Persamaan Model

y_t=1.3177+\left(\frac{-0.4379 B+0.5978 B^2}{1-1.2071 B+0.7067 B^2}\right) x_{t-2}+\frac{1}{1-0.4706 B+0.3266 B^2} a_t

Misalkan

mu      =  1.3177
omega_1 = -0.4379
omega_2 =  0.5978
delta_1 =  1.2071
delta_2 = -0.7067
phi_1   =  0.4706
phi_2   = -0.3266

Maka, persamaan y_t menjadi

y_t= \mu + \left(\frac{\omega_1 B+ \omega_2 B^2}{1-\delta_1 B - \delta_2 B^2}\right) x_{t-2}+\frac{1}{1- \phi_1 B - \phi_2 B^2} a_t

Misalkan \dot{y}_t = y_t - \mu, maka diperoleh

\dot{y}_t = \left(\frac{\omega_1 B+ \omega_2 B^2}{1-\delta_1 B - \delta_2 B^2}\right) x_{t-2}+\frac{1}{1- \phi_1 B - \phi_2 B^2} a_t

Samakan penyebut di ruas kanan, diperoleh

\dot{y}_t = \left( \frac{(1- \phi_1 B - \phi_2 B^2) (\omega_1 B+ \omega_2 B^2) x_{t-2} + (1-\delta_1 B - \delta_2 B^2) a_t }{(1-\delta_1 B - \delta_2 B^2) (1- \phi_1 B - \phi_2 B^2)} \right)

Penyebut di ruas kanan dipindahkan ke ruas kiri, diperoleh

\dot{y}_t (1-\delta_1 B - \delta_2 B^2) (1- \phi_1 B - \phi_2 B^2) = (1- \phi_1 B - \phi_2 B^2) (\omega_1 B+ \omega_2 B^2) x_{t-2} + (1-\delta_1 B - \delta_2 B^2) a_t

1 ) Komponen ruas kiri:

\dot{y}_t \left[ 1 - (\delta_1 + \phi_1)B + (\delta_1 \phi_1 - \delta_2 - \phi_2)B^2 + (\delta_1 \phi_2 + \delta_2 \phi_1)B^3 + \delta_2 \phi_2 B^4 \right] Kalikan y_t dengan backshift operator B menjadi

\dot{y}_t - (\delta_1 + \phi_1) \dot{y}_{t-1} + (\delta_1 \phi_1 - \delta_2 - \phi_2) \dot{y}_{t-2} + (\delta_1 \phi_2 + \delta_2 \phi_1) \dot{y}_{t-3} + \delta_2 \phi_2 \dot{y}_{t-4}

Hitung nilai koefisien

-(delta_1 + phi_1)
[1] -1.6777
delta_1 * phi_1 - delta_2 - phi_2
[1] 1.601361
delta_1 * phi_2 + delta_2 * phi_1
[1] -0.7268119
delta_2 * phi_2
[1] 0.2308082

Sehingga menjadi

\dot{y}_t - 1.677 \dot{y}_{t-1} + 1.601 \dot{y}_{t-2} -0.726 \dot{y}_{t-3} + 0.230 \dot{y}_{t-4}

Substitusikan kembali \dot{y}_t = y_t - \mu, sehingga diperoleh

(y_t - \mu) -1.677 (y_{t-1} - \mu) + 1.601 (y_{t-2} - \mu) -0.726 (y_{t-3} - \mu) + 0.230 (y_{t-4} - \mu)

y_t -1.677 y_{t-1} + 1.601 y_{t-2} -0.726 y_{t-3} + 0.230 y_{t-4} - \mu (1-0.568 +1.601 -0.726 +0.230)

mu * (1-1.677 +1.601 -0.726 +0.230)
[1] 0.5639756

y_t -1.677 y_{t-1} + 1.601 y_{t-2} -0.726 y_{t-3} + 0.230 y_{t-4} - 0.563

2 ) Komponen ruas kanan bagian 1:

[\omega_1 B + (\omega_2 - \phi_1 \omega_1)B^2 - (\phi_1 \omega_2 + \phi_2 \omega_1)B^3 - \phi_2 \omega_2 B^4] x_{t-2} Kalikan x_t dengan backshift operator B menjadi

\omega_1 x_{t-3} + (\omega_2 - \phi_1 \omega_1)x_{t-4} - (\phi_1 \omega_2 + \phi_2 \omega_1)x_{t-5} - \phi_2 \omega_2 x_{t-6}

Hitung nilai koefisien

omega_1
[1] -0.4379
omega_2 - phi_1 * omega_1
[1] 0.8038757
-(phi_1 * omega_2 + phi_2 * omega_1)
[1] -0.4243428
-(phi_2 * omega_2)
[1] 0.1952415

Sehingga menjadi

-0.437 x_{t-3} +0.803 x_{t-4} -0.424 x_{t-5} + 0.195 x_{t-6}

3 ) Komponen ruas kanan bagian 2:

(1-\delta_1 B - \delta_2 B^2) a_t

Kalikan a_t dengan backshift operator B menjadi

a_t -\delta_1 a_{t-1} - \delta_2 a_{t-2}

Hitung nilai koefisien

delta_1
[1] 1.2071
delta_2
[1] -0.7067

a_t -1.207 a_{t-1} + 0.706 a_{t-2}

4 ) Persamaan akhir menjadi:

\begin{aligned} y_t= & 0.563 \\ & +1.677 y_{t-1}-1.601 y_{t-2}+0.726 y_{t-3}-0.230 y_{t-4} \\ & -0.437 x_{t-3} +0.803 x_{t-4} -0.424 x_{t-5} + 0.195 x_{t-6} \\ & +a_t-1.207 a_{t-1}+0.706 a_{t-2} \end{aligned}

LS0tCnRpdGxlOiAiVHJhbnNmZXIgRnVuY3Rpb24gRXF1YXRpb24iCgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIG1hdGhfbWV0aG9kOiBrYXRleAogICAgdGhlbWU6IHlldGkKICAgIHRvYzogdHJ1ZQogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCiAgICBkZl9wcmludDogcGFnZWQKLS0tCgoKUGVyc2FtYWFuIE1vZGVsCgokJAp5X3Q9MS4zMTc3K1xsZWZ0KFxmcmFjey0wLjQzNzkgQiswLjU5NzggQl4yfXsxLTEuMjA3MSBCKzAuNzA2NyBCXjJ9XHJpZ2h0KSB4X3t0LTJ9K1xmcmFjezF9ezEtMC40NzA2IEIrMC4zMjY2IEJeMn0gYV90CiQkCgpNaXNhbGthbgoKLSAkXG11ID0gMS4zMTc3JAotICRcb21lZ2FfMSA9IC0wLjQzNzkkCi0gJFxvbWVnYV8yID0gMC41OTc4JAotICRcZGVsdGFfMSA9IDEuMjA3MSQKLSAkXGRlbHRhXzIgPSAtMC43MDY3JAotICRccGhpXzEgPSAwLjQ3MDYkCi0gJFxwaGlfMiA9IC0wLjMyNjYkCgpgYGB7cn0KbXUgICAgICA9ICAxLjMxNzcKb21lZ2FfMSA9IC0wLjQzNzkKb21lZ2FfMiA9ICAwLjU5NzgKZGVsdGFfMSA9ICAxLjIwNzEKZGVsdGFfMiA9IC0wLjcwNjcKcGhpXzEgICA9ICAwLjQ3MDYKcGhpXzIgICA9IC0wLjMyNjYKYGBgCgoKTWFrYSwgcGVyc2FtYWFuICR5X3QkIG1lbmphZGkKCiQkCnlfdD0gXG11ICsgXGxlZnQoXGZyYWN7XG9tZWdhXzEgQisgXG9tZWdhXzIgQl4yfXsxLVxkZWx0YV8xIEIgLSBcZGVsdGFfMiBCXjJ9XHJpZ2h0KSB4X3t0LTJ9K1xmcmFjezF9ezEtIFxwaGlfMSBCIC0gXHBoaV8yIEJeMn0gYV90CiQkCgpNaXNhbGthbiAkXGRvdHt5fV90ID0geV90IC0gXG11JCwgbWFrYSBkaXBlcm9sZWggCgokJApcZG90e3l9X3QgPSBcbGVmdChcZnJhY3tcb21lZ2FfMSBCKyBcb21lZ2FfMiBCXjJ9ezEtXGRlbHRhXzEgQiAtIFxkZWx0YV8yIEJeMn1ccmlnaHQpIHhfe3QtMn0rXGZyYWN7MX17MS0gXHBoaV8xIEIgLSBccGhpXzIgQl4yfSBhX3QKJCQKClNhbWFrYW4gcGVueWVidXQgZGkgcnVhcyBrYW5hbiwgZGlwZXJvbGVoCgokJApcZG90e3l9X3QgPSBcbGVmdCggXGZyYWN7KDEtIFxwaGlfMSBCIC0gXHBoaV8yIEJeMikgKFxvbWVnYV8xIEIrIFxvbWVnYV8yIEJeMikgeF97dC0yfSArICgxLVxkZWx0YV8xIEIgLSBcZGVsdGFfMiBCXjIpIGFfdCB9eygxLVxkZWx0YV8xIEIgLSBcZGVsdGFfMiBCXjIpICgxLSBccGhpXzEgQiAtIFxwaGlfMiBCXjIpfSBccmlnaHQpCiQkCgpQZW55ZWJ1dCBkaSBydWFzIGthbmFuIGRpcGluZGFoa2FuIGtlIHJ1YXMga2lyaSwgZGlwZXJvbGVoCgokJApcZG90e3l9X3QgKDEtXGRlbHRhXzEgQiAtIFxkZWx0YV8yIEJeMikgKDEtIFxwaGlfMSBCIC0gXHBoaV8yIEJeMikgPSAgKDEtIFxwaGlfMSBCIC0gXHBoaV8yIEJeMikgKFxvbWVnYV8xIEIrIFxvbWVnYV8yIEJeMikgeF97dC0yfSArICgxLVxkZWx0YV8xIEIgLSBcZGVsdGFfMiBCXjIpIGFfdCAKJCQKCiMjIyMjICkgS29tcG9uZW4gcnVhcyBraXJpOgoKCiQkIApcZG90e3l9X3QgXGxlZnRbIDEgLSAoXGRlbHRhXzEgKyBccGhpXzEpQiArIChcZGVsdGFfMSBccGhpXzEgLSBcZGVsdGFfMiAtIFxwaGlfMilCXjIgKyAoXGRlbHRhXzEgXHBoaV8yICsgXGRlbHRhXzIgXHBoaV8xKUJeMyArIFxkZWx0YV8yIFxwaGlfMiBCXjQgXHJpZ2h0XSAKJCQKS2FsaWthbiAkeV90JCBkZW5nYW4gYmFja3NoaWZ0IG9wZXJhdG9yICRCJCBtZW5qYWRpCgokJCAKXGRvdHt5fV90IC0gKFxkZWx0YV8xICsgXHBoaV8xKSBcZG90e3l9X3t0LTF9ICsgKFxkZWx0YV8xIFxwaGlfMSAtIFxkZWx0YV8yIC0gXHBoaV8yKSBcZG90e3l9X3t0LTJ9ICsgKFxkZWx0YV8xIFxwaGlfMiArIFxkZWx0YV8yIFxwaGlfMSkgXGRvdHt5fV97dC0zfSArIFxkZWx0YV8yIFxwaGlfMiBcZG90e3l9X3t0LTR9IAokJAoKSGl0dW5nIG5pbGFpIGtvZWZpc2llbgoKYGBge3J9Ci0oZGVsdGFfMSArIHBoaV8xKQpgYGAKCmBgYHtyfQpkZWx0YV8xICogcGhpXzEgLSBkZWx0YV8yIC0gcGhpXzIKYGBgCgpgYGB7cn0KZGVsdGFfMSAqIHBoaV8yICsgZGVsdGFfMiAqIHBoaV8xCmBgYAoKYGBge3J9CmRlbHRhXzIgKiBwaGlfMgpgYGAKCgpTZWhpbmdnYSBtZW5qYWRpCgokJCAKXGRvdHt5fV90IC0gMS42NzcgXGRvdHt5fV97dC0xfSArIDEuNjAxIFxkb3R7eX1fe3QtMn0gLTAuNzI2IFxkb3R7eX1fe3QtM30gKyAwLjIzMCBcZG90e3l9X3t0LTR9IAokJAoKU3Vic3RpdHVzaWthbiBrZW1iYWxpICRcZG90e3l9X3QgPSB5X3QgLSBcbXUkLCBzZWhpbmdnYSBkaXBlcm9sZWgKCiQkIAooeV90IC0gXG11KSAtMS42NzcgKHlfe3QtMX0gLSBcbXUpICsgMS42MDEgKHlfe3QtMn0gLSBcbXUpIC0wLjcyNiAoeV97dC0zfSAtIFxtdSkgKyAwLjIzMCAoeV97dC00fSAtIFxtdSkKJCQKCiQkIAp5X3QgLTEuNjc3IHlfe3QtMX0gKyAxLjYwMSB5X3t0LTJ9IC0wLjcyNiB5X3t0LTN9ICArIDAuMjMwIHlfe3QtNH0gLSBcbXUgKDEtMC41NjggKzEuNjAxIC0wLjcyNiArMC4yMzApCiQkCgpgYGB7cn0KbXUgKiAoMS0xLjY3NyArMS42MDEgLTAuNzI2ICswLjIzMCkKYGBgCgokJCAKeV90IC0xLjY3NyB5X3t0LTF9ICsgMS42MDEgeV97dC0yfSAtMC43MjYgeV97dC0zfSAgKyAwLjIzMCB5X3t0LTR9IC0gMC41NjMKJCQKCgoKIyMjIyMgKSBLb21wb25lbiBydWFzIGthbmFuIGJhZ2lhbiAxOgoKCiQkIApbXG9tZWdhXzEgQiArIChcb21lZ2FfMiAtIFxwaGlfMSBcb21lZ2FfMSlCXjIgLSAoXHBoaV8xIFxvbWVnYV8yICsgXHBoaV8yIFxvbWVnYV8xKUJeMyAtIFxwaGlfMiBcb21lZ2FfMiBCXjRdIHhfe3QtMn0gCiQkCkthbGlrYW4gJHhfdCQgZGVuZ2FuIGJhY2tzaGlmdCBvcGVyYXRvciAkQiQgbWVuamFkaQoKJCQgClxvbWVnYV8xIHhfe3QtM30gKyAoXG9tZWdhXzIgLSBccGhpXzEgXG9tZWdhXzEpeF97dC00fSAtIChccGhpXzEgXG9tZWdhXzIgKyBccGhpXzIgXG9tZWdhXzEpeF97dC01fSAtIFxwaGlfMiBcb21lZ2FfMiB4X3t0LTZ9IAokJAoKSGl0dW5nIG5pbGFpIGtvZWZpc2llbgoKYGBge3J9Cm9tZWdhXzEKYGBgCgpgYGB7cn0Kb21lZ2FfMiAtIHBoaV8xICogb21lZ2FfMQpgYGAKCmBgYHtyfQotKHBoaV8xICogb21lZ2FfMiArIHBoaV8yICogb21lZ2FfMSkKYGBgCgpgYGB7cn0KLShwaGlfMiAqIG9tZWdhXzIpCmBgYAoKU2VoaW5nZ2EgbWVuamFkaQoKCiQkIAotMC40MzcgeF97dC0zfSArMC44MDMgeF97dC00fSAtMC40MjQgeF97dC01fSArIDAuMTk1IHhfe3QtNn0gCiQkCgoKCiMjIyMjICkgS29tcG9uZW4gcnVhcyBrYW5hbiBiYWdpYW4gMjogCgokJAooMS1cZGVsdGFfMSBCIC0gXGRlbHRhXzIgQl4yKSBhX3QgCiQkCgpLYWxpa2FuICRhX3QkIGRlbmdhbiBiYWNrc2hpZnQgb3BlcmF0b3IgJEIkIG1lbmphZGkKCiQkCmFfdCAtXGRlbHRhXzEgYV97dC0xfSAtIFxkZWx0YV8yIGFfe3QtMn0gIAokJAoKSGl0dW5nIG5pbGFpIGtvZWZpc2llbgoKYGBge3J9CmRlbHRhXzEKYGBgCgpgYGB7cn0KZGVsdGFfMgpgYGAKCgokJAphX3QgLTEuMjA3IGFfe3QtMX0gKyAwLjcwNiBhX3t0LTJ9ICAKJCQKCiMjIyMjICkgUGVyc2FtYWFuIGFraGlyIG1lbmphZGk6IAoKCgoKJCQKXGJlZ2lue2FsaWduZWR9CnlfdD0gJiAwLjU2MyBcXAomICsxLjY3NyB5X3t0LTF9LTEuNjAxIHlfe3QtMn0rMC43MjYgeV97dC0zfS0wLjIzMCB5X3t0LTR9IFxcCiYgLTAuNDM3IHhfe3QtM30gKzAuODAzIHhfe3QtNH0gLTAuNDI0IHhfe3QtNX0gKyAwLjE5NSB4X3t0LTZ9ICBcXAomICthX3QtMS4yMDcgYV97dC0xfSswLjcwNiBhX3t0LTJ9ClxlbmR7YWxpZ25lZH0KJCQK