Heller Phar7383 Final title: “Covariate modeling and Qualification” date: “2025-12-03” output: html_document — #libraries
rm(list=ls())
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(PKNCA)
## Warning: package 'PKNCA' was built under R version 4.4.2
##
## Attaching package: 'PKNCA'
## The following object is masked from 'package:stats':
##
## filter
library(knitr)
library(xpose4)
## Warning: package 'xpose4' was built under R version 4.4.2
## Loading required package: lattice
library(tidyr)
## Warning: package 'tidyr' was built under R version 4.4.2
library(knitr)
#theme
my_theme<-function(x){theme_bw()+
theme(text = element_text(size=20))+
theme(axis.line.y = element_line(size = 2.0))+
theme(axis.line.x = element_line(size = 2.0))+
theme(axis.ticks = element_line(size = 1.5,colour="black"))+
theme(axis.ticks.length= unit(0.45, "cm"))+
theme(axis.title.y =element_text(vjust=1.2))+
theme(axis.title.x =element_text(vjust=-0.2))+
theme(axis.text=element_text(colour="black"))+
theme(panel.background = element_rect(fill ="white"))}
#data import and analysis
unt325<-read.csv("C:\\Heller\\PHAR7383\\Final\\unt325a.csv",stringsAsFactors = F)
unt325sum<-unt325%>%filter(EVID==0)%>%group_by(DOSE,TIME)%>%summarise(cmean=mean(DV),stdev=sd(DV))
## `summarise()` has grouped output by 'DOSE'. You can override using the
## `.groups` argument.
#Exploratory plots
#Population Plot
ggplot(data=unt325,aes(TIME,DV,group=ID))+
geom_line(size=0.5)+
geom_point(size=1)+
scale_x_continuous(limits = c(0,24),breaks = c(0,1,2,4,6,8,12,24))+
theme_bw()+
my_theme()+
labs(x="Time after dose (hour)",y="Plasma concentration (ng/ml)")+
facet_wrap(vars(DOSE))
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## i Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
#average plot with standard deviation (+/-1SD)
ggplot(data=unt325sum,aes(TIME,cmean,group=DOSE))+
geom_line(size=0.5)+
geom_point(size=2)+
scale_x_continuous(limits = c(0,24),breaks = c(0,1,2,4,6,8,12,24))+
geom_errorbar(aes(ymin=cmean-stdev, ymax=cmean+stdev), width=.2)+
theme_bw()+
my_theme()+
labs(x="Time after dose (hour)",y="Plasma concentration (ng/ml)")
#model building` #Run1- Base model- two compartment model with first
order absorption
library(xpose4)
run1<-xpose.data(1,dir="C:\\Heller\\PHAR7383\\Final")
##
## Looking for NONMEM table files.
## Reading C:\Heller\PHAR7383\Final/sdtab1
## Reading C:\Heller\PHAR7383\Final/patab1
## Reading C:\Heller\PHAR7383\Final/catab1
## Reading C:\Heller\PHAR7383\Final/cotab1
## Table files read.
## Reading C:\Heller\PHAR7383\Final/run1.phi
##
## Looking for NONMEM simulation table files.
## No simulated table files read.
#check the distribution of covariates (is there enough range in the covariates?) You don't need to check this every run.
#change.xvardef line keeps all covariates needed ready for xpose to plot. You need to run this line for xpose to recognize all our covarites in the dataset.
change.xvardef(run1, "covariates") <- c("WT","SEX","CRCL")
cov.hist(run1)
#Diagnostic plots
dv.vs.ipred(run1,type="p")
dv.vs.pred(run1,type="p")
cwres.vs.idv(run1,type="p")
cwres.vs.pred(run1,type="p")
ind.plots(run1)
ranpar.hist(run1)
#this code below gives plots of EBEs versus covariates. You need to specify covariates properly in the tables of model file for this code to work properly. ETA2 versus CRCL means clearance relationship versus CRCL and so on. You need to use sensibility of covariates and select few to conduct forward addition and backward elimination.
ranpar.vs.cov(run1)
#Another approach for EBEs?
#individual parameters
run1_ebe<-read.table("C:\\Heller\\PHAR7383\\Final/patab1",header=T,skip=1)%>%
select(ID,KA,CL,V2,V3,Q)%>%
filter(!duplicated(ID))
print (run1_ebe)
## ID KA CL V2 V3 Q
## 1 1 1.10960 41.787 625.73 280.50 179.69
## 2 2 1.49930 29.693 815.29 830.11 183.05
## 3 3 1.43760 25.991 562.00 654.75 171.27
## 4 4 1.42730 26.781 238.97 240.29 147.52
## 5 5 1.50050 28.681 628.59 461.91 181.31
## 6 6 1.47670 43.506 615.49 533.37 181.30
## 7 7 1.15840 23.692 638.01 535.85 157.43
## 8 8 1.55050 31.022 467.62 549.20 172.68
## 9 9 0.97272 35.822 505.96 224.25 178.06
## 10 10 1.30030 48.712 394.74 408.27 149.39
## 11 11 1.22680 26.931 734.46 386.50 175.39
## 12 12 1.63920 63.386 392.25 586.20 154.00
## 13 13 1.25930 26.113 468.60 287.16 174.31
## 14 14 1.54460 41.078 630.24 603.44 179.81
## 15 15 1.72680 34.534 370.90 762.49 178.27
## 16 16 1.79890 27.159 481.65 543.17 194.99
## 17 17 1.52670 17.618 660.56 584.60 179.71
## 18 18 1.57310 24.587 289.70 345.12 160.62
## 19 19 1.46260 19.587 375.00 388.08 165.33
## 20 20 1.16940 34.772 1108.80 544.88 173.38
## 21 21 1.68510 59.928 457.59 687.46 168.57
## 22 22 1.39100 30.502 512.49 512.28 163.11
## 23 23 1.57130 20.224 472.78 448.61 175.27
## 24 24 1.63920 45.796 673.67 783.40 193.61
## 25 25 1.40530 28.784 311.98 328.60 150.17
## 26 26 1.62550 58.506 381.08 378.97 175.65
## 27 27 1.41850 32.678 741.81 958.70 174.57
## 28 28 1.63240 36.898 372.00 515.44 166.57
## 29 29 1.46770 24.713 703.07 516.13 179.15
## 30 30 1.50590 34.864 344.45 261.53 176.96
## 31 31 1.31990 32.319 974.15 620.71 179.00
## 32 32 1.80760 21.555 496.88 561.47 192.61
## 33 33 1.51190 49.585 427.08 642.89 162.34
## 34 34 1.45780 31.743 280.34 399.96 143.94
## 35 35 1.59110 25.419 378.30 422.26 166.72
## 36 36 1.10680 52.618 357.88 181.69 178.92
## 37 37 1.63060 14.598 325.58 421.70 167.14
## 38 38 1.59490 20.367 352.07 492.09 162.57
## 39 39 1.49210 30.253 319.84 581.92 137.65
## 40 40 1.32150 27.764 742.13 513.41 173.21
## 41 41 1.45610 27.808 722.07 744.01 170.59
## 42 42 1.48570 30.815 478.10 440.25 172.03
## 43 43 1.45960 12.283 551.44 560.61 169.87
## 44 44 1.43590 49.018 523.80 805.52 178.95
## 45 45 1.32130 51.162 381.88 259.02 170.88
## 46 46 1.35070 32.901 400.66 386.52 161.67
## 47 47 0.96676 26.296 432.48 190.48 184.11
## 48 48 1.30090 26.006 392.61 278.62 168.68
## 49 49 1.55690 28.105 591.86 637.14 177.40
## 50 50 1.79930 29.200 483.09 533.75 189.59
## 51 51 1.52100 38.502 233.08 181.77 170.15
## 52 52 1.37730 18.637 585.04 687.56 163.05
## 53 53 1.43870 48.512 299.17 346.03 147.67
## 54 54 1.35270 32.007 405.18 317.53 167.45
## 55 55 1.50150 21.082 755.77 504.01 182.32
## 56 56 1.42100 40.657 1119.00 622.17 182.25
## 57 57 1.44410 24.880 757.92 643.24 179.68
## 58 58 1.27870 35.819 718.47 608.47 176.10
## 59 59 1.59610 25.409 597.95 1105.40 190.09
## 60 60 1.32300 22.405 548.30 343.80 175.97
## 61 61 1.83240 49.573 407.93 749.52 182.86
## 62 62 1.42370 41.518 509.29 861.57 167.65
## 63 63 1.33290 54.452 447.34 857.78 132.51
## 64 64 1.43560 26.159 446.11 540.00 156.85
## 65 65 1.31370 41.712 646.48 706.35 168.62
## 66 66 1.46940 46.304 742.11 879.61 176.97
## 67 67 1.60260 43.137 574.78 544.87 183.81
## 68 68 1.40880 32.646 561.71 494.53 171.02
## 69 69 1.57090 20.512 545.08 1010.80 184.39
## 70 70 1.52620 26.416 383.64 1112.90 162.56
## 71 71 1.68250 30.307 395.80 574.95 176.69
## 72 72 1.56970 17.383 361.69 521.02 163.66
## 73 73 1.53280 33.807 433.10 874.44 160.27
## 74 74 1.32500 41.668 800.28 1050.70 169.35
## 75 75 1.26110 33.226 632.32 719.42 164.94
## 76 76 1.60850 18.256 297.10 899.92 153.55
## 77 77 1.77390 21.945 230.06 645.53 149.52
## 78 78 1.47260 52.708 587.44 427.36 181.38
## 79 79 1.60540 35.341 449.22 782.45 177.60
## 80 80 1.58960 36.605 673.23 607.76 187.48
## 81 81 1.29600 33.461 749.28 468.45 172.26
## 82 82 1.45320 18.174 567.94 399.95 178.12
## 83 83 1.23590 42.405 643.09 264.56 188.51
## 84 84 1.46540 32.682 719.69 577.54 175.40
## 85 85 1.53650 19.781 682.54 814.44 179.84
## 86 86 1.59670 31.140 382.48 870.32 152.81
## 87 87 1.44330 25.473 772.20 903.42 183.21
## 88 88 1.72390 31.027 313.49 571.01 174.28
## 89 89 1.35450 19.793 340.75 921.08 131.69
## 90 90 1.65860 37.848 238.44 338.39 152.01
## 91 91 1.42230 25.295 668.51 473.46 175.85
## 92 92 1.43020 46.802 627.46 360.36 182.43
## 93 93 1.47900 25.554 620.63 424.26 182.04
## 94 94 1.57530 16.016 392.26 730.56 168.14
## 95 95 1.35230 34.770 452.99 686.69 146.97
## 96 96 1.43090 20.024 850.85 519.35 178.78
## 97 97 1.38100 18.566 478.73 477.85 161.32
## 98 98 1.53100 34.568 691.49 739.98 174.51
## 99 99 1.24200 21.462 820.67 601.97 166.25
## 100 100 1.46970 16.639 670.52 473.92 180.30
## 101 101 1.31320 40.240 823.59 665.67 174.70
## 102 102 1.39970 23.704 391.60 692.20 147.66
## 103 103 1.48640 29.506 784.78 433.45 184.76
## 104 104 1.40680 19.711 522.35 450.96 170.84
## 105 105 1.11950 33.989 483.64 242.22 178.13
## 106 106 1.32000 38.598 463.52 943.40 146.13
## 107 107 1.39750 25.810 696.44 474.17 176.71
## 108 108 1.51540 22.868 376.73 638.32 160.25
## 109 109 1.34190 26.069 867.33 457.84 179.42
## 110 110 1.22900 18.544 702.34 492.87 166.36
## 111 111 1.61140 22.687 608.03 990.64 192.80
## 112 112 1.57430 29.853 479.65 745.72 177.73
## 113 113 1.37770 31.095 329.64 412.30 150.83
## 114 114 1.29700 34.258 552.76 537.68 158.22
## 115 115 1.52350 11.977 499.83 558.50 170.45
## 116 116 1.37410 30.899 595.93 475.01 170.76
## 117 117 1.34310 41.799 472.60 382.70 166.81
## 118 118 1.30540 37.799 471.65 445.47 155.43
## 119 119 1.07110 42.316 687.78 368.48 169.33
## 120 120 1.29900 30.437 827.47 683.05 168.73
## 121 121 1.50490 48.577 551.28 771.00 177.40
## 122 122 1.32810 23.304 481.81 351.22 169.54
## 123 123 1.67740 28.491 569.10 527.47 190.93
## 124 124 1.53700 24.634 448.22 424.51 173.72
## 125 125 1.28430 33.124 1209.80 736.09 176.20
## 126 126 1.64400 37.938 563.63 708.18 179.68
## 127 127 1.52610 45.860 247.16 566.74 136.07
## 128 128 1.16120 29.345 772.69 428.52 170.97
## 129 129 1.74210 22.682 283.46 668.50 159.74
## 130 130 1.13160 33.871 751.73 344.00 177.04
## 131 131 1.29540 34.635 589.57 548.23 169.22
## 132 132 1.40820 52.258 686.17 870.27 179.09
## 133 133 1.57740 23.515 376.08 376.31 170.40
## 134 134 1.31330 31.331 476.55 648.48 150.91
## 135 135 1.46590 24.653 262.00 270.55 153.61
## 136 136 1.43550 37.738 338.01 343.55 158.37
## 137 137 1.00040 36.545 1036.60 368.20 176.97
## 138 138 1.47960 43.818 217.09 364.99 126.62
## 139 139 1.55650 30.337 804.65 829.77 187.23
## 140 140 1.39780 24.316 678.55 722.64 168.74
## 141 141 1.30550 43.006 854.65 414.20 178.02
## 142 142 1.60610 30.364 638.69 852.61 179.80
## 143 143 1.43520 47.373 662.00 649.83 172.67
## 144 144 1.55550 21.209 482.82 430.82 178.09
## 145 145 1.48920 39.364 500.07 845.87 156.07
## 146 146 1.43640 25.383 463.11 607.06 165.68
## 147 147 1.46000 20.299 891.07 546.06 180.96
## 148 148 1.61580 31.120 500.42 762.82 185.75
## 149 149 1.25880 23.729 533.90 454.36 160.88
## 150 150 1.38610 25.848 707.91 582.69 169.30
## 151 151 1.61530 27.243 645.61 749.17 186.74
## 152 152 1.46960 17.137 433.72 345.40 173.10
## 153 153 1.67040 27.472 534.81 1206.90 193.85
## 154 154 1.43010 30.687 512.73 795.16 164.98
## 155 155 1.41680 34.957 700.77 471.37 175.70
## 156 156 1.12180 48.874 793.05 345.44 177.96
## 157 157 1.47490 52.273 601.56 511.90 171.41
## 158 158 1.49350 45.435 300.15 509.23 142.87
## 159 159 1.48420 20.430 351.45 611.10 145.12
## 160 160 1.63560 34.412 372.80 391.52 174.70
## 161 161 1.22710 29.292 470.93 292.23 170.81
## 162 162 1.78640 31.699 289.58 636.61 173.73
## 163 163 1.51670 32.889 613.97 607.46 173.92
## 164 164 1.47980 139.550 499.86 685.67 176.46
## 165 165 1.31660 39.782 437.07 334.54 167.26
## 166 166 1.25660 24.691 600.83 308.55 179.59
## 167 167 1.36650 31.347 798.27 705.51 169.05
## 168 168 1.35270 31.105 667.11 413.87 175.65
## 169 169 1.48170 31.524 572.66 947.73 175.69
## 170 170 1.59670 35.866 572.52 1026.80 179.81
#Read this instructions carefully #The model files for runs 2-4 are provided. These will form the step 1 of forward addition. You want to make sure all the table files are properly numbered and create job files for each modelfile to run the models. # You need to create model files for step 2 onwards for adding more than one covarites into the models. #For backward elimination, take your full model and remove one covarite and see how much increase in OBJFUN occured and is that significant at alfa 0.01. #It is time for you to understand how the model files are being changed to fit different models of covariates. You will need to do this for the project! # Good luck! #you may see some errors and just continue with the process. Your covariate model may solve those problems. But, always mention what errors occured in your presentation. Run2- Base model+WTonV2
#Diagnostic plots
run2<-xpose.data(2,dir="C:\\Heller\\PHAR7383\\Final")
##
## Looking for NONMEM table files.
## Reading C:\Heller\PHAR7383\Final/sdtab2
## Reading C:\Heller\PHAR7383\Final/patab2
## Reading C:\Heller\PHAR7383\Final/catab2
## Reading C:\Heller\PHAR7383\Final/cotab2
## Table files read.
## Reading C:\Heller\PHAR7383\Final/run2.phi
##
## Looking for NONMEM simulation table files.
## No simulated table files read.
dv.vs.ipred(run2,type="p")
dv.vs.pred(run2,type="p")
cwres.vs.idv(run2,type="p")
cwres.vs.pred(run2,type="p")
ind.plots(run2)
ranpar.hist(run2)
ranpar.vs.cov(run2)
Run3- Base model+WTonV3
run3<-xpose.data(3,dir="C:\\Heller\\PHAR7383\\Final")
##
## Looking for NONMEM table files.
## Reading C:\Heller\PHAR7383\Final/sdtab3
## Reading C:\Heller\PHAR7383\Final/patab3
## Reading C:\Heller\PHAR7383\Final/catab3
## Reading C:\Heller\PHAR7383\Final/cotab3
## Table files read.
## Reading C:\Heller\PHAR7383\Final/run3.phi
##
## Looking for NONMEM simulation table files.
## No simulated table files read.
dv.vs.ipred(run3,type="p")
dv.vs.pred(run3,type="p")
cwres.vs.idv(run3,type="p")
cwres.vs.pred(run3,type="p")
ind.plots(run3)
ranpar.hist(run3)
ranpar.vs.cov(run3)
Run4- Base model+CRCL on CL (is it justified to test this relationship either by plots or biological rationale? Comment on this in your presentation of results)
run4corr<-xpose.data(4,dir="C:\\Heller\\PHAR7383\\Final")
##
## Looking for NONMEM table files.
## Reading C:\Heller\PHAR7383\Final/sdtab4
## Reading C:\Heller\PHAR7383\Final/patab4
## Reading C:\Heller\PHAR7383\Final/catab4
## Reading C:\Heller\PHAR7383\Final/cotab4
## Table files read.
## Reading C:\Heller\PHAR7383\Final/run4.phi
##
## Looking for NONMEM simulation table files.
## No simulated table files read.
dv.vs.ipred(run4corr,type="p")
dv.vs.pred(run4corr,type="p")
cwres.vs.idv(run4corr,type="p")
cwres.vs.pred(run4corr,type="p")
ind.plots(run4corr)
ranpar.hist(run4corr)
ranpar.vs.cov(run4corr)
#Base model+WTonV2 and WTonV3
run5<-xpose.data(5,dir="C:\\Heller\\PHAR7383\\Final")
##
## Looking for NONMEM table files.
## Reading C:\Heller\PHAR7383\Final/sdtab5
## Reading C:\Heller\PHAR7383\Final/patab5
## Reading C:\Heller\PHAR7383\Final/catab5
## Reading C:\Heller\PHAR7383\Final/cotab5
## Table files read.
## Reading C:\Heller\PHAR7383\Final/run5.phi
##
## Looking for NONMEM simulation table files.
## No simulated table files read.
dv.vs.ipred(run5,type="p")
dv.vs.pred(run5,type="p")
cwres.vs.idv(run5,type="p")
cwres.vs.pred(run5,type="p")
ind.plots(run5)
ranpar.hist(run5)
ranpar.vs.cov(run5)
#Another approach for EBEs?
#individual parameters
run5_ebe<-read.table("C:\\Heller\\PHAR7383\\Final/patab5",header=T,skip=1)%>%
select(ID,KA,CL,V2,V3,Q)%>%
filter(!duplicated(ID))
print (run5_ebe)
## ID KA CL V2 V3 Q
## 1 1 0.75095 41.550 448.53 389.37 233.19
## 2 2 1.23510 29.658 684.51 882.48 228.33
## 3 3 1.25490 26.060 556.67 878.93 194.52
## 4 4 1.19170 26.376 187.82 247.01 170.35
## 5 5 1.25220 28.738 549.83 656.06 232.26
## 6 6 1.23810 43.678 537.33 684.64 225.24
## 7 7 0.85564 23.677 507.50 574.71 180.76
## 8 8 1.33510 30.992 403.35 581.51 206.53
## 9 9 0.70628 35.926 387.98 350.95 217.15
## 10 10 1.06350 48.681 339.30 452.24 164.46
## 11 11 0.85387 26.907 548.31 512.54 224.16
## 12 12 1.43840 62.943 342.73 588.52 176.44
## 13 13 0.95295 26.123 370.80 388.36 215.09
## 14 14 1.28670 41.096 539.02 696.14 223.76
## 15 15 1.70210 34.703 392.81 853.33 190.71
## 16 16 1.66380 27.225 421.05 642.20 249.67
## 17 17 1.24870 17.607 507.88 616.43 228.08
## 18 18 1.39990 24.625 261.54 391.00 178.90
## 19 19 1.24000 19.591 323.67 442.34 190.52
## 20 20 0.87528 34.961 1024.70 1089.90 205.33
## 21 21 1.54490 60.059 428.53 717.99 191.19
## 22 22 1.13250 30.472 434.54 562.64 193.31
## 23 23 1.34480 20.230 402.89 530.73 217.94
## 24 24 1.43330 45.863 590.94 868.93 242.71
## 25 25 1.16560 28.906 280.85 391.14 156.34
## 26 26 1.36090 58.058 307.69 421.49 215.08
## 27 27 1.18800 32.624 663.20 963.12 206.56
## 28 28 1.44460 36.772 323.86 519.07 193.70
## 29 29 1.17530 24.720 575.12 654.47 229.77
## 30 30 1.24930 34.944 280.79 332.90 219.79
## 31 31 1.04250 32.399 827.47 905.24 230.04
## 32 32 1.66690 21.578 407.45 614.13 252.97
## 33 33 1.31830 49.404 379.71 637.31 182.37
## 34 34 1.31120 31.882 269.33 449.28 148.08
## 35 35 1.34390 25.227 293.52 402.45 209.54
## 36 36 0.86235 52.743 270.96 258.63 224.83
## 37 37 1.37420 14.495 222.00 310.38 201.12
## 38 38 1.39670 20.292 289.87 447.03 191.45
## 39 39 1.36020 30.305 313.70 610.52 139.23
## 40 40 0.98482 27.716 572.25 594.10 218.70
## 41 41 1.23450 27.889 702.15 1008.50 194.51
## 42 42 1.20790 30.714 383.35 475.17 213.80
## 43 43 1.18720 12.277 415.69 523.57 207.99
## 44 44 1.24840 48.893 465.55 786.95 204.49
## 45 45 1.03590 51.252 302.38 332.58 207.38
## 46 46 1.11640 32.879 339.01 435.43 185.64
## 47 47 0.67699 26.305 315.20 285.46 240.61
## 48 48 1.01180 25.975 309.47 341.98 203.18
## 49 49 1.30670 28.039 486.35 644.62 222.40
## 50 50 1.63890 29.208 404.84 589.84 247.70
## 51 51 1.28690 38.388 185.84 221.22 203.38
## 52 52 1.09910 18.587 473.98 622.92 192.00
## 53 53 1.23650 48.537 264.10 377.31 160.01
## 54 54 1.07850 32.001 330.31 385.69 199.62
## 55 55 1.20720 21.081 586.02 635.96 242.69
## 56 56 1.07910 40.634 879.81 841.46 245.94
## 57 57 1.23800 24.955 732.87 991.93 220.67
## 58 58 0.98777 35.643 561.47 623.01 215.75
## 59 59 1.49220 25.447 622.85 1213.00 220.37
## 60 60 0.97040 22.362 400.77 404.44 225.80
## 61 61 1.79910 49.849 406.94 794.61 203.60
## 62 62 1.34420 41.875 551.43 1160.50 175.67
## 63 63 1.17710 54.331 421.28 826.40 137.35
## 64 64 1.19820 26.119 386.23 552.69 179.61
## 65 65 1.07030 41.671 558.41 753.40 197.71
## 66 66 1.27640 46.549 714.91 1099.80 201.80
## 67 67 1.30510 42.802 450.30 562.98 237.66
## 68 68 1.19180 32.792 552.06 763.88 190.40
## 69 69 1.46070 20.522 575.18 1119.00 213.04
## 70 70 1.45520 26.358 393.77 987.57 171.94
## 71 71 1.55880 30.377 374.70 638.08 202.77
## 72 72 1.41120 17.381 339.16 564.37 183.47
## 73 73 1.38300 33.674 401.57 777.65 176.42
## 74 74 1.07810 41.566 713.10 1032.10 195.51
## 75 75 1.08920 33.427 648.84 1067.00 178.25
## 76 76 1.55340 18.215 307.94 793.95 160.09
## 77 77 1.70510 21.822 212.88 526.45 157.45
## 78 78 1.16190 52.575 466.88 520.66 235.71
## 79 79 1.48330 35.387 430.87 806.72 199.54
## 80 80 1.31990 36.560 546.77 682.22 243.11
## 81 81 0.94349 33.438 590.88 600.99 215.79
## 82 82 1.17450 18.174 480.16 552.15 225.78
## 83 83 0.78612 42.045 435.95 379.23 261.63
## 84 84 1.16080 32.636 585.26 665.09 224.51
## 85 85 1.33860 19.797 637.98 949.41 217.56
## 86 86 1.54150 31.210 399.71 913.91 157.25
## 87 87 1.21150 25.467 674.55 955.94 223.19
## 88 88 1.63770 31.080 302.89 592.00 190.87
## 89 89 1.23630 19.742 335.62 789.68 133.91
## 90 90 1.51880 37.878 218.67 358.34 163.29
## 91 91 1.11400 25.301 550.12 613.23 222.38
## 92 92 1.09140 46.975 505.05 525.02 243.31
## 93 93 1.28510 25.550 635.36 801.30 225.80
## 94 94 1.48840 16.002 440.70 914.49 185.76
## 95 95 1.14940 34.667 405.18 658.20 161.16
## 96 96 1.11630 20.027 689.09 719.87 232.16
## 97 97 1.09600 18.523 368.83 451.65 196.13
## 98 98 1.30750 34.633 638.13 890.52 206.63
## 99 99 0.92921 21.522 731.22 880.10 189.27
## 100 100 1.27870 16.611 758.94 986.28 219.66
## 101 101 1.02220 40.266 689.77 806.98 214.28
## 102 102 1.23210 23.667 363.04 653.04 158.58
## 103 103 1.15770 29.505 618.25 616.20 253.75
## 104 104 1.13180 19.714 433.78 532.93 205.72
## 105 105 0.81529 34.009 367.52 351.20 224.01
## 106 106 1.16930 38.533 441.65 885.12 153.76
## 107 107 1.04310 25.722 509.93 516.86 230.70
## 108 108 1.39030 22.891 376.11 707.40 172.66
## 109 109 1.00290 26.075 696.95 677.55 235.26
## 110 110 0.89907 18.563 574.88 634.07 193.82
## 111 111 1.42070 22.606 526.58 857.91 231.37
## 112 112 1.37850 29.742 415.81 681.81 207.52
## 113 113 1.18700 31.056 290.79 432.81 163.99
## 114 114 1.05320 34.455 527.16 751.01 163.69
## 115 115 1.31450 11.972 462.01 666.25 201.93
## 116 116 1.11580 31.003 555.81 706.39 194.43
## 117 117 1.05070 41.571 375.31 432.62 203.16
## 118 118 1.04200 38.009 426.03 573.34 163.09
## 119 119 0.78259 42.567 578.48 592.67 193.33
## 120 120 0.97608 30.375 665.12 740.83 205.65
## 121 121 1.29590 48.472 487.18 772.03 206.52
## 122 122 1.02340 23.301 386.50 434.26 205.84
## 123 123 1.57370 28.587 589.15 889.49 240.45
## 124 124 1.34830 24.669 447.70 641.79 197.69
## 125 125 0.98036 33.254 1034.90 1132.40 221.40
## 126 126 1.45130 37.937 502.99 752.86 218.12
## 127 127 1.45600 45.909 246.38 565.14 137.02
## 128 128 0.76922 29.064 520.68 424.24 220.88
## 129 129 1.67960 22.650 275.83 621.05 171.57
## 130 130 0.79098 33.923 600.85 557.06 222.09
## 131 131 1.08660 34.795 554.17 766.35 193.43
## 132 132 1.18460 52.176 602.34 890.99 212.87
## 133 133 1.34190 23.477 308.17 410.29 209.34
## 134 134 1.13400 31.456 468.86 788.12 155.61
## 135 135 1.24840 24.582 219.64 294.38 172.28
## 136 136 1.22360 37.972 304.16 412.02 173.92
## 137 137 0.60488 36.478 725.49 542.31 229.90
## 138 138 1.31970 43.319 191.69 359.24 129.36
## 139 139 1.34000 30.386 709.91 979.53 237.09
## 140 140 1.09890 24.204 535.93 657.27 206.18
## 141 141 0.89412 42.872 638.68 568.32 237.04
## 142 142 1.46040 30.446 632.36 1034.00 209.38
## 143 143 1.18220 47.515 589.51 783.93 203.72
## 144 144 1.33730 21.226 428.59 564.01 219.72
## 145 145 1.33460 39.401 483.02 873.48 167.61
## 146 146 1.26500 25.427 448.45 730.96 184.17
## 147 147 1.21460 20.331 840.09 957.85 231.59
## 148 148 1.47160 31.165 468.85 813.90 216.97
## 149 149 0.99889 23.799 505.85 682.56 170.12
## 150 150 1.07720 25.871 611.36 742.02 200.10
## 151 151 1.38270 27.173 525.58 729.95 236.83
## 152 152 1.21740 17.107 420.39 541.14 198.90
## 153 153 1.62170 27.511 573.53 1262.60 220.55
## 154 154 1.20220 30.455 429.14 664.84 192.35
## 155 155 1.08140 34.982 577.16 628.30 220.94
## 156 156 0.80011 49.161 659.39 627.38 220.32
## 157 157 1.16850 52.237 500.45 599.21 212.27
## 158 158 1.34100 45.306 276.22 508.26 150.28
## 159 159 1.31260 20.377 315.39 551.22 159.13
## 160 160 1.44560 34.529 329.85 462.29 208.42
## 161 161 0.91052 29.307 370.40 390.74 204.34
## 162 162 1.74910 31.761 291.68 645.99 185.70
## 163 163 1.24480 32.810 508.15 641.99 217.75
## 164 164 1.28180 139.790 446.98 724.63 195.68
## 165 165 1.06810 40.112 385.42 462.56 190.16
## 166 166 0.92755 24.686 539.37 558.24 216.59
## 167 167 1.10450 31.486 761.30 1043.90 191.50
## 168 168 1.01760 31.126 541.72 568.62 222.43
## 169 169 1.28030 31.362 501.47 822.59 205.63
## 170 170 1.49810 35.961 580.38 1121.40 202.02
#Base model+WTonV2 and WTonV3 and CRCL on CL
run6<-xpose.data(6,dir="C:\\Heller\\PHAR7383\\Final")
##
## Looking for NONMEM table files.
## Reading C:\Heller\PHAR7383\Final/sdtab6
## Reading C:\Heller\PHAR7383\Final/patab6
## Reading C:\Heller\PHAR7383\Final/catab6
## Reading C:\Heller\PHAR7383\Final/cotab6
## Table files read.
## Reading C:\Heller\PHAR7383\Final/run6.phi
##
## Looking for NONMEM simulation table files.
## No simulated table files read.
dv.vs.ipred(run6,type="p")
dv.vs.pred(run6,type="p")
cwres.vs.idv(run6,type="p")
cwres.vs.pred(run6,type="p")
ind.plots(run6)
ranpar.hist(run6)
ranpar.vs.cov(run6)
#Model qualification #VPC plot
#VPC
vpc.file <- "C:/Heller/PHAR7383/Final/vpc/vpc_results.csv"
vpctab <- "C:/Heller/PHAR7383/Final/vpc/vpctab5"
xpose.VPC(vpc.info=vpc.file,vpctab=vpctab,PI.ci.area.smooth="TRUE",logy="TRUE")
#pcVPC
vpc.file <- "C:/Heller/PHAR7383/Final/pcvpc/vpc_results.csv"
vpctab <- "C:/Heller/PHAR7383/FInal/pcvpc/vpctab5"
xpose.VPC(vpc.info=vpc.file,vpctab=vpctab,PI.ci="area",PI.ci.area.smooth="FALSE",logy="TRUE")
#Bootstrap #run in terminal: bootstrap run5.mod -samples=200 -seed=12345
bsres<-read.csv("C:/Heller/PHAR7383/Final/bootstrap_dir1/raw_results_run5.csv",stringsAsFactors = F)
options(digits=2)
bsres%>%gather(parameter,value,21:31)%>%
select(parameter, value)%>%
group_by(parameter)%>%
summarise(MEDIAN=median(value),LL=quantile(value,prob=0.025),UL=quantile(value,prob=0.975))%>%slice(7,6,10,11,8,2,1,4,5,3,9)%>%kable()
| parameter | MEDIAN | LL | UL |
|---|---|---|---|
| Q | 209.12 | 134.86 | 283.79 |
| KA | 1.20 | 0.84 | 1.67 |
| WTonV2 | 0.92 | 0.70 | 1.23 |
| WTonV3 | 1.04 | 0.81 | 1.37 |
| V2 | 483.03 | 322.74 | 619.81 |
| BSVKA | 0.11 | 0.03 | 0.25 |
| BSVCL | 0.11 | 0.09 | 0.16 |
| BSVV3 | 0.08 | 0.04 | 0.15 |
| CL | 30.56 | 29.05 | 32.30 |
| BSVV2 | 0.09 | 0.05 | 0.14 |
| V3 | 672.76 | 571.24 | 830.52 |