# Load the Dorling San Diego GeoJSON dataset
sd <- st_read("Dorling_SanDiego.geojson")
## Reading layer `Dorling_SanDiego' from data source
## `/Users/rohithsrinivasa/Downloads/Dorling_SanDiego.geojson'
## using driver `GeoJSON'
## Simple feature collection with 534 features and 186 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -117.4255 ymin: 32.54299 xmax: -116.6098 ymax: 33.44861
## Geodetic CRS: WGS 84
glimpse(sd)
## Rows: 534
## Columns: 187
## $ GEOID <chr> "6073000100", "6073000201", "6073000202", "6073000400", "60…
## $ POP <dbl> 3027, 2294, 3919, 3802, 2934, 3144, 4631, 5257, 4545, 3054,…
## $ statea <chr> "06", "06", "06", "06", "06", "06", "06", "06", "06", "06",…
## $ countya <chr> "073", "073", "073", "073", "073", "073", "073", "073", "07…
## $ tracta <chr> "000100", "000201", "000202", "000400", "000500", "000600",…
## $ pnhwht12 <dbl> 87.43, 85.65, 84.81, 65.73, 70.52, 74.24, 73.29, 59.06, 60.…
## $ pnhblk12 <dbl> 0.00, 0.00, 0.84, 5.17, 4.70, 3.00, 2.57, 12.13, 4.94, 5.12…
## $ phisp12 <dbl> 11.99, 10.30, 9.74, 12.04, 13.11, 12.06, 13.69, 18.04, 24.2…
## $ pntv12 <dbl> 0.00, 0.00, 0.00, 0.19, 0.93, 0.00, 0.41, 0.30, 0.00, 0.00,…
## $ pasian12 <dbl> 0.45, 2.26, 4.61, 12.18, 5.64, 7.82, 8.71, 6.53, 4.77, 1.95…
## $ phaw12 <dbl> 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,…
## $ pindia12 <dbl> 0.00, 0.00, 1.07, 0.67, 0.00, 0.00, 2.38, 0.28, 0.26, 0.00,…
## $ pchina12 <dbl> 0.38, 1.89, 2.21, 5.23, 0.36, 2.34, 3.62, 1.31, 1.64, 0.25,…
## $ pfilip12 <dbl> 0.07, 0.37, 0.26, 2.95, 0.90, 3.58, 1.73, 1.84, 0.26, 0.97,…
## $ pjapan12 <dbl> 0.00, 0.00, 0.00, 0.00, 1.97, 0.33, 0.99, 0.00, 0.00, 0.69,…
## $ pkorea12 <dbl> 0.00, 0.00, 0.40, 0.47, 0.29, 0.26, 0.00, 0.63, 0.62, 0.00,…
## $ pviet12 <dbl> 0.00, 0.00, 0.00, 3.06, 1.26, 0.44, 0.00, 0.00, 1.76, 0.00,…
## $ p15wht12 <dbl> 16.37, 10.37, 8.74, 2.45, 4.89, 3.35, 5.68, 2.52, 7.55, 8.4…
## $ p65wht12 <dbl> 23.50, 18.97, 14.37, 10.45, 8.50, 14.86, 12.67, 14.57, 6.42…
## $ p15blk12 <dbl> 18.75882, 0.00000, 0.00000, 0.00000, 8.40000, 0.00000, 0.00…
## $ p65blk12 <dbl> 10.08296, 0.00000, 0.00000, 5.91000, 0.00000, 0.00000, 0.00…
## $ p15hsp12 <dbl> 21.14, 6.12, 9.09, 8.55, 9.86, 12.12, 4.80, 10.91, 16.04, 2…
## $ p65hsp12 <dbl> 14.00, 0.00, 14.59, 8.78, 21.92, 17.58, 22.80, 5.03, 3.66, …
## $ p15ntv12 <dbl> 13.60773, 13.60773, 13.60773, 0.00000, 0.00000, 13.60773, 0…
## $ p65ntv12 <dbl> 11.37886, 11.37886, 11.37886, 20.00000, 0.00000, 11.37886, …
## $ p15asn12 <dbl> 0.00, 0.00, 15.15, 0.00, 0.00, 5.31, 4.09, 5.50, 5.93, 0.00…
## $ p65asn12 <dbl> 15.38, 16.28, 6.57, 3.07, 29.30, 15.93, 9.75, 6.87, 6.72, 1…
## $ pmex12 <dbl> 9.97, 6.62, 5.71, 9.76, 7.86, 7.78, 7.23, 16.50, 19.38, 34.…
## $ pcuban12 <dbl> 0.27, 0.00, 0.42, 0.00, 0.00, 0.00, 0.88, 0.00, 0.00, 0.00,…
## $ ppr12 <dbl> 0.00, 2.52, 0.00, 1.14, 0.86, 1.10, 0.00, 0.00, 0.00, 0.00,…
## $ pruanc12 <dbl> 0.58, 0.16, 2.07, 2.81, 4.13, 1.50, 1.62, 0.61, 0.83, 1.07,…
## $ pitanc12 <dbl> 4.90, 5.10, 9.23, 6.54, 4.49, 4.90, 2.96, 3.48, 3.93, 4.53,…
## $ pgeanc12 <dbl> 13.15, 9.88, 9.27, 7.84, 13.93, 9.28, 8.87, 7.34, 8.44, 10.…
## $ piranc12 <dbl> 7.81, 13.62, 13.96, 5.42, 7.29, 7.34, 6.05, 6.23, 10.10, 3.…
## $ pscanc12 <dbl> 2.50, 1.95, 2.40, 3.23, 4.34, 0.95, 5.45, 3.18, 5.04, 3.39,…
## $ pfb12 <dbl> 12.71, 17.51, 9.60, 22.36, 12.64, 10.92, 12.22, 22.91, 11.0…
## $ pnat12 <dbl> 9.25, 13.77, 3.26, 13.71, 7.72, 5.74, 9.89, 9.28, 4.40, 7.3…
## $ p10imm12 <dbl> 1.54, 1.31, 4.05, 7.18, 1.54, 3.62, 2.82, 8.58, 3.38, 6.22,…
## $ prufb12 <dbl> 0.00, 0.00, 0.00, 0.00, 0.00, 0.26, 1.53, 0.28, 0.19, 0.00,…
## $ pitfb12 <dbl> 0.41, 0.00, 0.72, 0.22, 0.00, 0.69, 0.00, 0.00, 0.00, 0.00,…
## $ pgefb12 <dbl> 0.00, 0.89, 1.72, 0.00, 2.23, 0.00, 0.36, 1.16, 0.00, 0.22,…
## $ pirfb12 <dbl> 0.00, 3.05, 0.00, 0.00, 0.00, 0.00, 0.00, 0.28, 0.00, 0.00,…
## $ pscfb12 <dbl> 0.14, 0.00, 0.00, 0.00, 0.00, 0.00, 0.19, 0.00, 0.00, 0.22,…
## $ polang12 <dbl> 21.86, 24.11, 18.01, 19.09, 18.94, 18.59, 19.76, 29.33, 20.…
## $ plep12 <dbl> 1.34, 1.76, 1.19, 1.00, 3.45, 2.58, 1.26, 7.26, 4.76, 8.97,…
## $ phs12 <dbl> 16.53, 14.80, 12.04, 10.04, 15.46, 15.15, 11.35, 24.14, 23.…
## $ pcol12 <dbl> 64.38, 55.73, 63.55, 57.96, 51.13, 66.15, 59.82, 50.00, 41.…
## $ punemp12 <dbl> 8.62, 7.46, 4.76, 6.62, 9.49, 6.16, 4.63, 14.56, 8.68, 12.3…
## $ pflabf12 <dbl> 49.02, 68.29, 68.27, 76.07, 82.75, 74.34, 65.05, 72.44, 77.…
## $ pprof12 <dbl> 66.97, 66.10, 52.93, 71.62, 58.71, 63.00, 53.69, 52.81, 41.…
## $ pmanuf12 <dbl> 1.72, 2.35, 3.74, 8.27, 5.97, 5.12, 9.83, 5.71, 6.30, 6.86,…
## $ psemp12 <dbl> 39.02, 24.43, 18.40, 4.32, 11.56, 11.88, 10.39, 11.07, 6.69…
## $ pvet12 <dbl> 12.89, 7.96, 10.00, 7.57, 8.31, 12.49, 10.45, 12.94, 7.18, …
## $ p65pov12 <dbl> 0.99, 3.47, 0.64, 2.16, 0.36, 3.36, 1.04, 0.25, 0.65, 0.94,…
## $ ppov12 <dbl> 3.40, 3.94, 5.29, 16.60, 7.79, 11.80, 10.57, 14.78, 14.89, …
## $ pwpov12 <dbl> 3.80, 4.60, 4.49, 20.93, 7.28, 11.91, 12.18, 14.22, 10.60, …
## $ pnapov12 <dbl> 22.60183, 22.60183, 22.60183, 57.14000, 0.00000, 22.60183, …
## $ pfmpov12 <dbl> 1.43, 0.00, 0.00, 9.50, 0.00, 0.00, 3.15, 4.70, 4.50, 16.06…
## $ pbpov12 <dbl> 25.50688, 0.00000, 0.00000, 0.00000, 0.00000, 25.61000, 0.0…
## $ phpov12 <dbl> 0.57, 0.00, 15.50, 8.31, 4.66, 4.55, 9.40, 18.46, 28.38, 32…
## $ papov12 <dbl> 0.00, 0.00, 0.00, 3.73, 28.03, 19.91, 0.00, 4.47, 10.64, 1.…
## $ pvac12 <dbl> 11.74, 3.92, 6.01, 2.48, 7.76, 10.13, 9.92, 9.36, 2.47, 9.2…
## $ pown12 <dbl> 87.35, 46.97, 48.41, 16.78, 31.97, 31.61, 31.20, 29.73, 16.…
## $ pmulti12 <dbl> 9.25, 43.40, 50.45, 91.05, 53.53, 68.09, 70.88, 71.65, 68.9…
## $ p30old12 <dbl> 90.97, 79.06, 83.47, 62.48, 87.90, 61.20, 80.97, 64.62, 77.…
## $ p18und12 <dbl> 18.53, 11.51, 10.88, 3.23, 6.61, 5.77, 5.56, 7.52, 11.61, 1…
## $ p60up12 <dbl> 35.21, 22.08, 18.73, 13.46, 16.66, 19.51, 19.39, 18.21, 10.…
## $ p75up12 <dbl> 12.23, 9.62, 5.06, 4.62, 4.78, 8.73, 8.33, 4.34, 1.64, 2.39…
## $ pmar12 <dbl> 63.76, 33.93, 35.92, 15.74, 26.89, 18.20, 22.67, 26.39, 28.…
## $ pwds12 <dbl> 14.62, 15.51, 20.46, 14.20, 18.30, 22.09, 21.84, 17.58, 18.…
## $ pfhh12 <dbl> 1.78, 0.00, 14.04, 9.50, 9.57, 14.01, 0.00, 20.38, 19.90, 2…
## $ p10yrs12 <dbl> 40.45, 53.83, 76.16, 84.76, 82.23, 77.28, 78.45, 81.30, 83.…
## $ ageblk12 <dbl> 0, 24, 36, 186, 131, 82, 94, 520, 277, 163, 121, 273, 886, …
## $ agentv12 <dbl> 0, 0, 0, 35, 26, 0, 26, 25, 17, 27, 12, 13, 210, 0, 9, 0, 0…
## $ agewht12 <dbl> 2553, 1629, 3640, 2363, 1964, 2032, 2676, 2341, 3194, 1761,…
## $ agehsp12 <dbl> 350, 196, 418, 433, 365, 330, 500, 715, 1284, 1139, 538, 16…
## $ india12 <dbl> 0, 0, 46, 24, 0, 0, 87, 11, 14, 0, 9, 0, 7, 0, 7, 0, 23, 0,…
## $ filip12 <dbl> 2, 7, 11, 106, 25, 98, 63, 73, 14, 31, 69, 16, 24, 83, 11, …
## $ japan12 <dbl> 0, 0, 0, 0, 55, 9, 36, 0, 0, 22, 20, 35, 0, 12, 0, 0, 0, 0,…
## $ korea12 <dbl> 0, 0, 17, 17, 8, 7, 0, 25, 33, 0, 0, 0, 0, 103, 0, 29, 0, 4…
## $ viet12 <dbl> 0, 0, 0, 110, 35, 12, 0, 0, 93, 0, 6, 0, 132, 0, 7, 8, 12, …
## $ pop12 <dbl> 2920, 1902, 4292, 3595, 2785, 2737, 3651, 3964, 5299, 3182,…
## $ nhwht12 <dbl> 2553, 1629, 3640, 2363, 1964, 2032, 2676, 2341, 3194, 1761,…
## $ nhblk12 <dbl> 0, 0, 36, 186, 131, 82, 94, 481, 262, 163, 121, 273, 833, 3…
## $ ntv12 <dbl> 0, 0, 0, 7, 26, 0, 15, 12, 0, 0, 0, 0, 25, 0, 9, 0, 0, 39, …
## $ hisp12 <dbl> 350, 196, 418, 433, 365, 330, 500, 715, 1284, 1139, 538, 16…
## $ asian12 <dbl> 13, 43, 198, 438, 157, 214, 318, 259, 253, 62, 137, 155, 34…
## $ haw12 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0…
## $ china12 <dbl> 11, 36, 95, 188, 10, 64, 132, 52, 87, 8, 15, 79, 179, 26, 6…
## $ a15wht12 <dbl> 418, 169, 318, 58, 96, 68, 152, 59, 241, 149, 89, 178, 48, …
## $ a65wht12 <dbl> 600, 309, 523, 247, 167, 302, 339, 341, 205, 123, 180, 262,…
## $ a15blk12 <dbl> 0, 0, 0, 0, 11, 0, 0, 77, 15, 56, 0, 0, 113, 14, 9, 27, 17,…
## $ a65blk12 <dbl> 0, 0, 0, 11, 0, 0, 0, 78, 0, 12, 0, 13, 30, 14, 0, 0, 13, 2…
## $ a15hsp12 <dbl> 74, 12, 38, 37, 36, 40, 24, 78, 206, 333, 129, 364, 876, 40…
## $ a65hsp12 <dbl> 49, 0, 61, 38, 80, 58, 114, 36, 47, 63, 0, 30, 117, 52, 28,…
## $ a15ntv12 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 99, 0, 0, 0, 0, 0, 0, …
## $ a65ntv12 <dbl> 0, 0, 0, 7, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7…
## $ ageasn12 <dbl> 13, 43, 198, 456, 157, 226, 318, 291, 253, 62, 137, 155, 44…
## $ a15asn12 <dbl> 0, 0, 30, 0, 0, 12, 13, 16, 15, 0, 15, 15, 108, 42, 0, 0, 0…
## $ a65asn12 <dbl> 2, 7, 13, 14, 46, 36, 31, 20, 17, 7, 0, 14, 37, 1, 13, 17, …
## $ mex12 <dbl> 291, 126, 245, 351, 219, 213, 264, 654, 1027, 1087, 415, 15…
## $ pr12 <dbl> 0, 48, 0, 41, 24, 30, 0, 0, 0, 0, 13, 20, 0, 207, 0, 0, 0, …
## $ cuban12 <dbl> 8, 0, 18, 0, 0, 0, 32, 0, 0, 0, 0, 0, 53, 0, 15, 0, 9, 170,…
## $ geanc12 <dbl> 384, 188, 398, 282, 388, 254, 324, 291, 447, 339, 294, 350,…
## $ iranc12 <dbl> 228, 259, 599, 195, 203, 201, 221, 247, 535, 114, 157, 213,…
## $ itanc12 <dbl> 143, 97, 396, 235, 125, 134, 108, 138, 208, 144, 127, 155, …
## $ ruanc12 <dbl> 17, 3, 89, 101, 115, 41, 59, 24, 44, 34, 46, 0, 0, 131, 25,…
## $ fb12 <dbl> 371, 333, 412, 804, 352, 299, 446, 908, 583, 566, 205, 780,…
## $ nat12 <dbl> 270, 262, 140, 493, 215, 157, 361, 368, 233, 235, 95, 319, …
## $ itfb12 <dbl> 12, 0, 31, 8, 0, 19, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 6, 0, 0…
## $ rufb12 <dbl> 0, 0, 0, 0, 0, 7, 56, 11, 10, 0, 0, 0, 0, 0, 0, 0, 9, 12, 0…
## $ ag5up12 <dbl> 2767, 1817, 4125, 3500, 2724, 2673, 3568, 3900, 4933, 3022,…
## $ irfb12 <dbl> 0, 58, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0,…
## $ gefb12 <dbl> 0, 17, 74, 0, 62, 0, 13, 46, 0, 7, 8, 8, 16, 0, 0, 11, 9, 3…
## $ scanc12 <dbl> 73, 37, 103, 116, 121, 26, 199, 126, 267, 108, 50, 115, 64,…
## $ n10imm12 <dbl> 45, 25, 174, 258, 43, 99, 103, 340, 179, 198, 67, 241, 515,…
## $ olang12 <dbl> 605, 438, 743, 668, 516, 497, 705, 1144, 1015, 967, 309, 14…
## $ lep12 <dbl> 37, 32, 49, 35, 94, 69, 45, 283, 235, 271, 36, 255, 830, 22…
## $ scfb12 <dbl> 4, 0, 0, 0, 0, 0, 7, 0, 0, 7, 0, 21, 0, 0, 0, 24, 0, 8, 0, …
## $ ag25up12 <dbl> 2263, 1439, 3671, 3228, 2355, 2396, 3101, 3268, 4334, 2368,…
## $ dfmpov12 <dbl> 841, 322, 876, 242, 439, 307, 445, 574, 955, 523, 475, 814,…
## $ hh12 <dbl> 1241, 1005, 2206, 2277, 1570, 1721, 2144, 2449, 2566, 1579,…
## $ hinc12 <dbl> 110078, 69179, 74670, 59616, 57447, 52813, 60625, 43125, 54…
## $ hincb12 <dbl> 49940.72, 49940.72, 49940.72, 58571.00, 73387.00, 24531.00,…
## $ hincw12 <dbl> 111484, 57875, 80878, 62635, 60573, 62045, 57484, 48507, 56…
## $ hinch12 <dbl> 55909, 99583, 35625, 54092, 47321, 68500, 60786, 41016, 510…
## $ incpc12 <dbl> 71660, 61122, 58551, 45106, 44138, 47030, 45744, 37040, 310…
## $ ag18cv12 <dbl> 2367, 1683, 3780, 3447, 2539, 2547, 3407, 3640, 4649, 2559,…
## $ vet12 <dbl> 305, 134, 378, 261, 211, 318, 356, 471, 334, 111, 338, 309,…
## $ empclf12 <dbl> 1220, 1236, 2592, 2456, 1894, 1835, 2330, 2312, 3363, 1823,…
## $ dpov12 <dbl> 2915, 1902, 4217, 3380, 2785, 2737, 3651, 3952, 5191, 3182,…
## $ npov12 <dbl> 99, 75, 223, 561, 217, 323, 386, 584, 773, 807, 446, 625, 1…
## $ dbpov12 <dbl> 0, 24, 36, 136, 131, 82, 94, 508, 266, 163, 121, 273, 886, …
## $ nbpov12 <dbl> 0, 0, 0, 0, 0, 21, 0, 92, 46, 11, 23, 151, 311, 96, 25, 8, …
## $ dnapov12 <dbl> 0, 0, 0, 28, 26, 0, 26, 25, 17, 27, 12, 13, 210, 0, 9, 0, 0…
## $ nnapov12 <dbl> 0, 0, 0, 16, 0, 0, 11, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 13, 0…
## $ dwpov12 <dbl> 2550, 1629, 3583, 2265, 1964, 2032, 2676, 2341, 3141, 1761,…
## $ nwpov12 <dbl> 97, 75, 161, 474, 143, 242, 326, 333, 333, 420, 257, 196, 3…
## $ dhpov12 <dbl> 350, 196, 400, 373, 365, 330, 500, 715, 1258, 1139, 538, 15…
## $ nhpov12 <dbl> 2, 0, 62, 31, 17, 15, 47, 132, 357, 369, 133, 260, 1287, 48…
## $ hhb12 <dbl> 0, 0, 17, 114, 78, 39, 38, 261, 124, 74, 93, 152, 374, 201,…
## $ hhw12 <dbl> 1131, 881, 1824, 1526, 1169, 1314, 1685, 1514, 1728, 1046, …
## $ hhh12 <dbl> 106, 58, 243, 217, 223, 172, 257, 492, 485, 383, 129, 508, …
## $ hs12 <dbl> 374, 213, 442, 324, 364, 363, 352, 789, 1032, 589, 273, 985…
## $ col12 <dbl> 1457, 802, 2333, 1871, 1204, 1585, 1855, 1634, 1784, 969, 1…
## $ clf12 <dbl> 1287, 1301, 2647, 2630, 2054, 1947, 2443, 2603, 3665, 2035,…
## $ unemp12 <dbl> 111, 97, 126, 174, 195, 120, 113, 379, 318, 252, 118, 182, …
## $ dflabf12 <dbl> 1224, 924, 1894, 1492, 1206, 1173, 1442, 1611, 2144, 1354, …
## $ flabf12 <dbl> 600, 631, 1293, 1135, 998, 872, 938, 1167, 1659, 1013, 1057…
## $ prof12 <dbl> 817, 817, 1372, 1759, 1112, 1156, 1251, 1221, 1407, 904, 10…
## $ manuf12 <dbl> 21, 29, 97, 203, 113, 94, 229, 132, 212, 125, 52, 130, 282,…
## $ semp12 <dbl> 476, 302, 477, 106, 219, 218, 242, 256, 225, 211, 209, 281,…
## $ hha12 <dbl> 0, 43, 122, 305, 53, 134, 136, 153, 98, 61, 57, 82, 141, 84…
## $ hinca12 <dbl> 79531.26, 111450.00, 92880.00, 75027.00, 51440.00, 33700.00…
## $ n65pov12 <dbl> 29, 66, 27, 73, 10, 92, 38, 10, 34, 30, 36, 38, 21, 41, 24,…
## $ nfmpov12 <dbl> 12, 0, 0, 23, 0, 0, 14, 27, 43, 84, 23, 63, 365, 81, 0, 12,…
## $ napov12 <dbl> 0, 0, 0, 17, 44, 45, 0, 13, 25, 1, 25, 16, 129, 52, 7, 29, …
## $ dapov12 <dbl> 11, 43, 198, 456, 157, 226, 318, 291, 235, 62, 137, 155, 44…
## $ family12 <dbl> 841, 322, 876, 242, 439, 307, 445, 574, 955, 523, 475, 814,…
## $ hu12 <dbl> 1406, 1046, 2347, 2335, 1702, 1915, 2380, 2702, 2631, 1740,…
## $ vac12 <dbl> 165, 41, 141, 58, 132, 194, 236, 253, 65, 161, 105, 190, 12…
## $ ohu12 <dbl> 1241, 1005, 2206, 2277, 1570, 1721, 2144, 2449, 2566, 1579,…
## $ own12 <dbl> 1084, 472, 1068, 382, 502, 544, 669, 728, 435, 410, 518, 66…
## $ rent12 <dbl> 157, 533, 1138, 1895, 1068, 1177, 1475, 1721, 2131, 1169, 9…
## $ dmulti12 <dbl> 1406, 1046, 2347, 2335, 1702, 1915, 2380, 2702, 2631, 1740,…
## $ mrent12 <dbl> 1869, 1061, 1327, 1029, 986, 988, 1068, 1013, 1018, 1006, 1…
## $ mhmval12.x <dbl> 948200, 758900, 587900, 364100, 679900, 396500, 470300, 426…
## $ multi12 <dbl> 130, 454, 1184, 2126, 911, 1304, 1687, 1936, 1815, 1183, 61…
## $ h30old12 <dbl> 1279, 827, 1959, 1459, 1496, 1172, 1927, 1746, 2038, 1429, …
## $ h10yrs12 <dbl> 502, 541, 1680, 1930, 1291, 1330, 1682, 1991, 2151, 1286, 1…
## $ a18und12 <dbl> 541, 219, 467, 116, 184, 158, 203, 298, 615, 597, 325, 748,…
## $ a60up12 <dbl> 1028, 420, 804, 484, 464, 534, 708, 722, 540, 276, 380, 499…
## $ a75up12 <dbl> 357, 183, 217, 166, 133, 239, 304, 172, 87, 76, 66, 139, 79…
## $ ag15up12 <dbl> 2428, 1721, 3906, 3500, 2629, 2621, 3462, 3755, 4721, 2635,…
## $ X12.Mar <dbl> 1548, 584, 1403, 551, 707, 477, 785, 991, 1332, 764, 723, 1…
## $ wds12 <dbl> 355, 267, 799, 497, 481, 579, 756, 660, 865, 600, 511, 609,…
## $ fhh12 <dbl> 15, 0, 123, 23, 42, 43, 0, 117, 190, 123, 49, 109, 298, 120…
## $ pop.w <dbl> 0.75675, 0.57350, 0.97975, 0.95050, 0.73350, 0.78600, 1.157…
## $ cluster <chr> "4", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2",…
## $ tractid <chr> "fips-06-073-000100", "fips-06-073-000201", "fips-06-073-00…
## $ mhmval00 <dbl> 592020.2, 342000.0, 342000.0, 236400.0, 296400.0, 191400.0,…
## $ mhmval12.y <dbl> 948200, 758900, 587900, 364100, 679900, 396500, 470300, 426…
## $ mhv.00 <dbl> 762847.6, 440684.1, 440684.1, 304613.2, 381926.2, 246628.5,…
## $ mhv.10 <dbl> 948200, 758900, 587900, 364100, 679900, 396500, 470300, 426…
## $ mhv.change <dbl> 185352.37, 318215.90, 147215.90, 59486.78, 297973.78, 14987…
## $ mhv.growth <dbl> 24.29743, 72.20953, 33.40622, 19.52863, 78.01868, 60.76814,…
## $ geometry <POLYGON [°]> POLYGON ((-117.1827 32.7530..., POLYGON ((-117.1706…
Notes:
- The dataset contains 534 features (tracts) in San Diego County
- Key variables include population, race/ethnicity percentages, home
values (2000 & 2012), and cluster classifications
tmap_mode("plot")
tm_shape(sd) +
tm_polygons(col = "gray50", alpha = 0.8) +
tm_borders(col = "black", lwd = 0.3) +
tm_layout(title = "Basic Map of San Diego Dorling Cartogram")
tm_shape(sd) +
tm_polygons("mhv.growth",
palette = "YlOrRd",
style = "quantile",
border.col = "gray20",
lwd = 0.2,
scale = 1.5, # magnifies the circles
title = "% Growth in Median Home Value") +
tm_borders(col = "white") +
tm_layout(title = "Change in Home Values (2000–2012)")
tmap_mode("view")
Interpretation:
The map shows substantial variation in the percent growth of median home
values across San Diego County between 2000 and 2012. Tracts displayed
in deeper orange and red experienced the fastest appreciation—often
exceeding 50% growth—while lighter areas grew more modestly.
Because this is a Dorling cartogram, the spatial arrangement reflects approximate geographic relationships but emphasizes variation between census tracts. A few tracts show unusually high growth, which may signal neighborhoods undergoing rapid investment or early stages of gentrification. Conversely, areas with lower or even negative growth may correspond to communities with older housing stock, slower demand, or localized socioeconomic challenges.
These patterns may be driven by factors such as proximity to job centers, school quality, coastal access, infrastructure improvements, or broader housing market pressures during the early 2000s. Understanding where home values rose most quickly can help policymakers identify neighborhoods potentially at risk of displacement, evaluate housing affordability pressures, or target resources for equitable economic development.
sd_high_growth <- sd %>%
filter(mhv.growth > 25)
tm_shape(sd_high_growth) +
tm_polygons("mhv.growth",
palette = "Reds",
style = "quantile",
title = "% Home Value Growth") +
tm_borders(col = "white") +
tm_layout(title = "High-Growth Census Tracts (> 25%)")