Elucidating Changes in the Expression of Acetylcholine-related Genes during Alzheimer’s Disease Progression
2025-12-03
Understanding how acetylcholine genetic regulation changes as Alzheimer’s disease progresses
Obtained acetylcholine-related genes from AnnotatioDBi, provides access to GO databases.
Mapped GO terms to genes in the dataset
Found a GO score by finding the mean expression of the genes associated with a GO term
Joined differential expression data with 13-month spatial X and Y coordinates.
Mapped Acetylcholine-related GO-terms and genes across brain regions & cell types.
Huang Q, Liao C, Ge F, Ao J, Liu T. Acetylcholine bidirectionally regulates learnineg and memory. J Neurorestoratology. 2022;10(2):100002. doi:10.1016/j.jnrt.2022.100002 (https://www.zotero.org/google-docs/?NLtrnF)
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer’s disease: mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther. 2024;9(1):211. doi:10.1038/s41392-024-01911-3 (https://www.zotero.org/google-docs/?NLtrnF)
Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer’s disease: interplay mechanisms and clinical translation. J Neuroinflammation. 2023;20(1):165. doi:10.1186/s12974-023-02853-3 (https://www.zotero.org/google-docs/?NLtrnF)
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer’s disease states. Mol Brain. 2024;17(1):44. doi:10.1186/s13041-024-01118-1 (https://www.zotero.org/google-docs/?NLtrnF)
Bloom GS. Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014;71(4):505. doi:10.1001/jamaneurol.2013.5847(https://www.zotero.org/google-docs/?NLtrnF)
Gajendra K, Pratap GK, Poornima DV, Shantaram M, Ranjita G. Natural acetylcholinesterase inhibitors: A multi-targeted therapeutic potential in Alzheimer’s disease. Eur J Med Chem Rep. 2024;11:100154. doi:10.1016/j.ejmcr.2024.100154(https://www.zotero.org/google-docs/?NLtrnF)
Abe Y, Aoyagi A, Hara T, et al. Pharmacological Characterization of RS-1259, an Orally Active Dual Inhibitor of Acetylcholinesterase and Serotonin Transporter, in Rodents: Possible Treatment of Alzheimer’s Disease. J Pharmacol Sci. 2003;93(1):95-105. doi:10.1254/jphs.93.95(https://www.zotero.org/google-docs/?NLtrnF)
Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9(1):75. doi:10.1186/s13073-017-0467-4(https://www.zotero.org/google-docs/?NLtrnF)
Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 2022;14(1):68. doi:10.1186/s13073-022-01075-1(https://www.zotero.org/google-docs/?NLtrnF)
Marx V. Method of the Year: spatially resolved transcriptomics. Nat Methods. 2021;18(1):9-14. doi:10.1038/s41592-020-01033-y (https://www.zotero.org/google-docs/?NLtrnF)
Zeng H, Jiahao Huang, Haowen Zhou, et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in an Alzheimer disease model. Published online November 17, 2022. doi:10.5281/ZENODO.7332091(https://www.zotero.org/google-docs/?NLtrnF)
Wilcoxon Rank Sum and Signed Rank Tests: wilcox.test. Documentation for the R ‘stats’ package.](https://rdrr.io/r/stats/wilcox.test.html)
Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020; 25(24): 5789. doi:10.3390/molecules25245789(https://www.mdpi.com/1420-3049/25/24/5789)
Chen ZR, Huang JB, Yang SL, Hong FF. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules. 2022; 27(6):1816. PMCID: PMC8949236(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949236/)