.1134852
## b[17,1]    -4.5115153 -3.554766 -3.13463 -2.782421 -2.2555785
## b[18,1]    -3.6839537 -3.049096 -2.75143 -2.489875 -2.0563041
## b[19,1]    -3.7783343 -3.093729 -2.78854 -2.518229 -2.0943170
## b[20,1]    -3.2596991 -2.667143 -2.42119 -2.197767 -1.8380079
## b[1,2]     -1.8459628 -1.526043 -1.38173 -1.249182 -1.0214369
## b[2,2]     -1.5884977 -1.364980 -1.25368 -1.149554 -0.9581866
## b[3,2]     -1.8723973 -1.574071 -1.44115 -1.318080 -1.0969463
## b[4,2]     -1.7870166 -1.499104 -1.36706 -1.242773 -1.0231020
## b[5,2]     -2.0306215 -1.700836 -1.55040 -1.408850 -1.1716461
## b[6,2]     -2.3974390 -1.999724 -1.82132 -1.665953 -1.3983695
## b[7,2]     -1.8514367 -1.558883 -1.42644 -1.296698 -1.0794260
## b[8,2]     -1.5186093 -1.295057 -1.18930 -1.088059 -0.9032869
## b[9,2]     -2.7136328 -2.260160 -2.06077 -1.883594 -1.5972302
## b[10,2]    -1.7820223 -1.536856 -1.41751 -1.305764 -1.1141678
## b[11,2]    -2.4270764 -2.031863 -1.84552 -1.674255 -1.3963406
## b[12,2]    -1.7477653 -1.484537 -1.35973 -1.243900 -1.0370533
## b[13,2]    -1.7562491 -1.492566 -1.36458 -1.242895 -1.0402366
## b[14,2]    -1.5082991 -1.301700 -1.19320 -1.092024 -0.9051765
## b[15,2]    -1.8069433 -1.523886 -1.39092 -1.265967 -1.0431571
## b[16,2]    -2.0058128 -1.678337 -1.52627 -1.388670 -1.1515133
## b[17,2]    -2.0274291 -1.717723 -1.57140 -1.438163 -1.2092574
## b[18,2]    -1.9579325 -1.626130 -1.46460 -1.319765 -1.0724012
## b[19,2]    -1.7613813 -1.462031 -1.32450 -1.198562 -0.9726903
## b[20,2]    -1.9109822 -1.621633 -1.48919 -1.369397 -1.1491495
## b[1,3]     -0.5280678 -0.346007 -0.25644 -0.167327 -0.0073339
## b[2,3]     -0.7015548 -0.542007 -0.46267 -0.385403 -0.2387607
## b[3,3]     -0.6470232 -0.483596 -0.40236 -0.316554 -0.1642221
## b[4,3]     -0.0045927  0.161249  0.24654  0.331962  0.5047976
## b[5,3]      0.1889514  0.365266  0.46027  0.553622  0.7477262
## b[6,3]     -0.7087170 -0.535541 -0.44654 -0.364037 -0.2098318
## b[7,3]     -0.7629883 -0.590548 -0.50460 -0.420108 -0.2584994
## b[8,3]     -0.6967009 -0.540739 -0.46256 -0.385642 -0.2385324
## b[9,3]     -0.9947614 -0.801760 -0.70242 -0.610968 -0.4397976
## b[10,3]    -0.7141490 -0.560474 -0.48355 -0.409087 -0.2646762
## b[11,3]     0.0004338  0.169970  0.26201  0.353881  0.5418059
## b[12,3]    -0.7794706 -0.614495 -0.53098 -0.449396 -0.2888060
## b[13,3]    -0.7090804 -0.531908 -0.44924 -0.366407 -0.2129666
## b[14,3]    -0.2485183 -0.105958 -0.03256  0.042405  0.1866396
## b[15,3]    -0.0246869  0.132356  0.21550  0.304559  0.4707807
## b[16,3]    -0.6906779 -0.509086 -0.42008 -0.329552 -0.1702260
## b[17,3]    -0.6716268 -0.500998 -0.41739 -0.338641 -0.1820340
## b[18,3]     0.5864534  0.807668  0.92677  1.050110  1.3157504
## b[19,3]    -0.0498279  0.124377  0.21519  0.308747  0.4928020
## b[20,3]    -0.3010703 -0.149911 -0.06976  0.009998  0.1609295
## b[1,4]      0.7705103  0.969272  1.09294  1.226598  1.5061681
## b[2,4]      0.3676418  0.520853  0.60606  0.688770  0.8624392
## b[3,4]      1.0075179  1.223854  1.34794  1.476090  1.7560579
## b[4,4]      1.6392285  1.952862  2.13488  2.336197  2.7514917
## b[5,4]      1.5872831  1.903635  2.08788  2.291449  2.7325943
## b[6,4]      0.3714713  0.541862  0.63477  0.730221  0.9297779
## b[7,4]      0.5881496  0.752054  0.85283  0.955995  1.1657614
## b[8,4]      0.4142298  0.580786  0.66545  0.754087  0.9374457
## b[9,4]      1.2238585  1.465520  1.60931  1.762722  2.0769536
## b[10,4]     0.3408942  0.495087  0.57174  0.651814  0.8179007
## b[11,4]     1.4781178  1.786072  1.96798  2.161720  2.5632692
## b[12,4]     0.5818462  0.748870  0.84194  0.941313  1.1341764
## b[13,4]     0.5311741  0.706662  0.80321  0.906259  1.1154334
## b[14,4]     1.1612030  1.384088  1.50937  1.639174  1.9139606
## b[15,4]     1.5417655  1.837310  2.01363  2.200057  2.6005304
## b[16,4]     0.8527914  1.068278  1.19085  1.324362  1.6129393
## b[17,4]     0.3213505  0.488471  0.57818  0.668678  0.8532886
## b[18,4]     2.1105011  2.572121  2.84484  3.149421  3.8137970
## b[19,4]     1.5421988  1.870261  2.06224  2.266470  2.7106450
## b[20,4]     1.2826764  1.523313  1.66320  1.815526  2.1436278
## theta[1]   -0.5890780 -0.329892 -0.20063 -0.066899  0.2017612
## theta[2]   -1.1985536 -0.955374 -0.82612 -0.703214 -0.4656571
## theta[3]   -0.4424722 -0.172953 -0.02927  0.110489  0.3871215
## theta[4]    0.0286568  0.275635  0.41443  0.548581  0.8053941
## theta[5]   -0.2684478 -0.002960  0.13074  0.263833  0.5253892
## theta[6]   -0.2647822  0.001957  0.14679  0.289092  0.5675770
## theta[7]   -1.3964069 -1.137389 -1.00636 -0.873361 -0.6246925
## theta[8]   -1.1524406 -0.911855 -0.78574 -0.662290 -0.4132757
## theta[9]    0.4889385  0.777257  0.92877  1.082738  1.3836261
## theta[10]  -0.2086671  0.076994  0.22349  0.370053  0.6479493
## theta[11]  -0.3199220 -0.051560  0.08650  0.222658  0.4831857
## theta[12]  -0.4461501 -0.182861 -0.04693  0.087839  0.3596423
## theta[13]  -1.7531896 -1.490747 -1.35662 -1.225019 -0.9750463
## theta[14]  -0.0119098  0.254972  0.39793  0.544038  0.8144044
## theta[15]  -1.8247521 -1.540532 -1.39623 -1.253756 -0.9854040
## theta[16]  -1.2044953 -0.961449 -0.83385 -0.707149 -0.4629725
## theta[17]  -0.5917898 -0.330576 -0.20178 -0.070524  0.1689150
## theta[18]  -0.3676395 -0.105439  0.02801  0.161942  0.4236255
## theta[19]   0.2511797  0.544935  0.70287  0.863533  1.1856860
## theta[20]  -1.4120157 -1.150518 -1.01749 -0.884370 -0.6308738
## theta[21]  -0.2971201 -0.042345  0.09541  0.227834  0.4949221
## theta[22]  -1.1046163 -0.854347 -0.72405 -0.596512 -0.3642308
## theta[23]  -0.2138441  0.033452  0.17142  0.303957  0.5537630
## theta[24]  -0.2505306  0.002763  0.13871  0.271077  0.5433020
## theta[25]  -0.1917838  0.066206  0.20276  0.345324  0.6294598
## theta[26]  -0.4922874 -0.245676 -0.10954  0.028803  0.2814123
## theta[27]   1.4987931  1.888255  2.10186  2.325485  2.7962267
## theta[28]   0.2656280  0.560487  0.71688  0.881383  1.2036752
## theta[29]  -1.1789181 -0.910613 -0.77192 -0.635259 -0.3718411
## theta[30]  -1.9716789 -1.684547 -1.54163 -1.403877 -1.1465073
## theta[31]  -0.1698367  0.091411  0.22359  0.360719  0.6148555
## theta[32]   0.1080348  0.399483  0.55114  0.698318  0.9927883
## theta[33]   0.4686392  0.729023  0.87585  1.023238  1.3049828
## theta[34]  -0.3265120 -0.066896  0.06036  0.192862  0.4586709
## theta[35]   0.1133039  0.391837  0.54001  0.678354  0.9631759
## theta[36]  -1.3810870 -1.120168 -0.99077 -0.855734 -0.6061775
## theta[37]  -1.5906086 -1.259733 -1.09022 -0.920345 -0.6097415
## theta[38]   0.9700099  1.263250  1.42043  1.585806  1.9353722
## theta[39]  -0.3234806 -0.058314  0.07677  0.207649  0.4730053
## theta[40]  -0.4529509 -0.201269 -0.06252  0.067065  0.3332204
## theta[41]  -0.6790089 -0.419074 -0.28396 -0.153286  0.1015218
## theta[42]  -0.3362956 -0.011489  0.16683  0.357566  0.7279885
## theta[43]  -0.1136183  0.135570  0.26668  0.396544  0.6465488
## theta[44]  -1.9771089 -1.696777 -1.55684 -1.420078 -1.1558097
## theta[45]  -1.0078484 -0.740242 -0.60834 -0.478412 -0.2319346
## theta[46]  -1.7609021 -1.475136 -1.33329 -1.193909 -0.9187569
## theta[47]  -0.9247243 -0.628220 -0.46527 -0.307104 -0.0167256
## theta[48]  -0.3455201 -0.093849  0.04222  0.176754  0.4370503
## theta[49]   0.2794055  0.541510  0.68937  0.833265  1.1028488
## theta[50]  -1.0804115 -0.774070 -0.61552 -0.465696 -0.1802284
## theta[51]  -0.2945073 -0.033441  0.10477  0.243272  0.5028290
## theta[52]  -1.9265535 -1.647476 -1.49916 -1.352841 -1.0858102
## theta[53]   1.6253318  2.010384  2.22626  2.454220  2.9623978
## theta[54]  -0.0323901  0.239358  0.38166  0.515534  0.7906051
## theta[55]  -1.2305520 -0.966135 -0.82919 -0.695682 -0.4335014
## theta[56]  -1.4702387 -1.154049 -0.99108 -0.819800 -0.5042699
## theta[57]  -1.1673848 -0.923225 -0.79160 -0.664018 -0.4237436
## theta[58]   0.9678050  1.281630  1.45867  1.640314  1.9930121
## theta[59]   0.5770371  0.861829  1.01641  1.171237  1.4830783
## theta[60]   1.7146575  2.109888  2.34625  2.591938  3.1354724
## theta[61]  -0.0264993  0.230650  0.36378  0.498770  0.7546243
## theta[62]   0.2161055  0.488581  0.62563  0.764966  1.0393989
## theta[63]   0.6664131  0.948846  1.10094  1.260711  1.5779680
## theta[64]  -0.6037079 -0.344375 -0.21455 -0.086293  0.1686392
## theta[65]  -0.1472347  0.105358  0.23576  0.369870  0.6260207
## theta[66]  -0.2914051 -0.033430  0.10328  0.241322  0.5145779
## theta[67]  -0.9070242 -0.651466 -0.51768 -0.376118 -0.1191829
## theta[68]  -1.2118196 -0.949225 -0.81546 -0.681268 -0.4173447
## theta[69]  -0.1194047  0.151204  0.28844  0.424241  0.6937267
## theta[70]   0.4332426  0.704523  0.85405  1.013777  1.3065703
## theta[71]  -0.1270246  0.125316  0.26002  0.396070  0.6598701
## theta[72]  -1.9733847 -1.653678 -1.48952 -1.320744 -1.0090133
## theta[73]  -1.5007503 -1.228851 -1.09200 -0.962917 -0.7087462
## theta[74]  -0.5279432 -0.274142 -0.13819 -0.006017  0.2478008
## theta[75]  -0.7340924 -0.480932 -0.34315 -0.212523  0.0344943
## theta[76]   0.0001164  0.287263  0.43720  0.590519  0.8837093
## theta[77]  -0.1773825  0.093196  0.23210  0.378202  0.6363645
## theta[78]  -0.8023255 -0.549763 -0.41944 -0.287970 -0.0371128
## theta[79]  -1.0774182 -0.790012 -0.64071 -0.501364 -0.2266917
## theta[80]  -1.1237745 -0.852729 -0.71496 -0.575791 -0.3195425
## theta[81]  -1.3751027 -1.119243 -0.98365 -0.847391 -0.5910412
## theta[82]  -0.3332492 -0.079133  0.05056  0.181167  0.4383199
## theta[83]   0.1104607  0.396665  0.54693  0.698106  0.9923403
## theta[84]  -1.2686677 -1.022614 -0.89477 -0.768995 -0.5230395
## theta[85]  -1.3511440 -1.026539 -0.85875 -0.688082 -0.3822081
## theta[86]  -1.0061178 -0.751174 -0.61832 -0.487160 -0.2343517
## theta[87]   0.1800947  0.476732  0.62840  0.779773  1.0800887
## theta[88]  -1.3002468 -0.961892 -0.77680 -0.580562 -0.2014956
## theta[89]  -0.7350627 -0.466796 -0.33182 -0.200229  0.0583892
## theta[90]  -0.0053424  0.248525  0.38332  0.520198  0.7833365
## theta[91]  -0.5539197 -0.234559 -0.06792  0.111979  0.4387790
## theta[92]  -2.1870269 -1.908252 -1.76493 -1.620737 -1.3503968
## theta[93]  -0.3937961 -0.115329  0.02209  0.168872  0.4569972
## theta[94]   0.0268225  0.295875  0.43505  0.576119  0.8375679
## theta[95]   0.0014277  0.277667  0.42051  0.559913  0.8328720
## theta[96]  -1.5088791 -1.239718 -1.09626 -0.954336 -0.7005171
## theta[97]  -0.2596233 -0.003111  0.12971  0.267431  0.5344933
## theta[98]   0.0921559  0.381555  0.53735  0.687745  0.9893122
## theta[99]  -1.0494616 -0.775070 -0.63559 -0.496130 -0.2355664
## theta[100]  0.4826262  0.753317  0.89668  1.045048  1.3400448
## theta[101] -0.5209780 -0.281413 -0.14932 -0.016905  0.2185573
## theta[102] -0.4181811 -0.135586  0.01724  0.163355  0.4488881
## theta[103] -0.3995226 -0.151176 -0.01746  0.120539  0.3960003
## theta[104]  1.0450338  1.335712  1.50266  1.674350  2.0157969
## theta[105] -0.6092207 -0.302836 -0.14553  0.014198  0.3256597
## theta[106] -0.0323714  0.216410  0.35058  0.489351  0.7473272
## theta[107]  0.2690222  0.532625  0.67331  0.810095  1.0817713
## theta[108]  0.7565675  1.029171  1.18090  1.335366  1.6564912
## theta[109]  0.8647356  1.162445  1.32582  1.489696  1.8401227
## theta[110]  2.0094600  2.467647  2.73463  3.028995  3.6679498
## theta[111]  0.6862401  0.962087  1.11068  1.265217  1.5726818
## theta[112] -0.1367985  0.112524  0.24280  0.373402  0.6407420
## theta[113]  0.0299407  0.277250  0.41243  0.542177  0.8026991
## theta[114]  0.0313054  0.290936  0.43156  0.573034  0.8379051
## theta[115]  0.7457030  1.027384  1.17760  1.337445  1.6513866
## theta[116] -0.7867967 -0.523956 -0.39334 -0.264813  0.0002296
## theta[117] -0.4822215 -0.199239 -0.05915  0.088278  0.3557629
## theta[118] -0.4534925 -0.196858 -0.06606  0.062687  0.3157891
## theta[119]  0.3981095  0.670869  0.81542  0.958221  1.2539886
## theta[120] -0.0693390  0.182501  0.31760  0.450378  0.7062116
## theta[121]  1.4679033  1.820906  2.02139  2.224841  2.6663962
## theta[122] -0.7528152 -0.485908 -0.35026 -0.217955  0.0389936
## theta[123] -1.5025370 -1.230377 -1.08177 -0.944118 -0.6745882
## theta[124] -1.4205757 -1.152509 -1.01722 -0.876224 -0.6099482
## theta[125] -0.3308240 -0.049382  0.08723  0.223925  0.4924390
## theta[126]  0.0845990  0.338631  0.47423  0.607756  0.8594435
## theta[127]  0.6313063  0.908682  1.05600  1.210360  1.5125730
## theta[128] -0.5672725 -0.299853 -0.16254 -0.020258  0.2507235
## theta[129]  0.5608515  0.815794  0.95664  1.108099  1.4018803
## theta[130] -1.5002447 -1.231907 -1.08959 -0.951219 -0.6796971
## theta[131] -1.2694793 -1.012820 -0.88261 -0.753861 -0.5092860
## theta[132] -0.1605504  0.109934  0.24768  0.388705  0.6583814
## theta[133] -0.0005497  0.254085  0.39374  0.521690  0.7927449
## theta[134] -0.0580917  0.186050  0.31912  0.452434  0.7131032
## theta[135]  0.1204235  0.384402  0.52521  0.663715  0.9342039
## theta[136] -0.9426592 -0.688738 -0.55524 -0.423256 -0.1650538
## theta[137] -1.8070011 -1.518098 -1.37834 -1.235351 -0.9666753
## theta[138] -0.2512072 -0.005110  0.12833  0.260845  0.5114613
## theta[139]  0.6169476  0.912797  1.06337  1.225905  1.5437747
## theta[140] -0.7785781 -0.519236 -0.38547 -0.255360  0.0114182
## theta[141] -0.3031487 -0.051908  0.07841  0.210866  0.4529100
## theta[142] -0.1742004  0.085938  0.22059  0.358438  0.6207114
## theta[143] -0.8382601 -0.589578 -0.45721 -0.330832 -0.0667517
## theta[144] -0.7137901 -0.450771 -0.31630 -0.172877  0.0875341
## theta[145] -0.9845570 -0.731485 -0.60323 -0.471550 -0.2199668
## theta[146] -1.0978833 -0.845992 -0.72238 -0.595806 -0.3530948
## theta[147] -1.0375618 -0.773556 -0.63536 -0.500995 -0.2507904
## theta[148] -0.6621210 -0.392694 -0.25085 -0.109219  0.1560749
## theta[149] -0.7175159 -0.471142 -0.33651 -0.206940  0.0412230
## theta[150] -0.6342940 -0.383773 -0.25231 -0.126805  0.1185560
## theta[151] -0.1736390  0.084348  0.21134  0.342781  0.6047469
gelman.diag(mcmc_samples, multivariate = FALSE)
## Potential scale reduction factors:
## 
##            Point est. Upper C.I.
## a[1]             1.00       1.01
## a[2]             1.00       1.01
## a[3]             1.00       1.00
## a[4]             1.00       1.01
## a[5]             1.00       1.01
## a[6]             1.01       1.02
## a[7]             1.00       1.01
## a[8]             1.01       1.02
## a[9]             1.00       1.01
## a[10]            1.00       1.00
## a[11]            1.00       1.01
## a[12]            1.00       1.01
## a[13]            1.00       1.00
## a[14]            1.00       1.01
## a[15]            1.00       1.00
## a[16]            1.00       1.01
## a[17]            1.01       1.02
## a[18]            1.00       1.01
## a[19]            1.00       1.01
## a[20]            1.00       1.00
## b[1,1]           1.01       1.04
## b[2,1]           1.00       1.02
## b[3,1]           1.00       1.00
## b[4,1]           1.01       1.03
## b[5,1]           1.00       1.01
## b[6,1]           1.01       1.02
## b[7,1]           1.02       1.06
## b[8,1]           1.04       1.08
## b[9,1]           1.01       1.02
## b[10,1]          1.03       1.07
## b[11,1]          1.00       1.01
## b[12,1]          1.02       1.08
## b[13,1]          1.00       1.01
## b[14,1]          1.00       1.01
## b[15,1]          1.00       1.01
## b[16,1]          1.00       1.01
## b[17,1]          1.01       1.04
## b[18,1]          1.01       1.02
## b[19,1]          1.02       1.07
## b[20,1]          1.00       1.01
## b[1,2]           1.01       1.03
## b[2,2]           1.01       1.02
## b[3,2]           1.00       1.01
## b[4,2]           1.01       1.02
## b[5,2]           1.00       1.01
## b[6,2]           1.01       1.02
## b[7,2]           1.00       1.02
## b[8,2]           1.01       1.02
## b[9,2]           1.00       1.00
## b[10,2]          1.00       1.01
## b[11,2]          1.00       1.02
## b[12,2]          1.01       1.03
## b[13,2]          1.00       1.01
## b[14,2]          1.00       1.01
## b[15,2]          1.00       1.01
## b[16,2]          1.01       1.02
## b[17,2]          1.01       1.02
## b[18,2]          1.01       1.02
## b[19,2]          1.01       1.03
## b[20,2]          1.00       1.01
## b[1,3]           1.00       1.01
## b[2,3]           1.00       1.01
## b[3,3]           1.00       1.01
## b[4,3]           1.00       1.00
## b[5,3]           1.00       1.00
## b[6,3]           1.00       1.01
## b[7,3]           1.00       1.01
## b[8,3]           1.00       1.01
## b[9,3]           1.00       1.01
## b[10,3]          1.00       1.01
## b[11,3]          1.00       1.00
## b[12,3]          1.00       1.01
## b[13,3]          1.00       1.01
## b[14,3]          1.00       1.01
## b[15,3]          1.00       1.01
## b[16,3]          1.00       1.01
## b[17,3]          1.00       1.01
## b[18,3]          1.00       1.00
## b[19,3]          1.00       1.01
## b[20,3]          1.00       1.01
## b[1,4]           1.00       1.00
## b[2,4]           1.00       1.01
## b[3,4]           1.00       1.01
## b[4,4]           1.00       1.00
## b[5,4]           1.00       1.00
## b[6,4]           1.00       1.01
## b[7,4]           1.00       1.01
## b[8,4]           1.00       1.02
## b[9,4]           1.00       1.01
## b[10,4]          1.00       1.00
## b[11,4]          1.00       1.00
## b[12,4]          1.00       1.00
## b[13,4]          1.00       1.01
## b[14,4]          1.00       1.01
## b[15,4]          1.00       1.00
## b[16,4]          1.00       1.00
## b[17,4]          1.00       1.01
## b[18,4]          1.00       1.00
## b[19,4]          1.00       1.01
## b[20,4]          1.00       1.00
## theta[1]         1.00       1.00
## theta[2]         1.00       1.01
## theta[3]         1.00       1.01
## theta[4]         1.00       1.01
## theta[5]         1.00       1.00
## theta[6]         1.00       1.00
## theta[7]         1.00       1.01
## theta[8]         1.00       1.00
## theta[9]         1.00       1.00
## theta[10]        1.00       1.01
## theta[11]        1.00       1.00
## theta[12]        1.00       1.00
## theta[13]        1.00       1.02
## theta[14]        1.00       1.00
## theta[15]        1.00       1.01
## theta[16]        1.00       1.01
## theta[17]        1.00       1.00
## theta[18]        1.00       1.00
## theta[19]        1.00       1.01
## theta[20]        1.00       1.01
## theta[21]        1.00       1.00
## theta[22]        1.00       1.00
## theta[23]        1.00       1.00
## theta[24]        1.00       1.01
## theta[25]        1.00       1.00
## theta[26]        1.00       1.00
## theta[27]        1.00       1.00
## theta[28]        1.00       1.00
## theta[29]        1.00       1.01
## theta[30]        1.00       1.01
## theta[31]        1.00       1.00
## theta[32]        1.00       1.00
## theta[33]        1.00       1.00
## theta[34]        1.00       1.00
## theta[35]        1.00       1.00
## theta[36]        1.00       1.01
## theta[37]        1.00       1.01
## theta[38]        1.00       1.00
## theta[39]        1.00       1.00
## theta[40]        1.00       1.00
## theta[41]        1.00       1.00
## theta[42]        1.00       1.00
## theta[43]        1.00       1.00
## theta[44]        1.00       1.01
## theta[45]        1.00       1.02
## theta[46]        1.00       1.00
## theta[47]        1.00       1.01
## theta[48]        1.00       1.00
## theta[49]        1.00       1.00
## theta[50]        1.00       1.00
## theta[51]        1.00       1.00
## theta[52]        1.00       1.01
## theta[53]        1.00       1.00
## theta[54]        1.00       1.00
## theta[55]        1.00       1.01
## theta[56]        1.00       1.01
## theta[57]        1.00       1.00
## theta[58]        1.00       1.00
## theta[59]        1.00       1.00
## theta[60]        1.00       1.01
## theta[61]        1.00       1.00
## theta[62]        1.00       1.00
## theta[63]        1.00       1.00
## theta[64]        1.00       1.00
## theta[65]        1.00       1.00
## theta[66]        1.00       1.01
## theta[67]        1.00       1.00
## theta[68]        1.00       1.01
## theta[69]        1.00       1.00
## theta[70]        1.00       1.00
## theta[71]        1.00       1.01
## theta[72]        1.01       1.02
## theta[73]        1.00       1.01
## theta[74]        1.00       1.00
## theta[75]        1.00       1.00
## theta[76]        1.00       1.00
## theta[77]        1.00       1.00
## theta[78]        1.00       1.01
## theta[79]        1.00       1.02
## theta[80]        1.00       1.01
## theta[81]        1.00       1.01
## theta[82]        1.00       1.01
## theta[83]        1.00       1.00
## theta[84]        1.00       1.00
## theta[85]        1.00       1.00
## theta[86]        1.00       1.01
## theta[87]        1.00       1.00
## theta[88]        1.00       1.00
## theta[89]        1.00       1.01
## theta[90]        1.00       1.01
## theta[91]        1.00       1.01
## theta[92]        1.00       1.02
## theta[93]        1.00       1.00
## theta[94]        1.00       1.00
## theta[95]        1.00       1.00
## theta[96]        1.00       1.01
## theta[97]        1.00       1.00
## theta[98]        1.00       1.00
## theta[99]        1.00       1.01
## theta[100]       1.00       1.00
## theta[101]       1.00       1.00
## theta[102]       1.00       1.01
## theta[103]       1.00       1.01
## theta[104]       1.00       1.00
## theta[105]       1.00       1.01
## theta[106]       1.00       1.00
## theta[107]       1.00       1.00
## theta[108]       1.00       1.00
## theta[109]       1.00       1.00
## theta[110]       1.00       1.00
## theta[111]       1.00       1.00
## theta[112]       1.00       1.00
## theta[113]       1.00       1.01
## theta[114]       1.00       1.00
## theta[115]       1.00       1.00
## theta[116]       1.00       1.00
## theta[117]       1.00       1.00
## theta[118]       1.00       1.00
## theta[119]       1.00       1.00
## theta[120]       1.00       1.00
## theta[121]       1.00       1.00
## theta[122]       1.00       1.00
## theta[123]       1.00       1.01
## theta[124]       1.00       1.01
## theta[125]       1.00       1.00
## theta[126]       1.00       1.01
## theta[127]       1.00       1.00
## theta[128]       1.00       1.00
## theta[129]       1.00       1.00
## theta[130]       1.00       1.01
## theta[131]       1.00       1.01
## theta[132]       1.00       1.01
## theta[133]       1.00       1.01
## theta[134]       1.00       1.00
## theta[135]       1.00       1.00
## theta[136]       1.00       1.01
## theta[137]       1.00       1.00
## theta[138]       1.00       1.00
## theta[139]       1.00       1.00
## theta[140]       1.00       1.01
## theta[141]       1.00       1.00
## theta[142]       1.00       1.00
## theta[143]       1.00       1.00
## theta[144]       1.00       1.00
## theta[145]       1.00       1.00
## theta[146]       1.00       1.01
## theta[147]       1.00       1.00
## theta[148]       1.00       1.00
## theta[149]       1.00       1.01
## theta[150]       1.00       1.01
## theta[151]       1.00       1.01
s_mat <- as.matrix(mcmc_samples)

# Extraer a_j
a_cols <- grep("^a\\[", colnames(s_mat))
post_a <- s_mat[, a_cols]

a_summary <- t(apply(post_a, 2, function(x)
  c(mean = mean(x), sd = sd(x),
    q025 = quantile(x, .025), q975 = quantile(x, .975))
))

rownames(a_summary) <- aec_items

# Extraer b_jk
b_cols <- grep("^b\\[", colnames(s_mat))
post_b <- s_mat[, b_cols]

b_summary <- t(apply(post_b, 2, function(x)
  c(mean = mean(x), sd = sd(x),
    q025 = quantile(x, .025), q975 = quantile(x, .975))
))
item_stats <- alpha_AEC$item.stats[, c("mean","sd","r.drop")]

# Matriz de umbrales reorganizada
J <- length(aec_items)
K <- 5

b_means <- matrix(NA, nrow = J, ncol = K-1)
rownames(b_means) <- aec_items
colnames(b_means) <- paste0("b", 1:(K-1))

for (j in 1:J) {
  for (k in 1:(K-1)) {
    name_jk <- paste0("b[", j, ",", k, "]")
    b_means[j,k] <- mean(s_mat[, name_jk])
  }
}

a_means <- a_summary[, "mean"]

tabla_final <- cbind(
  item_stats,
  b_means,
  a = a_means
)

tabla_final
##         mean        sd    r.drop        b1        b2          b3        b4
## P26 3.589404 0.9679637 0.5684867 -2.603553 -1.393960 -0.25854788 1.1053071
## P27 3.827815 0.9644452 0.7350424 -2.489567 -1.259236 -0.46478646 0.6073623
## P28 3.662252 0.7906741 0.6624560 -3.144520 -1.451230 -0.40125948 1.3548668
## P29 3.304636 0.7830996 0.5967302 -2.444456 -1.376779  0.24709495 2.1513448
## P30 3.291391 0.7446646 0.5350629 -3.092049 -1.562561  0.46114604 2.1061445
## P31 3.874172 0.8817001 0.6177823 -2.819528 -1.841832 -0.45089614 0.6393898
## P32 3.788079 0.8764266 0.6255387 -3.099004 -1.434530 -0.50609662 0.8588112
## P33 3.774834 0.9533952 0.6988111 -2.888154 -1.194894 -0.46405716 0.6680677
## P34 3.774834 0.6549523 0.6023526 -2.933651 -2.084810 -0.70705530 1.6202343
## P35 3.880795 0.8863946 0.7291180 -2.956494 -1.425650 -0.48497502 0.5743391
## P36 3.397351 0.7666331 0.5507445 -2.696216 -1.861445  0.26361688 1.9835231
## P37 3.801325 0.8642520 0.6748035 -2.988747 -1.369268 -0.53206442 0.8468713
## P38 3.741722 0.9413719 0.6560418 -2.671131 -1.373495 -0.45080238 0.8092431
## P39 3.450331 0.8221009 0.7395269 -2.479669 -1.198165 -0.03192079 1.5159385
## P40 3.331126 0.7721991 0.6133230 -2.587842 -1.399796  0.21842016 2.0274099
## P41 3.675497 0.8683292 0.5786988 -2.933596 -1.540234 -0.42129318 1.2022557
## P42 3.860927 0.9168041 0.6274897 -3.200306 -1.584011 -0.42039476 0.5806310
## P43 3.099338 0.7188414 0.4877000 -2.783864 -1.478662  0.93335633 2.8760236
## P44 3.311258 0.8180092 0.5216836 -2.827434 -1.336986  0.21761130 2.0785824
## P45 3.490066 0.7820277 0.6815302 -2.452532 -1.500902 -0.07012094 1.6756064
##            a
## P26 1.921568
## P27 3.032739
## P28 2.464626
## P29 2.100083
## P30 1.848447
## P31 2.350373
## P32 2.449644
## P33 3.000743
## P34 2.229031
## P35 3.367869
## P36 1.805115
## P37 2.749188
## P38 2.455811
## P39 2.974253
## P40 2.147437
## P41 2.029367
## P42 2.474233
## P43 1.537054
## P44 1.823965
## P45 2.516398