Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.
Choose your stocks from 2012-12-31 to present.
# Load packages
# Core
library(tidyverse)
library(tidyquant)
symbols <- c("AMZN", "TGT", "WMT", "COST")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Transform data into wide form:
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
head(asset_returns_wide_tbl)
## AMZN COST TGT WMT
## 2013-01-31 0.056679940 0.035911258 0.020739842 0.02489617
## 2013-02-28 -0.004643502 -0.007647305 0.047067448 0.01179542
## 2013-03-28 0.008365416 0.046488848 0.083604047 0.06207374
## 2013-04-30 -0.048750750 0.021628192 0.030359741 0.03789345
## 2013-05-31 0.058868625 0.013793576 -0.009961326 -0.03177995
## 2013-06-28 0.031050751 0.008537312 -0.009251450 -0.00468769
Covariance of asset returns:
covariance_matrix <- cov(asset_returns_wide_tbl)
covariance_matrix
## AMZN COST TGT WMT
## AMZN 0.0070364591 0.002145031 0.001652237 0.0008318722
## COST 0.0021450311 0.003113359 0.001942073 0.0015318607
## TGT 0.0016522370 0.001942073 0.006769442 0.0017756490
## WMT 0.0008318722 0.001531861 0.001775649 0.0027411689
Standard deviation of portfolio: summarizes how much each asset’s returns vary with those of other assets within the portfolio into a single number.
w <- c(0.3, 0.25, 0.25, 0.2)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
## [,1]
## [1,] 0.05102478
Component contribution: similar to the formula for
sd_portfolio, but a mathematical trick to summarize the
same portfolio standard deviation by asset instead of as a single
number.
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
## AMZN COST TGT WMT
## [1,] 0.01897095 0.0108464 0.01483926 0.006368172
rowSums(component_contribution)
## [1] 0.05102478
Component contribution in percentage:
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
component_percentages
## # A tibble: 1 × 4
## AMZN COST TGT WMT
## <dbl> <dbl> <dbl> <dbl>
## 1 0.372 0.213 0.291 0.125
component_percentages %>%
gather(key = "asset", value = "contribution")
## # A tibble: 4 × 2
## asset contribution
## <chr> <dbl>
## 1 AMZN 0.372
## 2 COST 0.213
## 3 TGT 0.291
## 4 WMT 0.125
calculate_component_contribution <- function(.data, w) {
# Covariance of asset returns
covariance_matrix <- cov(.data)
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
return(component_percentages)
}
asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.3, .25, .25, .2))
## # A tibble: 1 × 4
## AMZN COST TGT WMT
## <dbl> <dbl> <dbl> <dbl>
## 1 0.372 0.213 0.291 0.125
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.3, .25, .25, .2)) %>%
# Transform to long form
pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
# Add weight
add_column(weight = c(.3, .25, .25, .2)) %>%
# Transform to long
pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")
plot_data %>%
ggplot(aes(x = Asset, y = value, fill = type)) +
geom_col(position = "dodge") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
scale_fill_tq() +
theme(plot.title = element_text(hjust = 0.5)) +
theme_tq() +
labs(title = "Percent Contribution to Portfolio Volatility and Weight",
y = "Percent",
x = NULL)
Answer:
The main contributor to my portfolio’s volatility is AMZN. Its contribution bar is the highest, at around 37%. My portfolio’s risk is concentrated in AMZN because its contribution is significantly higher than its portfolio weight. TGT also adds a noticeable share of risk (about 29%), but still much less than AMZN. Overall, AMZN is the primary driver of my portfolio’s volatility.