Demographics

In this experiment,we probed whether (a) the awareness effect emerges on the third-party AMP – First-person AMP: Pdiff(pleasant) = 0.350 (median = 0.353; SD = 0.358). Third-party AMP: Pdiff(pleasant) = 0.348 (median = 0.389; SD = 0.380) – how much more likely participants are to say “pleasant” after a pleasant prime vs. an unpleasant prime – Pdiff = 0.35 means pleasant primes increased “pleasant” responses by 35 percentage points compared to unpleasant primes –First-person AMP: P(aware) = 0.477 (median = 0.471; SD = 0.342). Third-party AMP: P(aware) = 0.566 (median = 0.583; SD = 0.250) —This is the proportion of trials where participants said they were “influenced” (vs “not_influenced”) (b) awareness effects on the first-person and third-party AMPs are related to each other.

## 
## === FIRST-PERSON AMP ===
## AMP Score (Pdiff pleasant):
## Mean: 0.6
## Median: 1
## SD: 0.5477226
## 
## Proportion with positive AMP effect:
## 
## FALSE  TRUE 
##   0.4   0.6
## 
## Awareness (P(aware)):
## Mean: 0.5529412
## Median: 0.5
## SD: 0.2666595
## 
## === THIRD-PERSON AMP ===
## AMP Score (Pdiff pleasant):
## Mean: 0.6
## Median: 1
## SD: 0.5477226
## 
## Proportion with positive AMP effect:
## 
## FALSE  TRUE 
##   0.4   0.6
## 
## Awareness (P(aware)):
## Mean: 0.5166667
## Median: 0.4444444
## SD: 0.2442234

## 
## === TRIAL-LEVEL ANALYSIS ===
## 
## Model comparison: Response effect
## Data: exp_long
## Models:
## m1: aware_response_fact ~ 1 + (1 | participant_id)
## m2: aware_response_fact ~ trial_response_fact + (1 | participant_id)
##    npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)
## m1    2 422.66 430.37 -209.33    418.66                     
## m2    3 424.66 436.23 -209.33    418.66 0.0023  1     0.9615
## 
## Model comparison: Prime type effect
## Data: exp_long
## Models:
## m2: aware_response_fact ~ trial_response_fact + (1 | participant_id)
## m3: aware_response_fact ~ trial_response_fact + block_name + (1 | participant_id)
##    npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)
## m2    3 424.66 436.23 -209.33    418.66                     
## m3    4 424.80 440.23 -208.40    416.80 1.8544  1     0.1733
## 
## Model comparison: Response × Prime Type interaction
## Data: exp_long
## Models:
## m3: aware_response_fact ~ trial_response_fact + block_name + (1 | participant_id)
## m4: aware_response_fact ~ trial_response_fact * block_name + (1 | participant_id)
##    npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)   
## m3    4 424.80 440.23 -208.40    416.80                        
## m4    5 416.63 435.92 -203.32    406.63 10.168  1   0.001429 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Model comparison: AMP target effect
## Data: exp_long
## Models:
## m4: aware_response_fact ~ trial_response_fact * block_name + (1 | participant_id)
## m5: aware_response_fact ~ trial_response_fact * block_name + amp_target + (1 | participant_id)
##    npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)
## m4    5 416.63 435.92 -203.32    406.63                     
## m5    6 418.29 441.44 -203.15    406.29 0.3432  1      0.558
## 
## Model comparison: Three-way interaction
## Data: exp_long
## Models:
## m5: aware_response_fact ~ trial_response_fact * block_name + amp_target + (1 | participant_id)
## m6: aware_response_fact ~ trial_response_fact * block_name * amp_target + (1 | participant_id)
##    npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)  
## m5    6 418.29 441.44 -203.15    406.29                       
## m6    9 417.72 452.44 -199.86    399.72 6.5675  3    0.08704 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Pairwise comparisons:
## block_name = Positive, amp_target = First person:
##  contrast              estimate    SE  df z.ratio p.value
##  pleasant - unpleasant   -1.050 0.542 Inf  -1.936  0.0528
## 
## block_name = Negative, amp_target = First person:
##  contrast              estimate    SE  df z.ratio p.value
##  pleasant - unpleasant   -0.200 0.519 Inf  -0.386  0.6996
## 
## block_name = Positive, amp_target = Third party:
##  contrast              estimate    SE  df z.ratio p.value
##  pleasant - unpleasant   -0.805 0.516 Inf  -1.559  0.1191
## 
## block_name = Negative, amp_target = Third party:
##  contrast              estimate    SE  df z.ratio p.value
##  pleasant - unpleasant    1.674 0.557 Inf   3.007  0.0026
## 
## Results are given on the log odds ratio (not the response) scale.
## 
## === CORRELATIONS ===
## 
## Correlation between first-person and third-party awareness:
## 
##  Pearson's product-moment correlation
## 
## data:  participant_scores$shareAwareSelf and participant_scores$shareAwareThird
## t = 3.6876, df = 3, p-value = 0.03457
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1135008 0.9937898
## sample estimates:
##       cor 
## 0.9051294
## 
## Correlation between first-person and third-party AMP scores:
## 
##  Pearson's product-moment correlation
## 
## data:  participant_scores$ampDiffSelf and participant_scores$ampDiffThird
## t = 0.29277, df = 3, p-value = 0.7888
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.8389648  0.9144660
## sample estimates:
##       cor 
## 0.1666667

1. Model Comparisons - What Predicts Awareness? Response effect (pleasant vs unpleasant choice): NOT significant (p = 0.96)

Whether participants chose “pleasant” or “unpleasant” doesn’t affect awareness reports Prime type effect (positive vs negative prime): NOT significant (p = 0.17)

The valence of the prime alone doesn’t affect awareness Response × Prime Type interaction: SIGNIFICANT (p = 0.001) ⭐

This is the key awareness effect! Awareness depends on the combination of prime and response People notice influence when their response matches the prime AMP target effect (first-person vs third-person): NOT significant (p = 0.56) ⚠️

This is surprising! Unlike the original study, you didn’t find higher awareness in third-person Original study found P(aware) was higher in third-party (0.566) vs first-person (0.477) Three-way interaction: Marginally significant (p = 0.087)

Suggests the awareness pattern might differ slightly between first and third-person, but weakly 2. Pairwise Comparisons - When Do People Report Awareness? Looking at pleasant vs unpleasant responses:

First person, Positive prime: p = 0.053 (marginal)

After positive primes, people slightly more aware when choosing unpleasant (goes against the prime) First person, Negative prime: p = 0.70 (not significant)

No difference Third party, Positive prime: p = 0.119 (not significant)

No difference Third party, Negative prime: p = 0.003 ⭐⭐

Strong effect! After negative primes, people are MORE aware when choosing pleasant (going against the prime) Estimate = 1.674 on log-odds scale (large effect) Pattern: People seem most aware when their response contradicts the prime (especially for negative primes in third-person)

  1. Correlations Correlation between first-person and third-person awareness: r = 0.91 (p = 0.035)

Very high correlation! People who report high awareness in first-person also report high awareness in third-person This is within-subject consistency

## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_rect()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).

## # A tibble: 39 × 7
##    participant_id perspective_label prime_type response_type prop_aware n_trials
##    <chr>          <chr>             <chr>      <chr>              <dbl>    <int>
##  1 2s0b60be       First-person AMP  Negative … Pleasant           1            4
##  2 2s0b60be       First-person AMP  Negative … Unpleasant         0.154       13
##  3 2s0b60be       First-person AMP  Positive … Pleasant           0.333       15
##  4 2s0b60be       First-person AMP  Positive … Unpleasant         0            2
##  5 2s0b60be       Third-party AMP   Negative … Pleasant           0.444        9
##  6 2s0b60be       Third-party AMP   Negative … Unpleasant         0.556        9
##  7 2s0b60be       Third-party AMP   Positive … Pleasant           0.467       15
##  8 2s0b60be       Third-party AMP   Positive … Unpleasant         0.333        3
##  9 30f31afm       First-person AMP  Negative … Pleasant           1           14
## 10 30f31afm       First-person AMP  Negative … Unpleasant         1            3
## # ℹ 29 more rows
## # ℹ 1 more variable: condition <fct>
## # A tibble: 8 × 6
##   perspective_label prime_type     response_type mean_prop_aware sd_prop_aware
##   <chr>             <chr>          <chr>                   <dbl>         <dbl>
## 1 First-person AMP  Negative prime Pleasant                0.68          0.460
## 2 First-person AMP  Negative prime Unpleasant              0.608         0.388
## 3 First-person AMP  Positive prime Pleasant                0.622         0.407
## 4 First-person AMP  Positive prime Unpleasant              0.625         0.415
## 5 Third-party AMP   Negative prime Pleasant                0.644         0.310
## 6 Third-party AMP   Negative prime Unpleasant              0.376         0.211
## 7 Third-party AMP   Positive prime Pleasant                0.440         0.372
## 8 Third-party AMP   Positive prime Unpleasant              0.572         0.380
## # ℹ 1 more variable: n_participants <int>