load libraries————————————
1. Load and Subset Normal CD4 T Cells
All_samples_Merged <- readRDS("../All_samples_Merged_Benchmarked_05-11-2025.rds")
Idents(All_samples_Merged) <- "seurat_clusters"
table(All_samples_Merged@active.ident)
0 1 2 3 4 5 6 7 8 9 10 11 12 13
6789 5275 4663 4661 4086 3634 3536 3409 3338 3273 3212 1675 1063 691
2. Create the annotation summary table
library(dplyr)
library(tidyr)
library(purrr)
methods <- c(
"predicted.id", #scPred
"predicted.celltype.l2", # Azimuth (l2 prediction)
"singler.immune", # Example of other annotation methods like SingleR
"Prediction", #STCAT
"scATOMIC_annotation" #scATOMIC
)
annotation_summary <- map_dfr(methods, function(m) {
df <- All_samples_Merged@meta.data
df %>%
group_by(seurat_clusters, label = .data[[m]]) %>%
summarise(n = n(), .groups = "drop") %>%
group_by(seurat_clusters) %>%
slice_max(n, n = 1, with_ties = FALSE) %>%
mutate(method = m)
})
# Set the order of methods
annotation_summary$method <- factor(annotation_summary$method, levels = methods)
head(annotation_summary)
# Should show columns: seurat_clusters | label | n | method
LS0tCnRpdGxlOiAiQmVuY2htYXJrIGNlbGwgUHJlZGljdGlvbiBNZXRob2RzLTUtMDEyLTIwMjUgb24gQ2x1c3RlcnMiCmF1dGhvcjogTmFzaXIgTWFobW9vZCBBYmJhc2kKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgI3JtZGZvcm1hdHM6OnJlYWR0aGVkb3duCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCi0tLQoKCiMjIGxvYWQgbGlicmFyaWVzLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQoKICAgIGxpYnJhcnkoU2V1cmF0KQogICAgbGlicmFyeShkcGx5cikKICAgIGxpYnJhcnkocGF0Y2h3b3JrKQogICAgbGlicmFyeShnZ3Bsb3QyKQogICAgbGlicmFyeShwaGVhdG1hcCkKICAgIGxpYnJhcnkoc2NQcmVkKQogICAgbGlicmFyeShjZWxsZGV4KQogICAgbGlicmFyeShTaW5nbGVSKQogICAgbGlicmFyeShyZW1vdGVzKQogICAgbGlicmFyeShwcmVzdG8pCiAgICBsaWJyYXJ5KFNldXJhdERpc2spCiAgICBsaWJyYXJ5KFNldXJhdERhdGEpCiAgICBsaWJyYXJ5KEF6aW11dGgpCgpgYGAKCgoKCiMgMS4gTG9hZCBhbmQgU3Vic2V0IE5vcm1hbCBDRDQgVCBDZWxscwpgYGB7ciBsb2FkU2V1cmF0fQoKQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIHJlYWRSRFMoIi4uL0FsbF9zYW1wbGVzX01lcmdlZF9CZW5jaG1hcmtlZF8wNS0xMS0yMDI1LnJkcyIpCgpJZGVudHMoQWxsX3NhbXBsZXNfTWVyZ2VkKSA8LSAic2V1cmF0X2NsdXN0ZXJzIgp0YWJsZShBbGxfc2FtcGxlc19NZXJnZWRAYWN0aXZlLmlkZW50KQoKYGBgCgoKCiMgMi4gQ3JlYXRlIHRoZSBhbm5vdGF0aW9uIHN1bW1hcnkgdGFibGUKYGBge3J9CgpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KHRpZHlyKQpsaWJyYXJ5KHB1cnJyKQoKbWV0aG9kcyA8LSBjKAogICJwcmVkaWN0ZWQuaWQiLCAgICAgICAgICAgICAjc2NQcmVkCiAgInByZWRpY3RlZC5jZWxsdHlwZS5sMiIsICAgICMgQXppbXV0aCAobDIgcHJlZGljdGlvbikKICAic2luZ2xlci5pbW11bmUiLCAgICAgICAgICAgIyBFeGFtcGxlIG9mIG90aGVyIGFubm90YXRpb24gbWV0aG9kcyBsaWtlIFNpbmdsZVIKICAiUHJlZGljdGlvbiIsICAgICAgICAgICAgICAgI1NUQ0FUCiAgInNjQVRPTUlDX2Fubm90YXRpb24iICAgICAgI3NjQVRPTUlDCiAgKQoKYW5ub3RhdGlvbl9zdW1tYXJ5IDwtIG1hcF9kZnIobWV0aG9kcywgZnVuY3Rpb24obSkgewogIGRmIDwtIEFsbF9zYW1wbGVzX01lcmdlZEBtZXRhLmRhdGEKICBkZiAlPiUKICAgIGdyb3VwX2J5KHNldXJhdF9jbHVzdGVycywgbGFiZWwgPSAuZGF0YVtbbV1dKSAlPiUKICAgIHN1bW1hcmlzZShuID0gbigpLCAuZ3JvdXBzID0gImRyb3AiKSAlPiUKICAgIGdyb3VwX2J5KHNldXJhdF9jbHVzdGVycykgJT4lCiAgICBzbGljZV9tYXgobiwgbiA9IDEsIHdpdGhfdGllcyA9IEZBTFNFKSAlPiUKICAgIG11dGF0ZShtZXRob2QgPSBtKQp9KQoKCgojIFNldCB0aGUgb3JkZXIgb2YgbWV0aG9kcwphbm5vdGF0aW9uX3N1bW1hcnkkbWV0aG9kIDwtIGZhY3Rvcihhbm5vdGF0aW9uX3N1bW1hcnkkbWV0aG9kLCBsZXZlbHMgPSBtZXRob2RzKQoKaGVhZChhbm5vdGF0aW9uX3N1bW1hcnkpCiMgU2hvdWxkIHNob3cgY29sdW1uczogc2V1cmF0X2NsdXN0ZXJzIHwgbGFiZWwgfCBuIHwgbWV0aG9kCmBgYAoKCiMgMy4gQ29udmVydCB0byBtYXRyaXggZm9ybWF0IGZvciBwbG90dGluZwpgYGB7cn0KbGlicmFyeSh0aWR5cikKbGlicmFyeShnZ3Bsb3QyKQoKYW5ub3RhdGlvbl9tYXRyaXggPC0gYW5ub3RhdGlvbl9zdW1tYXJ5ICU+JQogIHNlbGVjdChtZXRob2QsIHNldXJhdF9jbHVzdGVycywgbGFiZWwpICU+JQogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBzZXVyYXRfY2x1c3RlcnMsIHZhbHVlc19mcm9tID0gbGFiZWwpCgojIFJlbmFtZSBtZXRob2RzIGZvciB0aGUgcGxvdAphbm5vdGF0aW9uX3N1bW1hcnkgPC0gYW5ub3RhdGlvbl9zdW1tYXJ5ICU+JQogIG11dGF0ZShtZXRob2QgPSByZWNvZGUobWV0aG9kLAogICAgICAgICAgICAgICAgICAgICAgICAgInByZWRpY3RlZC5pZCIgPSAic2NQcmVkIiwKICAgICAgICAgICAgICAgICAgICAgICAgICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiID0gIkF6aW11dGgubDIiLAogICAgICAgICAgICAgICAgICAgICAgICAgInNpbmdsZXIuaW1tdW5lIiA9ICJTaW5nbGVSKEltbXVuZSkiLAogICAgICAgICAgICAgICAgICAgICAgICAgIlByZWRpY3Rpb24iID0gIlNUQ0FUIiwKICAgICAgICAgICAgICAgICAgICAgICAgICJzY0FUT01JQ19hbm5vdGF0aW9uIiA9ICJzY0FUT01JQyIpKQoKIyBTYXZlIHRoZSBhbm5vdGF0aW9uIHN1bW1hcnkgdGFibGUgdG8gYSBDU1YgZmlsZSBmb3IgZnVydGhlciBhbmFseXNpcwoKd3JpdGUuY3N2KGFubm90YXRpb25fc3VtbWFyeSwgImFubm90YXRpb25fc3VtbWFyeV90YWJsZS5jc3YiLCByb3cubmFtZXMgPSBGQUxTRSkKCgpgYGAKCgoK