Dataset USArrests terdiri dari empat variabel utama yang menggambarkan kondisi kriminalitas dan karakteristik kependudukan di 50 negara bagian Amerika Serikat pada tahun 1973. Dataset USArrests berasal dari publikasi resmi pemerintah Amerika Serikat berjudul Statistical Abstract of the United States 1975 yang diterbitkan oleh U.S. Department of Commerce, Bureau of the Census. Publikasi tersebut memuat ringkasan statistik nasional, termasuk data kriminalitas tahun 1973 yang kemudian dirangkum kembali menjadi empat indikator utama: Murder, Assault, UrbanPop, dan Rape untuk 50 negara bagian Amerika Serikat. Dataset ini kemudian dikurasi dan disertakan dalam paket datasets pada perangkat lunak R, sehingga dapat digunakan secara luas dalam penelitian statistik dan analisis multivariat.
Analisis ini bertujuan untuk mengetahui pola kemiripan tingkat kriminalitas antar negara bagian di Amerika Serikat dengan menggunakan data USArrests, yang memuat empat indikator utama kejahatan pada tahun 1973, yaitu Murder, Assault, UrbanPop, dan Rape. Melalui analisis Multidimensional Scaling (MDS), penelitian ini berupaya memetakan 50 negara bagian ke dalam ruang berdimensi rendah sehingga hubungan kedekatan atau perbedaan karakteristik kriminalitas antar wilayah dapat divisualisasikan secara lebih jelas. Pendekatan ini memungkinkan untuk mengidentifikasi kelompok negara bagian yang memiliki pola kriminalitas serupa, serta mendeteksi negara bagian yang menunjukkan karakteristik yang berbeda secara signifikan dari wilayah lainnya. Dengan demikian, MDS memberikan gambaran komprehensif mengenai persebaran tingkat kejahatan di Amerika Serikat yang dapat mendukung pemahaman lebih dalam mengenai faktor-faktor yang mungkin mempengaruhi kriminalitas di berbagai wilayah.
> library(knitr)
> library(readxl)
> tabel <- read_excel("D:/MATERI KULIAH/SMT 5/data_anmul.xlsx")
> tabel
# A tibble: 50 × 5
State Murder Assault UrbanPop Rape
<chr> <dbl> <dbl> <dbl> <dbl>
1 Alabama 13.2 236 58 21.2
2 Alaska 10 263 48 44.5
3 Arizona 8.1 294 80 31
4 Arkansas 8.8 190 50 19.5
5 California 9 276 91 40.6
6 Colorado 7.9 204 78 38.7
7 Connecticut 3.3 110 77 11.1
8 Delaware 5.9 238 72 15.8
9 Florida 15.4 335 80 31.9
10 Georgia 17.4 211 60 25.8
# ℹ 40 more rows
> knitr::kable(tabel,caption = "Tabel Tingkat Kriminalitas Negara Bagian Amerika Serikat Tahun 1973")
| State | Murder | Assault | UrbanPop | Rape |
|---|---|---|---|---|
| Alabama | 13.2 | 236 | 58 | 21.2 |
| Alaska | 10.0 | 263 | 48 | 44.5 |
| Arizona | 8.1 | 294 | 80 | 31.0 |
| Arkansas | 8.8 | 190 | 50 | 19.5 |
| California | 9.0 | 276 | 91 | 40.6 |
| Colorado | 7.9 | 204 | 78 | 38.7 |
| Connecticut | 3.3 | 110 | 77 | 11.1 |
| Delaware | 5.9 | 238 | 72 | 15.8 |
| Florida | 15.4 | 335 | 80 | 31.9 |
| Georgia | 17.4 | 211 | 60 | 25.8 |
| Hawaii | 5.3 | 46 | 83 | 20.2 |
| Idaho | 2.6 | 120 | 54 | 14.2 |
| Illinois | 10.4 | 249 | 83 | 24.0 |
| Indiana | 7.2 | 113 | 65 | 21.0 |
| Iowa | 2.2 | 56 | 57 | 11.3 |
| Kansas | 6.0 | 115 | 66 | 18.0 |
| Kentucky | 9.7 | 109 | 52 | 16.3 |
| Louisiana | 15.4 | 249 | 66 | 22.2 |
| Maine | 2.1 | 83 | 51 | 7.8 |
| Maryland | 11.3 | 300 | 67 | 27.8 |
| Massachusetts | 4.4 | 149 | 85 | 16.3 |
| Michigan | 12.1 | 255 | 74 | 35.1 |
| Minnesota | 2.7 | 72 | 66 | 14.9 |
| Mississippi | 16.1 | 259 | 44 | 17.1 |
| Missouri | 9.0 | 178 | 70 | 28.2 |
| Montana | 6.0 | 109 | 53 | 16.4 |
| Nebraska | 4.3 | 102 | 62 | 16.5 |
| Nevada | 12.2 | 252 | 81 | 46.0 |
| New Hampshire | 2.1 | 57 | 56 | 9.5 |
| New Jersey | 7.4 | 159 | 89 | 18.8 |
| New Mexico | 11.4 | 285 | 70 | 32.1 |
| New York | 11.1 | 254 | 86 | 26.1 |
| North Carolina | 13.0 | 337 | 45 | 16.1 |
| North Dakota | 0.8 | 45 | 44 | 7.3 |
| Ohio | 7.3 | 120 | 75 | 21.4 |
| Oklahoma | 6.6 | 151 | 68 | 20.0 |
| Oregon | 4.9 | 159 | 67 | 29.3 |
| Pennsylvania | 6.3 | 106 | 72 | 14.9 |
| Rhode Island | 3.4 | 174 | 87 | 8.3 |
| South Carolina | 14.4 | 279 | 48 | 22.5 |
| South Dakota | 3.8 | 86 | 45 | 12.8 |
| Tennessee | 13.2 | 188 | 59 | 26.9 |
| Texas | 12.7 | 201 | 80 | 25.5 |
| Utah | 3.2 | 120 | 80 | 22.9 |
| Vermont | 2.2 | 48 | 32 | 11.2 |
| Virginia | 8.5 | 156 | 63 | 20.7 |
| Washington | 4.0 | 145 | 73 | 26.2 |
| West Virginia | 5.7 | 81 | 39 | 9.3 |
| Wisconsin | 2.6 | 53 | 66 | 10.8 |
| Wyoming | 6.8 | 161 | 60 | 15.6 |
Variabel Murder menyatakan jumlah penangkapan terkait kasus pembunuhan per 100.000 penduduk, sehingga mencerminkan tingkat kejahatan berat yang paling ekstrem. Variabel Assault menggambarkan jumlah penangkapan untuk tindak penyerangan per 100.000 penduduk, yang umumnya memiliki angka lebih tinggi dibandingkan pembunuhan sehingga menjadi salah satu indikator penting dalam memetakan tingkat kekerasan di suatu wilayah. Variabel UrbanPop menunjukkan persentase penduduk yang tinggal di wilayah urban, dan digunakan untuk menggambarkan tingkat urbanisasi tiap negara bagian, karena urbanisasi sering dianggap berhubungan dengan dinamika kriminalitas. Terakhir, variabel Rape berisi jumlah penangkapan terkait kasus pemerkosaan per 100.000 penduduk, yang juga menjadi indikator penting dalam analisis kejahatan berbasis populasi. Keempat variabel ini bersama-sama memberikan gambaran menyeluruh mengenai pola kriminalitas dan demografi di Amerika Serikat, sehingga dataset ini banyak digunakan dalam analisis multivariat seperti PCA, klaster, maupun Multidimensional Scaling (MDS) untuk memahami kemiripan dan perbedaan karakteristik antar negara bagian.
Analisis Multidimensional Scaling (MDS) merupakan metode statistik multivariat yang digunakan untuk memetakan objek-objek berdasarkan tingkat kemiripannya ke dalam ruang berdimensi rendah, biasanya dua atau tiga dimensi, sehingga hubungan antar objek dapat divisualisasikan secara lebih intuitif. Metode ini berangkat dari asumsi bahwa informasi mengenai kemiripan atau jarak antar objek dapat direpresentasikan dalam bentuk koordinat geometris yang mempertahankan struktur kedekatannya. MDS banyak digunakan dalam berbagai bidang seperti psikologi, pemasaran, geografi, hingga analisis sosial karena kemampuannya menyederhanakan data kompleks menjadi peta visual yang mudah ditafsirkan. Dalam konteks penelitian ini, MDS dipilih karena mampu menggambarkan pola kedekatan antar negara bagian Amerika Serikat berdasarkan indikator kriminalitas secara komprehensif, sehingga memudahkan identifikasi kelompok wilayah dengan karakteristik kejahatan yang serupa maupun yang berbeda secara signifikan. Keunggulan utama MDS terletak pada fleksibilitasnya dalam mengolah data berbasis jarak dan kemampuannya menghasilkan visualisasi yang dapat mendukung interpretasi yang lebih mendalam terhadap struktur data.
Data kriminalitas sering dianalisis untuk memahami pola kejadian kejahatan di suatu wilayah dan karakteristik sosial yang mungkin memengaruhinya. Berbagai indikator seperti tingkat pembunuhan (Murder), penyerangan (Assault), dan proporsi populasi perkotaan (UrbanPop) digunakan untuk menggambarkan kondisi keamanan suatu wilayah. Analisis statistik terhadap data kriminalitas membantu dalam mengidentifikasi wilayah dengan risiko tinggi, memahami hubungan antar jenis kejahatan, serta menyediakan dasar empiris bagi perumusan kebijakan penanggulangan kriminalitas. Studi-studi sebelumnya menunjukkan bahwa variasi geografis dan faktor demografis sering memengaruhi tingkat kejahatan di berbagai negara bagian (FBI, 1975; Osgood, 2000).
Multidimensional Scaling (MDS) adalah metode statistik multivariat yang digunakan untuk memetakan objek ke dalam ruang berdimensi rendah berdasarkan tingkat kemiripan atau jarak antar objek. MDS bertujuan untuk menghasilkan representasi visual yang mempertahankan struktur jarak pada data asli sehingga pola-pola seperti kelompok, kedekatan, atau perbedaan antar objek dapat diamati dengan lebih mudah. Dalam konteks data kriminalitas, MDS memungkinkan peneliti untuk melihat bagaimana negara bagian saling berhubungan berdasarkan tingkat kejahatan yang terjadi, serta mengidentifikasi kelompok wilayah yang menunjukkan karakteristik kriminalitas serupa. MDS telah digunakan secara luas pada berbagai bidang seperti psikologi, pemasaran, biologi, dan kriminologi.
Tahapan analisis Multidimensional Scaling (MDS) adalah sebagai berikut :
Tahap pertama dalam analisis MDS adalah menyiapkan data dan menghitung matriks jarak antar objek. Data yang digunakan biasanya bersifat multivariat numerik sehingga setiap objek memiliki beberapa variabel pengukuran. Sebelum menghitung jarak, data umumnya distandardisasi untuk menghilangkan pengaruh perbedaan skala antar variabel. Setelah itu, jarak antar objek dihitung menggunakan ukuran kedekatan tertentu, seperti jarak Euclidean, Manhattan, atau jarak lainnya sesuai kebutuhan penelitian. Hasil perhitungan tersebut berupa matriks jarak yang akan menjadi dasar proses pemetaan MDS.
Tahap berikutnya adalah mengkonversi matriks jarak menjadi konfigurasi titik dalam ruang berdimensi rendah. Pada tahap ini, metode MDS bekerja dengan mencari koordinat yang paling baik merepresentasikan jarak antar objek sedekat mungkin dengan jarak asli dalam matriks. Algoritma MDS berusaha meminimalkan perbedaan antara jarak asli dan jarak yang dihasilkan dari konfigurasi posisi objek dalam ruang dua atau tiga dimensi. Pada MDS klasik, proses ini melibatkan dekomposisi eigen dari matriks yang telah ditransformasi menjadi bentuk matriks kesamaan (inner product matrix). Sedangkan pada non-metric MDS, transformasi dilakukan menggunakan fungsi monotonik untuk mempertahankan urutan peringkat jarak.
Tahap ketiga adalah evaluasi kualitas konfigurasi menggunakan ukuran stress. Stress merupakan ukuran ketidaksesuaian antara jarak asli dan jarak hasil pemetaan. Nilai stress yang rendah menunjukkan representasi konfigurasi yang baik, sedangkan nilai yang tinggi menunjukkan bahwa ruang berdimensi rendah tidak cukup menggambarkan struktur jarak data sebenarnya. Nilai stress menjadi indikator penting untuk menentukan apakah jumlah dimensi yang dipilih sudah tepat atau perlu ditambah atau dikurangi.
Tahap terakhir adalah interpretasi hasil dan visualisasi konfigurasi MDS. Hasil pemetaan biasanya ditampilkan dalam bentuk scatter plot dua dimensi yang memuat objek-objek berdasarkan kedekatannya. Objek yang berdekatan dalam grafik menunjukkan tingkat kemiripan yang tinggi, sedangkan yang berjauhan menunjukkan perbedaan karakteristik yang besar. Visualisasi ini memudahkan peneliti untuk mengidentifikasi pola, kelompok (cluster), atau outlier dalam data. Interpretasi dapat diperkuat dengan membandingkan posisi objek dengan karakteristik variabel aslinya.
Jarak Euclidean merupakan ukuran jarak yang paling umum digunakan dalam analisis multivariat, termasuk dalam MDS. Ukuran jarak ini menghitung kedekatan antar objek berdasarkan perbedaan nilai dari seluruh variabel numerik. Dalam data USArrests, penggunaan jarak Euclidean memungkinkan peneliti untuk menilai seberapa mirip dua negara bagian berdasarkan tingkat kejahatan dan komposisi penduduk urban. Literatur menunjukkan bahwa jarak Euclidean sangat sensitif terhadap skala variabel sehingga normalisasi atau standardisasi sering diperlukan terutama ketika variabel memiliki satuan yang berbeda. Oleh karena itu, penggunaan jarak Euclidean yang telah distandardisasi menjadi pendekatan umum dalam analisis seperti MDS (Everitt et al., 2011; Johnson & Wichern, 2007).
Visualisasi data merupakan komponen penting dalam analisis statistik modern karena memudahkan interpretasi dan komunikasi hasil. Dalam penelitian kriminalitas, visualisasi seperti plot MDS membantu dalam mengidentifikasi pola kedekatan, outlier, atau kelompok wilayah dengan karakteristik serupa. Literatur menyatakan bahwa representasi grafis mampu menyampaikan informasi kompleks dengan lebih intuitif dibandingkan analisis numerik semata. Oleh karena itu, penggabungan metode visual seperti MDS dengan data kriminalitas memungkinkan peneliti menghasilkan pemahaman yang lebih holistik terhadap fenomena yang diteliti (Cleveland, 1993; Friendly, 2008).
Penelitian ini bertujuan untuk menganalisis pola kemiripan dan perbedaan tingkat kriminalitas antar negara bagian di Amerika Serikat berdasarkan dataset USArrests. Secara khusus, penelitian ini bertujuan untuk memetakan 50 negara bagian ke dalam ruang berdimensi rendah menggunakan metode Multidimensional Scaling (MDS) agar struktur jarak antar negara bagian dapat divisualisasikan secara lebih jelas. Selain itu, penelitian ini bertujuan untuk mengidentifikasi kelompok negara bagian yang memiliki karakteristik kriminalitas serupa serta mengevaluasi kualitas pemetaan menggunakan ukuran stress. Hasil analisis diharapkan memberikan gambaran menyeluruh mengenai distribusi pola kriminalitas di Amerika Serikat serta mendukung pemahaman terhadap hubungan antar variabel kriminalitas dalam data multivariat.
Berikut merupakan source code beserta penjelasan mengenai coding pada RStudio.
> library(readxl)
> library(MASS)
readxl digunakan untuk membaca file Excel (.xlsx) ke dalam R. MASS berisi fungsi-fungsi statistik, termasuk cmdscale() untuk MDS klasik.
> Data <- read_excel("D:/MATERI KULIAH/SMT 5/data_anmul.xlsx")
> head(Data)
# A tibble: 6 × 5
State Murder Assault UrbanPop Rape
<chr> <dbl> <dbl> <dbl> <dbl>
1 Alabama 13.2 236 58 21.2
2 Alaska 10 263 48 44.5
3 Arizona 8.1 294 80 31
4 Arkansas 8.8 190 50 19.5
5 California 9 276 91 40.6
6 Colorado 7.9 204 78 38.7
> Data <- Data[,-1]
embaca dataset langsung dari file Excel yang disimpan di komputer pengguna. Setelah data berhasil dimuat, fungsi Data digunakan untuk menampilkan keseluruhan isi dataset, sedangkan head(Data) memberikan enam baris pertama sebagai gambaran awal struktur data. syntax Data <- Data[,-1] digunakan untuk menghapus kolom pertama dari dataset. Kolom ini biasanya berisi nama objek seperti nama negara bagian, yang tidak digunakan dalam perhitungan jarak pada MDS karena bukan variabel numerik.
> dist_matrix <- as.matrix(dist(Data))
Menghitung jarak Euclidean antar objek menggunakan seluruh variabel numerik dalam dataset. Fungsi dist() menghasilkan objek jarak, lalu as.matrix() mengubahnya menjadi matriks jarak penuh berisi nilai kedekatan antar pasangan objek.
> A <- dist_matrix^2
> I<-diag(50)
> J<-matrix(rep(1,50), nrow=50, ncol=50)
> V<- I-(1/50)*J
>
> aa <- V %*% A
> BB <- aa %*% V
> B <-(-1/2) * BB
> eigen_result <- eigen(B)
> eigenvalues <- eigen_result$values
> eigenvectors <- eigen_result$vectors
Syntax A <- dist_matrix^2 mengubah matriks jarak menjadi jarak kuadrat, yang diperlukan dalam transformasi MDS. Kemudian dibuat matriks identitas I <- diag(50) dan matriks satuan J <- matrix(rep(1,50), nrow=50, ncol=50) sebagai dasar pembentukan centering matrix. Dengan syntax V <- I - (1/50)* J, diperoleh matriks pusat yang berfungsi menghilangkan pengaruh posisi absolut antar objek. Matriks ini kemudian digunakan untuk membentuk matriks B melalui operasi matriks B <- (-1/2) * V %* % A %*% V, yang mencerminkan inner product matrix. Setelah matriks B terbentuk, fungsi eigen(B) digunakan untuk menghitung nilai eigen dan vektor eigen, yang menjadi komponen utama dalam menentukan struktur dimensi rendah.
> cumulative_variance <- cumsum(eigenvalues) / sum(eigenvalues)
Menghitung proporsi variasi yang dijelaskan oleh nilai-nilai eigen secara kumulatif. Pengukuran ini penting untuk menilai seberapa besar informasi dalam data asli yang dapat direpresentasikan dalam satu atau dua dimensi.
> fit <- cmdscale(dist_matrix, k=2)
> # Hitung disparities
> disparities <- matrix(0, nrow = 50, ncol = 50)
>
> for (i in 1:50) {
+ for (j in 1:50) {
+ disparities[i, j] <- sqrt(sum((fit[i,] - fit[j,])^2))
+ }
+ }
Digunakan untuk langsung mendapatkan koordinat objek dalam dua dimensi. Fungsi ini mengonversi matriks jarak menjadi titik-titik pada bidang dua dimensi dengan mempertahankan struktur jarak sebaik mungkin. Hasilnya disimpan dalam objek fit, yang berisi nilai koordinat untuk setiap objek. Disparities digunakan untuk menghitung ulang jarak antar titik pada ruang dua dimensi menggunakan koordinat MDS. Dengan membuat matriks kosong disparities dan mengisinya melalui loop, setiap pasangan titik dihitung jaraknya menggunakan rumus Euclidean.
> stress <- sqrt(sum((dist_matrix - disparities)^2) / sum(dist_matrix^2))
> cat("Nilai Stress:", stress, "\n")
Nilai Stress: 0.01590128
Nilai stress dihitung melalui syntax sqrt(sum((dist_matrix - disparities)^2) / sum(dist_matrix^2)). Stress merupakan ukuran distorsi antara jarak asli dan jarak hasil pemetaan, sehingga semakin kecil nilai stress, semakin baik kualitas pemetaan MDS.
> Data <- read_excel("D:/MATERI KULIAH/SMT 5/data_anmul.xlsx")
> plot(fit, type="n",
+ xlab="Dimensi 1", ylab="Dimensi 2",
+ main="Pemetaan Amerika Serikat dengan Indikator Kriminalitas")
>
> points(fit, pch=19, cex=0.8)
>
> text(fit,
+ labels = Data[[1]],
+ cex = 0.55,
+ pos = 3,
+ offset = 0.6)
Membuat visualisasi hasil pemetaan menggunakan syntax plot() yang
membuat kerangka grafik dua dimensi dengan judul dan label sumbu. Titik
koordinat objek ditambahkan menggunakan points(), dan label nama objek
ditampilkan melalui fungsi text().
> Data
# A tibble: 50 × 5
State Murder Assault UrbanPop Rape
<chr> <dbl> <dbl> <dbl> <dbl>
1 Alabama 13.2 236 58 21.2
2 Alaska 10 263 48 44.5
3 Arizona 8.1 294 80 31
4 Arkansas 8.8 190 50 19.5
5 California 9 276 91 40.6
6 Colorado 7.9 204 78 38.7
7 Connecticut 3.3 110 77 11.1
8 Delaware 5.9 238 72 15.8
9 Florida 15.4 335 80 31.9
10 Georgia 17.4 211 60 25.8
# ℹ 40 more rows
Output ini menampilkan deskripsi data set yang digunakan untuk analisis. Diketahui data tersebut memiliki 4 variabel yaitu Murder, Assault, UrbanPop, dan Rape.
> Data <- Data[,-1]
> Data
# A tibble: 50 × 4
Murder Assault UrbanPop Rape
<dbl> <dbl> <dbl> <dbl>
1 13.2 236 58 21.2
2 10 263 48 44.5
3 8.1 294 80 31
4 8.8 190 50 19.5
5 9 276 91 40.6
6 7.9 204 78 38.7
7 3.3 110 77 11.1
8 5.9 238 72 15.8
9 15.4 335 80 31.9
10 17.4 211 60 25.8
# ℹ 40 more rows
Output ini menampilkan data yang kolom pertama telah dihapus karena kolom ini berisi nama objek yaitu nama negara bagian yang tidak digunakan dalam perhitungan jarak pada MDS karena bukan variabel numerik sehingga akan memudahkan saat melakukan analisis.
> dist_matrix
1 2 3 4 5 6 7
1 0.00000 37.17701 63.00833 46.92814 55.52477 41.93256 128.206942
2 37.17701 0.00000 46.59249 77.19741 45.10222 66.47594 159.406556
3 63.00833 46.59249 0.00000 108.85192 23.19418 90.35115 185.159526
4 46.92814 77.19741 108.85192 0.00000 97.58202 36.73486 85.028289
5 55.52477 45.10222 23.19418 97.58202 0.00000 73.19713 169.277110
6 41.93256 66.47594 90.35115 36.73486 73.19713 0.00000 98.081191
7 128.20694 159.40656 185.15953 85.02829 169.27711 98.08119 0.000000
8 16.80625 45.18296 58.61638 53.01038 49.29148 41.47783 128.210179
9 102.00162 79.97450 41.65453 148.73574 60.98073 131.40582 226.303005
10 25.84183 57.03026 86.03796 25.58613 73.99730 25.09303 104.426529
11 191.80305 221.19354 248.26897 147.77598 231.07109 159.17918 64.952367
12 116.76198 146.48498 176.81767 70.58704 162.61279 90.88641 25.280427
13 28.45488 42.91165 45.69781 67.77027 32.71880 47.66907 139.906469
14 123.34521 152.80409 181.89780 78.47809 166.22996 93.61506 16.316250
15 180.61010 209.98352 239.99146 134.59495 224.63466 152.07975 57.595573
16 121.51987 151.48020 180.02891 76.75344 164.51675 92.17972 14.173920
17 127.28417 156.61204 187.69030 81.09285 173.20791 101.02475 26.343880
18 15.45445 32.34888 48.49464 61.54551 41.63556 49.97499 140.398077
19 154.14529 183.89753 214.32741 107.85073 199.93111 127.90016 37.647443
20 64.99362 44.83949 15.01599 111.64291 36.34735 97.30041 191.161947
21 91.64851 123.25421 145.87591 54.18118 129.52471 59.90000 40.165284
22 28.48543 28.85775 39.87242 71.10028 27.74635 51.45483 147.266561
23 164.65096 194.25357 223.08826 119.32464 207.22254 134.76454 39.746698
24 27.39014 28.63512 52.70873 69.68536 55.68357 68.66440 153.263955
25 59.78829 89.30672 116.46738 24.89438 100.98891 29.17979 70.695827
26 127.39262 156.67358 187.54085 81.16311 172.99607 100.75167 24.746313
27 134.43697 164.11426 193.42360 88.97893 178.10081 105.66835 17.865050
28 37.43047 34.88682 44.79743 74.28869 26.74696 48.83421 146.551083
29 179.73620 209.25441 239.25562 133.67831 224.05539 151.58918 57.043843
30 83.24302 114.73557 135.85040 49.84426 119.04117 50.42083 51.196680
31 51.64349 33.52193 13.89604 97.93120 24.49510 81.73622 176.580322
32 33.71083 43.18298 40.85352 73.76212 26.90093 52.27810 145.268166
33 101.96102 79.37607 57.61961 147.18424 80.33212 138.97759 229.504009
34 192.41614 221.37859 252.80819 145.85554 238.21446 165.75093 73.038962
35 117.38761 147.37334 174.33818 74.36975 157.99851 85.81754 15.036289
36 85.84870 116.42942 143.93141 43.01267 128.77935 57.09974 43.036031
37 78.38686 106.93012 135.67288 36.89512 120.03958 47.36412 53.242840
38 131.08509 161.60090 188.86622 86.99086 172.99936 101.03960 8.027453
39 70.33811 103.90380 122.41887 42.18531 107.21311 43.87949 64.837104
40 44.18292 27.55649 36.89092 89.24887 47.06134 82.64194 172.206765
41 151.08911 179.94813 211.75158 104.45521 197.52438 125.30211 40.039231
42 48.34760 77.88453 108.25812 12.61428 94.72766 28.00589 82.192761
43 41.56609 72.36221 93.27599 32.74462 77.38023 14.50103 92.659160
44 118.50270 148.27609 174.25734 76.43900 157.49263 85.62552 15.755951
45 190.37069 218.29047 251.48926 143.52857 237.43546 165.04769 76.617361
46 80.29533 110.64669 139.42471 36.42156 124.82091 53.41685 49.307200
47 92.82047 122.14700 149.29786 51.20478 133.10657 60.64206 38.334058
48 156.79241 185.64086 218.00608 110.07111 204.25371 132.36011 47.895720
49 183.77573 213.57540 242.31238 138.34424 226.45750 154.11522 58.056696
50 75.50709 106.74010 135.38039 30.98726 121.72034 52.03672 54.060152
8 9 10 11 12 13 14
1 16.80625 102.00162 25.84183 191.80305 116.76198 28.454877 123.345207
2 45.18296 79.97450 57.03026 221.19354 146.48498 42.911653 152.804090
3 58.61638 41.65453 86.03796 248.26897 176.81767 45.697812 181.897801
4 53.01038 148.73574 25.58613 147.77598 70.58704 67.770274 78.478086
5 49.29148 60.98073 73.99730 231.07109 162.61279 32.718802 166.229961
6 41.47783 131.40582 25.09303 159.17918 90.88641 47.669068 93.615063
7 128.21018 226.30300 104.42653 64.95237 25.28043 139.906469 16.316250
8 0.00000 99.10832 33.24530 192.36611 119.42131 18.151859 125.310534
9 99.10832 0.00000 125.76649 289.42857 217.66518 86.558708 222.923866
10 33.24530 125.76649 0.00000 167.12800 93.11606 45.002667 98.772871
11 192.36611 289.42857 167.12800 0.00000 79.75143 203.099606 69.406412
12 119.42131 217.66518 93.11606 79.75143 0.00000 132.811445 15.407790
13 18.15186 86.55871 45.00267 203.09961 132.81145 0.000000 137.256111
14 125.31053 222.92387 98.77287 69.40641 15.40779 137.256111 0.000000
15 182.70999 281.01352 156.44581 29.40782 64.13712 195.329286 58.584042
16 123.16594 221.08272 97.17407 71.10084 13.96424 135.278823 3.929377
17 130.59743 228.33276 103.04145 70.45970 13.40970 143.599373 14.606163
18 16.97675 87.67035 38.69057 203.97061 130.43328 17.811232 136.255936
19 156.66665 255.15231 130.47256 50.56679 37.67240 170.033320 36.003472
20 63.57798 37.78386 89.50536 254.68757 181.18954 53.593376 187.179192
21 89.95832 187.04374 68.76227 103.09714 42.53998 100.495224 41.544314
22 26.53168 80.35627 47.39810 209.83386 138.39097 15.591664 143.065789
23 166.14166 264.22583 140.32783 31.62040 49.48232 178.213636 41.706834
24 36.47917 85.39046 51.35543 216.83231 140.04164 41.244394 147.822258
25 61.37891 157.49175 35.57134 132.93115 62.10443 72.315973 65.613108
26 130.39314 228.32786 103.30208 69.88512 11.76435 143.447273 13.512957
27 136.37833 234.46401 110.19573 59.93071 19.90427 148.806787 12.596031
28 35.05325 84.25586 50.56758 207.73360 138.76743 22.366046 142.221658
29 181.85469 280.24748 155.66560 31.22067 63.20870 194.607657 58.096988
30 80.87799 176.89717 60.77829 113.18732 52.82234 90.399336 51.931493
31 50.08932 51.14724 75.17772 239.72655 166.96961 39.135789 172.481448
32 24.18946 81.54220 50.64366 208.18609 138.54191 6.236986 142.699755
33 102.86156 38.52791 127.33597 293.60024 217.44372 96.214188 225.019221
34 195.27227 293.62275 168.61142 41.33594 75.99901 208.585834 72.757474
35 118.17919 215.46661 92.88364 74.46771 22.69207 129.311136 12.213517
36 87.19593 184.98392 61.75986 106.07417 34.73672 99.294713 38.136072
37 80.30722 176.81066 54.05090 114.49004 43.85544 91.729712 46.842075
38 132.00367 229.94958 106.82238 61.23798 23.11233 143.769329 11.662761
39 66.20801 163.31246 50.99265 128.62822 63.56453 77.048621 66.187083
40 48.72515 65.18712 69.19458 235.80098 159.76586 46.295248 167.030207
41 154.42283 252.43884 127.29478 55.68671 35.21931 167.874953 34.753417
42 53.34323 148.59287 23.42755 144.38594 70.16160 65.675338 75.708718
43 39.66522 134.17992 22.85126 155.29601 86.41007 48.171984 89.551661
44 118.51456 215.53385 94.29236 74.13973 27.42353 129.240280 17.135052
45 194.25460 292.02008 166.72492 51.91926 75.34693 207.925660 73.722724
46 82.67872 180.28602 56.02874 111.85030 38.13214 95.202416 43.067157
47 93.60433 190.55563 68.59096 99.69298 33.64461 104.698615 33.545193
48 160.56242 258.46054 133.22965 57.27102 42.18554 174.350738 42.885196
49 185.19420 283.42380 159.51188 20.82426 68.15101 197.332410 61.042608
50 77.93491 176.11261 52.11909 117.37721 41.67253 91.414003 48.562537
15 16 17 18 19 20 21
1 180.610105 121.519875 127.284170 15.45445 154.145289 64.99362 91.64851
2 209.983523 151.480197 156.612037 32.34888 183.897526 44.83949 123.25421
3 239.991458 180.028914 187.690303 48.49464 214.327413 15.01599 145.87591
4 134.594948 76.753436 81.092848 61.54551 107.850730 111.64291 54.18118
5 224.634659 164.516747 173.207910 41.63556 199.931113 36.34735 129.52471
6 152.079749 92.179716 101.024749 49.97499 127.900156 97.30041 59.90000
7 57.595573 14.173920 26.343880 140.39808 37.647443 191.16195 40.16528
8 182.709989 123.165945 130.597435 16.97675 156.666652 63.57798 89.95832
9 281.013523 221.082722 228.332762 87.67035 255.152307 37.78386 187.04374
10 156.445805 97.174071 103.041448 38.69057 130.472564 89.50536 68.76227
11 29.407822 71.100844 70.459705 203.97061 50.566788 254.68757 103.09714
12 64.137119 13.964240 13.409698 130.43328 37.672404 181.18954 42.53998
13 195.329286 135.278823 143.599373 17.81123 170.033320 53.59338 100.49522
14 58.584042 3.929377 14.606163 136.25594 36.003472 187.17919 41.54431
15 0.000000 60.177487 53.993055 193.96662 27.879383 244.93072 97.27713
16 60.177487 0.000000 15.766420 134.39494 36.989863 185.33788 39.01859
17 53.993055 15.766420 0.000000 140.93722 28.407921 191.93960 52.12571
18 193.966621 134.394940 140.937220 0.00000 167.825058 51.47980 102.55150
19 27.879383 36.989863 28.407921 167.82506 0.000000 218.69989 74.76323
20 244.930725 185.337881 191.939600 51.47980 218.699886 0.00000 152.65929
21 97.277130 39.018585 52.125713 102.55150 74.763226 152.65929 0.00000
22 201.381355 141.398798 148.859665 16.65233 175.949680 46.12949 108.48839
23 18.713899 43.237715 40.199005 177.60512 19.919086 228.52871 79.34009
24 203.972670 146.023354 150.351588 24.70830 176.939227 48.45132 117.97682
25 124.035680 64.015936 72.298686 71.65166 99.246007 122.05921 35.05382
26 53.529898 14.406943 3.834058 141.03546 27.733914 191.92459 51.25007
27 46.609548 13.789126 13.349157 147.58286 23.717715 198.50866 52.32638
28 200.738860 140.770878 148.923940 28.47244 176.131343 53.21701 107.55431
29 2.291288 59.594127 53.141321 193.13772 26.530925 244.10967 96.72916
30 108.241813 49.674943 62.293980 93.29823 85.843404 143.04269 11.45644
31 230.493557 170.716051 177.630318 37.76255 204.553123 15.89025 137.91171
32 200.856292 140.757309 149.261515 21.41728 175.732439 49.79890 105.67370
33 281.504316 223.108964 228.131388 90.70816 254.439973 44.64056 192.40062
34 17.548789 74.333909 65.728304 206.24056 38.664454 257.06906 112.20945
35 67.439009 10.920165 26.110726 129.56948 46.443514 180.33569 31.23171
36 96.130380 36.115924 45.202876 98.43922 71.288779 149.28138 17.65021
37 105.072784 45.452173 54.009629 90.89367 80.635538 141.15314 24.35672
38 52.485903 11.256109 20.555291 143.60049 32.218783 194.55696 44.98411
39 121.796716 63.425941 74.523084 80.02006 97.872059 129.30066 26.34388
40 223.795174 165.259826 170.224939 35.00129 196.957813 28.97758 135.67402
41 32.385336 36.247483 25.001200 165.02400 8.537564 215.78056 74.71017
42 133.388005 74.222975 80.091260 61.61923 107.596561 112.30503 48.85489
43 147.871194 87.710547 96.652160 50.18147 123.250355 99.88619 53.68920
44 68.996812 15.901258 31.477135 130.33162 49.388460 180.71696 30.18278
45 26.249000 75.535952 64.832554 204.57820 39.969613 255.12226 114.19654
46 100.816913 41.273963 48.485049 93.31592 75.368229 144.25758 23.85728
47 91.663788 31.941196 43.214581 104.93312 68.338642 155.29601 16.06767
48 31.068473 44.280696 31.906112 170.91957 12.775367 221.62719 82.40564
49 9.508417 62.509199 58.417977 196.74806 33.678628 247.73916 98.03311
50 105.231412 46.458584 52.696300 88.86799 79.043849 139.78230 27.84331
22 23 24 25 26 27 28
1 28.48543 164.65096 27.39014 59.78829 127.392621 134.43697 37.43047
2 28.85775 194.25357 28.63512 89.30672 156.673578 164.11426 34.88682
3 39.87242 223.08826 52.70873 116.46738 187.540849 193.42360 44.79743
4 71.10028 119.32464 69.68536 24.89438 81.163107 88.97893 74.28869
5 27.74635 207.22254 55.68357 100.98891 172.996069 178.10081 26.74696
6 51.45483 134.76454 68.66440 29.17979 100.751675 105.66835 48.83421
7 147.26656 39.74670 153.26396 70.69583 24.746313 17.86505 146.55108
8 26.53168 166.14166 36.47917 61.37891 130.393136 136.37833 35.05325
9 80.35627 264.22583 85.39046 157.49175 228.327856 234.46401 84.25586
10 47.39810 140.32783 51.35543 35.57134 103.302081 110.19573 50.56758
11 209.83386 31.62040 216.83231 132.93115 69.885120 59.93071 207.73360
12 138.39097 49.48232 140.04164 62.10443 11.764353 19.90427 138.76743
13 15.59166 178.21364 41.24439 72.31597 143.447273 148.80679 22.36605
14 143.06579 41.70683 147.82226 65.61311 13.512957 12.59603 142.22166
15 201.38135 18.71390 203.97267 124.03568 53.529898 46.60955 200.73886
16 141.39880 43.23772 146.02335 64.01594 14.406943 13.78913 140.77088
17 148.85967 40.19900 150.35159 72.29869 3.834058 13.34916 148.92394
18 16.65233 177.60512 24.70830 71.65166 141.035457 147.58286 28.47244
19 175.94968 19.91909 176.93923 99.24601 27.733914 23.71771 176.13134
20 46.12949 228.52871 48.45132 122.05921 191.924595 198.50866 53.21701
21 108.48839 79.34009 117.97682 35.05382 51.250073 52.32638 107.55431
22 0.00000 184.52480 35.44009 77.47400 148.808266 154.78953 13.29737
23 184.52480 0.00000 188.77871 107.09146 39.384515 30.34996 183.52782
24 35.44009 188.77871 0.00000 86.08496 150.610425 158.46956 47.62793
25 77.47400 107.09146 86.08496 0.00000 72.098821 77.45308 76.96805
26 148.80827 39.38451 150.61042 72.09882 0.000000 11.52823 148.82070
27 154.78953 30.34996 158.46956 77.45308 11.528226 0.00000 154.25194
28 13.29737 183.52782 47.62793 76.96805 148.820697 154.25194 0.00000
29 200.70715 18.82870 202.98217 123.42731 52.686051 45.98739 200.21054
30 98.63458 90.19590 110.01627 28.51175 61.674306 63.18940 97.34413
31 30.42187 213.90776 39.98862 107.09795 177.596875 183.97492 37.46799
32 15.06652 183.63006 43.53160 77.72271 149.111032 154.33211 20.64510
33 89.03263 266.03295 78.07439 161.45715 228.247870 235.77500 97.03427
34 214.24409 35.69832 214.76995 137.36466 65.474041 60.57962 214.11597
35 135.78192 49.48141 142.75129 58.63557 25.133444 22.93491 134.49599
36 105.40522 79.28569 111.07952 28.39014 44.747290 49.54331 105.24904
37 96.69788 88.21678 103.93883 19.69822 53.512802 58.63617 95.79760
38 150.48814 34.71253 155.86494 73.29516 19.296114 11.07068 149.66302
39 86.74059 104.35061 96.50249 27.06234 73.846936 76.66192 87.28534
40 37.63044 208.24901 21.16719 103.66605 170.390053 177.94103 48.73490
41 173.11320 25.34995 173.49288 96.71194 24.714368 23.64191 173.27666
42 69.15526 117.29983 73.28335 15.50258 80.243941 87.13421 70.32645
43 55.17717 130.57320 68.86305 25.49471 96.543772 101.37337 54.97727
44 135.97445 50.63842 144.28115 59.37786 30.001500 26.27109 134.31162
45 212.79619 41.78445 211.87973 136.67202 64.834250 62.03628 212.90383
46 100.70909 84.45283 105.07483 24.27962 48.308798 54.33489 100.96425
47 110.66083 74.21172 118.60110 33.57082 42.379712 45.43325 109.41791
48 179.46476 29.16093 178.54411 103.62480 32.101402 31.99687 179.98372
49 203.83508 19.43759 207.70638 126.43069 57.861213 49.52151 202.87237
50 97.16141 89.29894 99.74337 23.50745 52.481235 59.09365 98.36320
29 30 31 32 33 34 35
1 179.736196 83.24302 51.64349 33.710829 101.96102 192.41614 117.387606
2 209.254415 114.73557 33.52193 43.182983 79.37607 221.37859 147.373335
3 239.255616 135.85040 13.89604 40.853519 57.61961 252.80819 174.338177
4 133.678308 49.84426 97.93120 73.762118 147.18424 145.85554 74.369752
5 224.055395 119.04117 24.49510 26.900929 80.33212 238.21446 157.998513
6 151.589182 50.42083 81.73622 52.278102 138.97759 165.75093 85.817539
7 57.043843 51.19668 176.58032 145.268166 229.50401 73.03896 15.036289
8 181.854695 80.87799 50.08932 24.189461 102.86156 195.27227 118.179186
9 280.247480 176.89717 51.14724 81.542198 38.52791 293.62275 215.466610
10 155.665603 60.77829 75.17772 50.643657 127.33597 168.61142 92.883637
11 31.220666 113.18732 239.72655 208.186095 293.60024 41.33594 74.467711
12 63.208702 52.82234 166.96961 138.541907 217.44372 75.99901 22.692069
13 194.607657 90.39934 39.13579 6.236986 96.21419 208.58583 129.311136
14 58.096988 51.93149 172.48145 142.699755 225.01922 72.75747 12.213517
15 2.291288 108.24181 230.49356 200.856292 281.50432 17.54879 67.439009
16 59.594127 49.67494 170.71605 140.757309 223.10896 74.33391 10.920165
17 53.141321 62.29398 177.63032 149.261515 228.13139 65.72830 26.110726
18 193.137723 93.29823 37.76255 21.417283 90.70816 206.24056 129.569479
19 26.530925 85.84340 204.55312 175.732439 254.43997 38.66445 46.443514
20 244.109668 143.04269 15.89025 49.798896 44.64056 257.06906 180.335687
21 96.729158 11.45644 137.91171 105.673696 192.40062 112.20945 31.231715
22 200.707150 98.63458 30.42187 15.066519 89.03263 214.24409 135.781921
23 18.828701 90.19590 213.90776 183.630063 266.03295 35.69832 49.481411
24 202.982167 110.01627 39.98862 43.531598 78.07439 214.76995 142.751287
25 123.427307 28.51175 107.09795 77.722712 161.45715 137.36466 58.635569
26 52.686051 61.67431 177.59687 149.111032 228.24787 65.47404 25.133444
27 45.987390 63.18940 183.97492 154.332109 235.77500 60.57962 22.934908
28 200.210539 97.34413 37.46799 20.645096 97.03427 214.11597 134.495985
29 0.000000 107.73848 229.73300 200.163833 280.50556 17.16188 67.071976
30 107.738480 0.00000 128.17913 95.399057 183.46294 123.27534 41.518309
31 229.732997 128.17913 0.00000 35.399011 59.89624 242.90615 165.472959
32 200.163833 95.39906 35.39901 0.000000 93.13222 214.25342 134.586515
33 280.505561 183.46294 59.89624 93.132218 0.00000 292.38892 219.202144
34 17.161876 123.27534 242.90615 214.253425 292.38892 0.00000 82.626025
35 67.071976 41.51831 165.47296 134.586515 219.20214 82.62602 0.000000
36 95.448939 22.51844 134.64565 104.835395 187.56644 109.57614 31.819019
37 104.522151 24.50510 126.23427 97.132281 180.02180 118.43061 40.659193
38 51.998077 55.80699 179.90789 149.159244 232.67215 67.77175 15.755951
39 121.050114 18.84808 115.06711 82.323326 168.77796 136.00647 56.980874
40 222.863837 127.05782 24.92308 45.747678 58.44587 234.92126 161.436117
41 31.237477 85.52169 201.63395 173.594873 251.19023 41.48795 46.284015
42 132.649802 42.89814 97.77668 71.344586 150.04559 145.64313 70.321121
43 147.242521 43.79475 84.86018 53.365907 140.74605 161.56995 81.436908
44 68.744236 40.45306 165.76152 134.404799 220.12787 84.67656 6.637771
45 25.688519 125.11914 241.11087 213.666141 289.53523 13.04492 84.634804
46 100.081966 26.26442 129.72421 100.841063 182.00662 113.66992 37.972753
47 91.189363 22.76664 140.35159 110.001909 194.50195 105.86997 25.747427
48 29.631065 93.15117 207.67602 180.137170 256.26457 36.72887 54.460720
49 10.860018 108.86707 233.17618 202.749451 285.01447 23.73794 68.588993
50 104.361391 29.25064 125.57631 97.230345 176.74753 117.54527 44.044182
36 37 38 39 40 41 42
1 85.84870 78.38686 131.085087 70.33811 44.18292 151.089113 48.34760
2 116.42942 106.93012 161.600897 103.90380 27.55649 179.948131 77.88453
3 143.93141 135.67288 188.866222 122.41887 36.89092 211.751576 108.25812
4 43.01267 36.89512 86.990862 42.18531 89.24887 104.455206 12.61428
5 128.77935 120.03958 172.999364 107.21311 47.06134 197.524378 94.72766
6 57.09974 47.36412 101.039596 43.87949 82.64194 125.302115 28.00589
7 43.03603 53.24284 8.027453 64.83710 172.20677 40.039231 82.19276
8 87.19593 80.30722 132.003674 66.20801 48.72515 154.422829 53.34323
9 184.98392 176.81066 229.949581 163.31246 65.18712 252.438844 148.59287
10 61.75986 54.05090 106.822376 50.99265 69.19458 127.294776 23.42755
11 106.07417 114.49004 61.237978 128.62822 235.80098 55.686713 144.38594
12 34.73672 43.85544 23.112334 63.56453 159.76586 35.219313 70.16160
13 99.29471 91.72971 143.769329 77.04862 46.29525 167.874953 65.67534
14 38.13607 46.84208 11.662761 66.18708 167.03021 34.753417 75.70872
15 96.13038 105.07278 52.485903 121.79672 223.79517 32.385336 133.38801
16 36.11592 45.45217 11.256109 63.42594 165.25983 36.247483 74.22297
17 45.20288 54.00963 20.555291 74.52308 170.22494 25.001200 80.09126
18 98.43922 90.89367 143.600487 80.02006 35.00129 165.023998 61.61923
19 71.28878 80.63554 32.218783 97.87206 196.95781 8.537564 107.59656
20 149.28138 141.15314 194.556958 129.30066 28.97758 215.780560 112.30503
21 17.65021 24.35672 44.984108 26.34388 135.67402 74.710173 48.85489
22 105.40522 96.69788 150.488139 86.74059 37.63044 173.113200 69.15526
23 79.28569 88.21678 34.712534 104.35061 208.24901 25.349951 117.29983
24 111.07952 103.93883 155.864942 96.50249 21.16719 173.492882 73.28335
25 28.39014 19.69822 73.295157 27.06234 103.66605 96.711943 15.50258
26 44.74729 53.51280 19.296114 73.84694 170.39005 24.714368 80.24394
27 49.54331 58.63617 11.070682 76.66192 177.94103 23.641912 87.13421
28 105.24904 95.79760 149.663021 87.28534 48.73490 173.276657 70.32645
29 95.44894 104.52215 51.998077 121.05011 222.86384 31.237477 132.64980
30 22.51844 24.50510 55.806989 18.84808 127.05782 85.521693 42.89814
31 134.64565 126.23427 179.907893 115.06711 24.92308 201.633951 97.77668
32 104.83539 97.13228 149.159244 82.32333 45.74768 173.594873 71.34459
33 187.56644 180.02180 232.672151 168.77796 58.44587 251.190227 150.04559
34 109.57614 118.43061 67.771749 136.00647 234.92126 41.487950 145.64313
35 31.81902 40.65919 15.755951 56.98087 161.43612 46.284015 70.32112
36 0.00000 12.42497 45.465371 32.20450 129.81175 69.380689 39.25774
37 12.42497 0.00000 55.166294 32.68409 122.05527 78.015768 31.29936
38 45.46537 55.16629 0.000000 70.00693 175.00963 33.758851 84.17013
39 32.20450 32.68409 70.006928 0.00000 113.44003 97.613575 37.70942
40 129.81175 122.05527 175.009628 113.44003 0.00000 193.557356 91.77581
41 69.38069 78.01577 33.758851 97.61357 193.55736 0.000000 104.34160
42 39.25774 31.29936 84.170125 37.70942 91.77581 104.341602 0.00000
43 52.07168 44.81384 96.136986 34.06362 84.37944 121.204373 24.74288
44 33.54057 41.63952 18.264994 56.37553 162.57491 49.833423 71.97916
45 109.55273 117.81723 70.671777 137.51673 232.14980 40.225862 143.86275
46 7.35527 10.57922 51.180856 32.85985 124.06470 72.859454 33.17424
47 10.30534 15.56984 40.681445 36.84793 136.75836 66.667833 46.15333
48 76.52647 85.25632 41.781814 104.68663 198.83393 8.766984 110.52154
49 98.53243 107.63150 53.623689 122.83684 227.32384 39.184691 136.54878
50 13.54253 15.63010 56.300444 31.02982 119.05196 76.595300 29.97749
43 44 45 46 47 48 49
1 41.56609 118.502700 190.37069 80.295330 92.82047 156.792411 183.775733
2 72.36221 148.276094 218.29047 110.646690 122.14700 185.640863 213.575397
3 93.27599 174.257338 251.48926 139.424711 149.29786 218.006078 242.312381
4 32.74462 76.438995 143.52857 36.421560 51.20478 110.071113 138.344245
5 77.38023 157.492635 237.43546 124.820912 133.10657 204.253715 226.457502
6 14.50103 85.625522 165.04769 53.416851 60.64206 132.360115 154.115217
7 92.65916 15.755951 76.61736 49.307200 38.33406 47.895720 58.056696
8 39.66522 118.514556 194.25460 82.678716 93.60433 160.562418 185.194195
9 134.17992 215.533849 292.02008 180.286023 190.55563 258.460539 283.423799
10 22.85126 94.292364 166.72492 56.028743 68.59096 133.229651 159.511880
11 155.29601 74.139733 51.91926 111.850302 99.69298 57.271022 20.824265
12 86.41007 27.423530 75.34693 38.132139 33.64461 42.185543 68.151009
13 48.17198 129.240280 207.92566 95.202416 104.69862 174.350738 197.332410
14 89.55166 17.135052 73.72272 43.067157 33.54519 42.885196 61.042608
15 147.87119 68.996812 26.24900 100.816913 91.66379 31.068473 9.508417
16 87.71055 15.901258 75.53595 41.273963 31.94120 44.280696 62.509199
17 96.65216 31.477135 64.83255 48.485049 43.21458 31.906112 58.417977
18 50.18147 130.331616 204.57820 93.315915 104.93312 170.919572 196.748062
19 123.25035 49.388460 39.96961 75.368229 68.33864 12.775367 33.678628
20 99.88619 180.716961 255.12226 144.257582 155.29601 221.627187 247.739157
21 53.68920 30.182777 114.19654 23.857284 16.06767 82.405643 98.033107
22 55.17717 135.974446 212.79619 100.709086 110.66083 179.464760 203.835080
23 130.57320 50.638424 41.78445 84.452827 74.21172 29.160933 19.437592
24 68.86305 144.281149 211.87973 105.074830 118.60110 178.544112 207.706379
25 25.49471 59.377858 136.67202 24.279621 33.57082 103.624804 126.430692
26 96.54377 30.001500 64.83425 48.308798 42.37971 32.101402 57.861213
27 101.37337 26.271087 62.03628 54.334888 45.43325 31.996875 49.521510
28 54.97727 134.311615 212.90383 100.964251 109.41791 179.983721 202.872374
29 147.24252 68.744236 25.68852 100.081966 91.18936 29.631065 10.860018
30 43.79475 40.453059 125.11914 26.264425 22.76664 93.151167 108.867075
31 84.86018 165.761515 241.11087 129.724207 140.35159 207.676022 233.176178
32 53.36591 134.404799 213.66614 100.841063 110.00191 180.137170 202.749451
33 140.74605 220.127872 289.53523 182.006621 194.50195 256.264570 285.014473
34 161.56995 84.676561 13.04492 113.669917 105.86997 36.728871 23.737944
35 81.43691 6.637771 84.63480 37.972753 25.74743 54.460720 68.588993
36 52.07168 33.540572 109.55273 7.355270 10.30534 76.526466 98.532431
37 44.81384 41.639524 117.81723 10.579225 15.56984 85.256319 107.631501
38 96.13699 18.264994 70.67178 51.180856 40.68145 41.781814 53.623689
39 34.06362 56.375527 137.51673 32.859854 36.84793 104.686628 122.836843
40 84.37944 162.574906 232.14980 124.064701 136.75836 198.833926 227.323844
41 121.20437 49.833423 40.22586 72.859454 66.66783 8.766984 39.184691
42 24.74288 71.979164 143.86275 33.174237 46.15333 110.521536 136.548782
43 0.00000 81.596630 161.33115 48.525045 57.10674 128.032965 149.726751
44 81.59663 0.000000 87.32634 40.223501 26.18263 58.251266 69.510934
45 161.33115 87.326342 0.00000 112.937770 106.38722 33.968515 34.370336
46 48.52505 40.223501 112.93777 0.000000 16.47726 79.616581 103.686161
47 57.10674 26.182628 106.38722 16.477257 0.00000 74.434535 93.552766
48 128.03296 58.251266 33.96851 79.616581 74.43453 0.000000 39.049456
49 149.72675 69.510934 34.37034 103.686161 93.55277 39.049456 0.000000
50 46.18246 46.338429 116.59125 7.930952 23.34952 82.957218 108.354418
50
1 75.507086
2 106.740105
3 135.380390
4 30.987255
5 121.720335
6 52.036718
7 54.060152
8 77.934909
9 176.112606
10 52.119094
11 117.377212
12 41.672533
13 91.414003
14 48.562537
15 105.231412
16 46.458584
17 52.696300
18 88.867992
19 79.043849
20 139.782295
21 27.843312
22 97.161412
23 89.298936
24 99.743371
25 23.507446
26 52.481235
27 59.093654
28 98.363205
29 104.361391
30 29.250641
31 125.576311
32 97.230345
33 176.747532
34 117.545268
35 44.044182
36 13.542526
37 15.630099
38 56.300444
39 31.029824
40 119.051963
41 76.595300
42 29.977492
43 46.182464
44 46.338429
45 116.591252
46 7.930952
47 23.349518
48 82.957218
49 108.354418
50 0.000000
Output ini menampilkan Matriks jarak di atas merupakan hasil perhitungan jarak Euclidean antar objek (misalnya provinsi, negara bagian, atau unit observasi lain) berdasarkan variabel numerik dalam dataset. Setiap nilai menggambarkan tingkat ketidakmiripan antara dua objek: semakin besar angkanya, semakin tidak mirip objek tersebut; semakin kecil angkanya, semakin mirip atau dekat.
1. Diagonal bernilai 0
Pada baris 1 kolom 1, baris 2 kolom 2, dan seterusnya, terlihat nilai 0.00000. Ini berarti jarak suatu objek terhadap dirinya sendiri adalah nol. Ini adalah karakteristik wajar pada matriks jarak.
2. Pola kedekatan antar objek
Jika melihat beberapa nilai kecil, misalnya:
Nilai-nilai ini menunjukkan bahwa objek-objek tersebut lebih mirip dibandingkan dengan pasangan lainnya yang memiliki jarak lebih besar. Misalnya:
3. Pasangan objek yang sangat jauh
Beberapa nilai sangat besar, misalnya:
Hal ini mengindikasikan bahwa objek-objek tersebut sangat berbeda berdasarkan variabel-variabel dalam dataset. Dalam peta MDS nanti, pasangan ini akan berada jauh terpisah.
4. Struktur data secara umum
Jika diperhatikan, angka-angka dalam matriks tidak berkelompok di kisaran tertentu. Ada:
Hal ini menunjukkan heterogenitas yang cukup tinggi dalam dataset. Artinya, objek-objek tidak memiliki pola kemiripan yang homogen; ada objek yang sangat mirip, tetapi ada juga yang sangat berbeda.
> eigen_result
eigen() decomposition
$values
[1] 3.435446e+05 9.897626e+03 2.063520e+03 3.020481e+02 1.524441e-10
[6] 3.530654e-11 3.485905e-11 3.108343e-11 1.402092e-11 1.174180e-11
[11] 1.146043e-11 1.124426e-11 1.064627e-11 1.042458e-11 8.667796e-12
[16] 8.585363e-12 7.708470e-12 7.333934e-12 4.126079e-12 3.773216e-12
[21] 3.726278e-12 3.519283e-12 2.779982e-12 1.954720e-12 1.898374e-12
[26] 1.017076e-12 9.584985e-14 -1.415291e-13 -3.462516e-13 -3.835016e-13
[31] -8.003654e-13 -1.111324e-12 -1.465002e-12 -2.318104e-12 -2.843200e-12
[36] -3.872565e-12 -4.438350e-12 -4.766850e-12 -7.159163e-12 -7.583835e-12
[41] -8.245047e-12 -8.504123e-12 -1.024295e-11 -1.082686e-11 -1.515440e-11
[46] -1.600053e-11 -1.666295e-11 -2.288197e-11 -3.678044e-11 -8.912223e-11
$vectors
[,1] [,2] [,3] [,4] [,5]
[1,] -0.110559974 0.115070601 0.0549230353 0.13854810 0.000000000
[2,] -0.158374348 0.180757049 -0.4430630613 -0.23556719 -0.330907665
[3,] -0.211674702 -0.088759533 0.0371472066 -0.25050650 -0.065395615
[4,] -0.031290218 0.167900759 -0.0046270736 -0.02997743 0.250852680
[5,] -0.183275961 -0.226362360 -0.1485025226 -0.16178952 -0.063627475
[6,] -0.059673070 -0.137903543 -0.2703158440 -0.09905122 0.302852490
[7,] 0.103880733 -0.129992406 0.1853709424 -0.04027165 -0.115241162
[8,] -0.113850834 -0.013607811 0.2483371129 -0.21450414 0.276430304
[9,] -0.281925975 -0.063070571 0.0659960001 0.07179024 -0.024503114
[10,] -0.069157692 0.073278451 -0.0794595792 0.42254726 0.039407188
[11,] 0.210766860 -0.244165103 -0.0819892633 0.19982413 0.099373138
[12,] 0.088371667 0.095180363 0.0334624255 -0.19263054 -0.113535572
[13,] -0.134769639 -0.129635879 0.1295132090 0.02115366 -0.046820886
[14,] 0.098188584 -0.028609467 -0.0822912413 0.09490649 -0.160001872
[15,] 0.197204409 0.033593704 0.0143976931 -0.05002989 -0.228323685
[16,] 0.095183660 -0.031735200 -0.0084613286 0.03756095 -0.072954325
[17,] 0.106432909 0.107283279 -0.0492469047 0.22303344 -0.025488635
[18,] -0.133550677 0.043170722 0.0842660839 0.25797930 -0.099561753
[19,] 0.152289648 0.115470853 0.1032978343 -0.12176391 -0.133072932
[20,] -0.220652144 0.050328595 0.0516702708 -0.11095376 0.047460888
[21,] 0.036282734 -0.195505097 0.1652611113 -0.05954240 -0.094311089
[22,] -0.145790171 -0.059350144 -0.1423049485 0.02871469 -0.035259238
[23,] 0.168828341 -0.052364735 -0.0001447137 -0.04211251 -0.002570131
[24,] -0.148186975 0.275699048 0.1101448106 0.22323720 -0.184417297
[25,] -0.013625531 -0.053028550 -0.1210888443 0.03909228 0.010573420
[26,] 0.106604296 0.095595605 -0.0404692482 0.01415128 -0.109328787
[27,] 0.117886683 0.002122853 -0.0103029331 -0.03777815 0.051641114
[28,] -0.142654419 -0.151800861 -0.3497710768 0.01922930 -0.069975479
[29,] 0.195823419 0.047589808 0.0502440852 -0.05385132 -0.257498243
[30,] 0.018452876 -0.232566892 0.1389107520 0.09277738 -0.050505200
[31,] -0.195978348 0.003381886 -0.0497792196 -0.07947555 0.097639318
[32,] -0.143815690 -0.160061068 0.1039330211 0.05132586 -0.121723910
[33,] -0.280358301 0.312570223 0.2574773919 -0.12147582 0.025903145
[34,] 0.217522209 0.162182694 0.0288784029 -0.13239506 -0.154629119
[35,] 0.085453901 -0.123426653 -0.0364842031 0.11675320 -0.146860929
[36,] 0.033599765 -0.033875153 0.0099754209 -0.01037691 -0.033045458
[37,] 0.019023596 -0.038860107 -0.1789720343 -0.16766914 0.048628418
[38,] 0.110367145 -0.089575154 0.0705866644 0.10788182 0.098150664
[39,] -0.005227491 -0.184687497 0.3845820989 -0.13281485 -0.109616137
[40,] -0.183033890 0.236575232 0.0447496103 0.07202417 -0.064480317
[41,] 0.146908007 0.166834761 -0.0289345417 -0.07205531 0.439876903
[42,] -0.029867708 0.065401387 -0.1342871897 0.22571702 0.021267986
[43,] -0.053386267 -0.130519375 0.0086604449 0.24408048 0.074646340
[44,] 0.085158019 -0.177394945 -0.0393644435 -0.10746581 -0.111296707
[45,] 0.212777284 0.274544518 -0.1057275459 -0.11536478 0.035829660
[46,] 0.025280277 0.017616556 -0.0230130000 0.06754158 0.042870446
[47,] 0.042782277 -0.100193851 -0.1052509461 -0.15484204 0.078713527
[48,] 0.156185738 0.230712766 0.0088491963 0.04239920 0.032921865
[49,] 0.201622460 -0.055359892 0.0596865630 0.01179390 0.196157577
[50,] 0.017802529 0.059550133 0.0835303192 -0.02979755 0.062944469
[,6] [,7] [,8] [,9] [,10]
[1,] 0.000000000 0.000000000 0.540062243 0.000000000 0.00000000
[2,] 0.066825591 -0.426811172 -0.300342946 0.031115623 -0.08596027
[3,] 0.230062048 0.169958584 -0.027192483 -0.111304236 0.07673832
[4,] -0.212926154 0.236624094 -0.021070235 0.005711365 0.12340282
[5,] -0.168762666 -0.147173376 0.055671681 -0.179542226 0.09069932
[6,] -0.317370951 0.324788594 -0.015191109 -0.023360634 -0.15108821
[7,] 0.091466917 0.103612235 -0.035169468 -0.183861339 0.03166646
[8,] -0.233012200 -0.161206557 0.020625064 -0.024389111 -0.38968234
[9,] -0.467336936 0.009645931 0.171129798 -0.082596679 0.28407949
[10,] 0.108757675 -0.023983559 -0.070150055 0.003512524 0.11626733
[11,] -0.112544826 -0.165808766 -0.141305611 0.054516769 0.15962731
[12,] -0.047379465 0.125508151 0.012052936 0.230672144 -0.08088609
[13,] 0.059603217 -0.154290442 0.156409608 -0.003270297 -0.13765799
[14,] -0.052991865 0.138027292 0.024433979 0.240171751 -0.03558423
[15,] -0.137313476 0.021860797 0.155993616 0.062698798 -0.13492252
[16,] 0.059181042 0.092380826 -0.052958754 -0.099124657 0.45159574
[17,] 0.003451225 0.011409634 -0.001308639 -0.074949180 -0.03605887
[18,] -0.004673375 0.096941726 -0.079529540 -0.152626461 -0.23348420
[19,] -0.176181921 -0.063687495 0.004828074 0.064830661 0.10340585
[20,] -0.031237404 -0.076113798 0.038004072 0.280201049 -0.08831356
[21,] 0.045611367 -0.021141398 0.030170669 0.186751540 -0.06200403
[22,] -0.049490436 0.065513385 0.059848749 0.181281240 0.02445924
[23,] 0.184652351 -0.041142753 0.191264556 -0.065851525 0.08689707
[24,] -0.148636078 -0.083308062 0.019814475 0.094069082 -0.05595806
[25,] 0.033205542 0.023916894 0.026974424 0.136798474 0.01541304
[26,] -0.140539271 0.111024246 -0.057232044 -0.545959529 -0.11366325
[27,] -0.058165536 -0.148514238 0.116273469 -0.048708794 -0.02817486
[28,] 0.019572517 0.071138646 0.208822869 -0.107625396 -0.03437317
[29,] -0.134958821 0.092684806 -0.068232034 -0.191883178 0.07562229
[30,] 0.052003120 -0.031966014 -0.032923293 0.018724065 -0.09626280
[31,] 0.155012964 -0.135264913 0.016143305 -0.130288496 0.09315328
[32,] 0.130781412 0.182057812 -0.102079275 0.027234253 -0.16494897
[33,] 0.138089283 0.187424489 -0.165313272 0.143791202 0.31379143
[34,] -0.046784100 -0.166040522 0.361235282 0.029303672 0.07962182
[35,] 0.012901733 0.118780741 0.015354811 0.154871893 -0.05639010
[36,] -0.039185234 0.009111846 0.026667358 0.050972384 0.06381484
[37,] -0.025592939 0.068707026 0.032232629 0.085042204 0.05925840
[38,] 0.062654336 -0.157313038 0.056012198 0.011679761 -0.10065715
[39,] 0.003616146 -0.066074716 -0.048020122 -0.125568496 0.04462371
[40,] 0.045131774 0.005257826 -0.071695402 -0.242168545 -0.20923569
[41,] 0.296282863 -0.182309614 0.137757071 -0.151391921 0.04318755
[42,] 0.024152193 0.037451310 0.034009653 0.032650508 0.01373811
[43,] 0.135390921 -0.072191761 -0.018162059 0.051425194 -0.12455053
[44,] 0.063427419 0.161673477 0.002035830 0.052669862 -0.09685948
[45,] 0.165580350 0.353970763 0.025025813 0.020328661 -0.23823654
[46,] -0.002574348 -0.007271838 -0.001221304 0.119733888 0.01277431
[47,] 0.098689332 0.015670376 0.099150733 -0.023096211 0.06305031
[48,] -0.213064649 -0.155348018 -0.036862752 0.028671189 -0.04517991
[49,] -0.170963229 -0.105378110 -0.418056183 0.053338995 0.02008082
[50,] 0.001663643 -0.043728036 -0.034298784 0.168905724 0.04229027
[,11] [,12] [,13] [,14] [,15]
[1,] 0.00000000 0.000000000 0.000000000 0.0000000000 0.000000000
[2,] -0.11039376 -0.029573714 0.007741646 0.0017373717 -0.043594244
[3,] 0.12764775 -0.313497780 -0.063008367 0.1915297623 -0.316853352
[4,] -0.05815775 -0.126081031 0.116385911 0.0493503115 -0.137029625
[5,] -0.25180164 -0.047767613 -0.227204516 -0.1382848192 0.124829383
[6,] -0.07783767 0.283726747 0.116559236 0.0280087377 -0.173885673
[7,] -0.13213225 -0.185372885 0.143309613 -0.2175137171 -0.068697971
[8,] -0.02997913 -0.115696388 -0.264900295 -0.0562118357 0.084699906
[9,] -0.15430788 -0.237751612 -0.007751798 0.1287249278 0.044282715
[10,] -0.10506332 -0.108372213 0.080958049 0.1655071950 0.164463115
[11,] -0.04495194 -0.106234993 -0.067274438 0.1217701827 0.020919979
[12,] -0.23307633 0.082376198 -0.133516652 0.1575440351 -0.045014453
[13,] -0.27942054 0.013714687 0.307432893 0.0181093753 0.081433939
[14,] -0.18670865 0.048001714 -0.306865677 -0.1468963460 0.029427762
[15,] 0.04128836 -0.100701344 0.234395503 -0.0541225135 0.002374686
[16,] 0.09842804 0.004511374 -0.069787608 0.0720028527 -0.073193781
[17,] -0.41504113 -0.137179822 0.150404045 -0.0543873306 0.074413618
[18,] 0.21501610 -0.151489354 -0.396577467 0.0452575073 0.176549522
[19,] -0.13924335 0.163785950 0.085620540 0.1311583725 0.154694825
[20,] 0.04241082 -0.276261513 0.304350427 0.1515935409 0.013435400
[21,] 0.04111717 0.168814197 0.113822863 0.5126960559 -0.142367451
[22,] 0.07919489 0.005568650 -0.114512958 -0.0893707680 -0.008584338
[23,] -0.24743488 0.136373794 -0.058378696 -0.2045782610 -0.290151144
[24,] -0.02736996 -0.116422963 -0.103060678 -0.1210420432 -0.656197823
[25,] 0.10023967 -0.063780344 -0.015961960 -0.0232509468 -0.057224498
[26,] -0.05783826 0.050077074 0.001208170 0.0636469429 -0.087009143
[27,] 0.09560036 -0.002490354 -0.085692080 0.0871562919 -0.055240672
[28,] -0.12086158 0.038407939 -0.069848145 0.2691898863 0.074522581
[29,] 0.04023793 -0.041180374 0.027698515 0.1812628035 -0.022867487
[30,] -0.14886737 -0.002820137 0.027276225 0.0140413047 -0.060226659
[31,] -0.05545584 -0.236736289 0.130913728 -0.0209189792 0.000509091
[32,] -0.31171319 0.055072240 -0.176490963 0.0994007283 -0.107394094
[33,] -0.17053825 0.179451465 -0.153318476 0.0009120207 0.230771573
[34,] -0.02167514 -0.101927354 -0.271458670 0.2561692424 0.078895916
[35,] -0.02727133 -0.056116771 -0.021896335 0.0611034167 0.010046349
[36,] 0.07132961 -0.071985415 -0.006094155 -0.0422463253 -0.003133543
[37,] 0.06174552 -0.053183068 -0.089046325 -0.0618379583 -0.048247965
[38,] 0.12667318 -0.079432733 -0.111836774 0.1123509977 -0.008637707
[39,] -0.02393952 0.020386375 -0.004628779 -0.0901255587 0.014942214
[40,] 0.03824187 0.289495017 0.066480640 0.2789937411 -0.013724204
[41,] -0.15863852 0.037499713 -0.143786831 0.1381221615 -0.118316086
[42,] 0.06664586 -0.020710741 -0.018057823 0.0588935584 -0.041768059
[43,] -0.09166951 0.004241321 -0.014570349 -0.0044091756 -0.022800094
[44,] 0.11837674 -0.095172855 -0.009758452 -0.0548231216 0.073699667
[45,] -0.16390171 -0.405603880 0.023725172 0.0275282352 0.165849050
[46,] -0.13934727 0.041003897 -0.082554195 0.0531094495 -0.145943506
[47,] -0.02106448 -0.064972951 -0.042558919 0.0428664560 -0.049221717
[48,] 0.07130842 0.047195698 0.060250587 -0.1243173970 0.001051325
[49,] -0.16037554 -0.229888830 -0.092676044 0.2318584908 -0.090859933
[50,] -0.08476158 0.017317877 -0.038844911 -0.0505877364 -0.047100277
[,16] [,17] [,18] [,19] [,20]
[1,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
[2,] -0.334606989 0.075205373 -0.126851839 0.024576392 -0.021356805
[3,] -0.099673947 -0.007500463 0.004211029 -0.067265602 -0.154103908
[4,] -0.270986330 -0.282052713 -0.155649898 -0.012522488 0.154076321
[5,] 0.279463151 -0.265066408 0.003166142 0.008310681 -0.002363072
[6,] 0.026949817 0.292551548 -0.104721224 -0.027145069 0.011231741
[7,] -0.039952887 0.042320319 -0.084800756 -0.189041963 -0.036103254
[8,] 0.001166979 0.191598216 0.026696349 0.167746201 -0.064896262
[9,] -0.331244193 0.014013798 -0.027488050 0.062176767 0.015078978
[10,] -0.017091496 0.031600568 0.014219288 0.082911230 -0.031397670
[11,] 0.233872836 -0.154913190 -0.027019625 0.063825037 -0.217945016
[12,] 0.038823100 -0.248606425 -0.183372182 0.250376131 0.030720949
[13,] -0.125422478 0.083900933 0.168248396 0.089949850 0.204235817
[14,] 0.019335163 0.125630535 -0.128958828 -0.221769666 0.020061473
[15,] -0.111138280 0.092755226 0.204337886 0.453446848 -0.105152240
[16,] 0.020459910 0.408696651 -0.108103694 0.169835523 0.172579619
[17,] -0.036903429 -0.116554553 -0.001548970 -0.158167970 -0.048796860
[18,] 0.009574793 0.028743558 -0.040537100 0.195497898 0.179208833
[19,] 0.199594723 0.282022990 0.085536031 -0.081612904 -0.246299560
[20,] 0.399107813 -0.096564859 -0.252269143 -0.051175256 -0.020244837
[21,] -0.102671253 -0.067140992 0.028657900 -0.072414324 -0.008936954
[22,] -0.149402323 0.146124407 -0.030636697 -0.103204687 0.072478603
[23,] 0.036219936 -0.087426761 -0.253552099 0.457270163 0.172743912
[24,] 0.220871724 0.035947872 0.183675593 0.005263346 -0.167968558
[25,] 0.027165336 -0.044108849 0.420128681 -0.030777629 0.214726066
[26,] 0.041915016 -0.175759325 0.118511997 -0.141584442 -0.116021238
[27,] 0.100519670 -0.077860367 -0.188637870 -0.191593240 0.154169420
[28,] 0.126420125 0.088342545 0.030420333 0.112468406 -0.169593187
[29,] 0.159831891 0.053537437 -0.058894523 0.112366215 0.099288809
[30,] -0.031488527 -0.013298382 0.149461409 -0.099840415 0.186326791
[31,] 0.319474905 0.251842998 -0.068980893 0.001367366 0.336906588
[32,] -0.016860062 0.141243472 0.057323943 -0.115287857 0.115665511
[33,] 0.042535018 -0.130591136 0.129753597 0.123392221 -0.069077717
[34,] -0.086214598 0.038592806 0.040560918 -0.250511321 0.140502101
[35,] 0.076771176 -0.043099023 -0.094296868 0.007322729 0.218550572
[36,] -0.029989068 -0.034436342 -0.168889590 -0.004244393 -0.028890710
[37,] 0.071532566 -0.095026394 0.111183171 0.012485405 -0.025253786
[38,] -0.112669901 0.011025083 -0.189655474 0.113998128 -0.153785296
[39,] -0.101021474 0.095754784 -0.290105332 -0.107355649 -0.141741610
[40,] 0.098522746 -0.106806945 -0.149189767 0.021258139 0.210889377
[41,] -0.093528052 0.052662718 0.149354624 -0.019164145 -0.084659176
[42,] -0.059869567 -0.004900567 -0.199687994 -0.009605746 -0.146859262
[43,] -0.122333964 -0.028534814 -0.201046361 0.032580224 -0.156119687
[44,] -0.058314255 -0.237909904 0.137246981 0.013655235 0.087544955
[45,] 0.026611180 0.168866306 -0.088507171 -0.007882101 -0.081675992
[46,] 0.025741564 0.064533643 -0.005748307 -0.102022014 0.041870248
[47,] -0.028449715 -0.125678270 0.041974148 -0.030419590 0.094271128
[48,] -0.030874585 -0.027381092 -0.094057295 -0.129751462 0.318796041
[49,] -0.023474914 0.046049875 0.147845386 0.126882939 0.172037891
[50,] -0.002583966 0.029424786 -0.037043784 -0.088358341 0.002366484
[,21] [,22] [,23] [,24] [,25]
[1,] 0.000000e+00 0.000000000 0.0000000000 0.000000000 0.0000000000
[2,] 3.873774e-02 -0.001412715 0.0535553288 -0.042511103 -0.0103732535
[3,] 1.341811e-01 -0.158854118 -0.0608061523 0.026025552 0.0024939805
[4,] -9.815158e-02 0.345377722 0.0566312314 -0.187375342 -0.1540219843
[5,] 7.957964e-02 0.200762040 0.0514231715 0.007841913 -0.1468018493
[6,] 8.922749e-02 0.036480140 0.0535674192 0.092832732 0.0371222119
[7,] 1.757313e-01 -0.137413834 -0.0313758892 -0.083999642 0.0158081483
[8,] 1.254778e-01 -0.073379383 -0.0295311302 0.033110506 0.0099337807
[9,] 4.971866e-02 -0.250191338 -0.0475904974 -0.042837045 0.0600019701
[10,] -1.906524e-02 -0.016763546 0.0720647988 -0.049193704 0.1042747881
[11,] 1.685268e-01 0.151900719 0.0044916382 -0.043056390 0.0372978109
[12,] -4.208990e-02 -0.125962628 0.2337061244 0.075878930 0.0056248603
[13,] -1.725134e-01 0.038003623 -0.0305805122 -0.102184949 0.0169656359
[14,] 4.048671e-05 -0.267024177 -0.1958261093 -0.060669111 0.0779947555
[15,] -9.518116e-03 -0.123363341 0.0541750778 -0.014016387 -0.0242678269
[16,] 6.682465e-02 -0.092999510 -0.1120401607 0.030446302 0.0002177899
[17,] 6.132982e-02 -0.051590193 -0.1624643059 0.282049115 -0.0196577760
[18,] -1.492386e-01 -0.001932842 -0.0069102287 0.079894687 -0.0035984430
[19,] -2.285193e-01 -0.009928151 0.0101943795 -0.049086181 -0.0682051052
[20,] 1.845464e-02 -0.223642345 -0.0254225452 0.035147559 0.0453134736
[21,] 5.912472e-04 0.069197575 -0.0158566116 0.103770451 -0.0527646066
[22,] 1.067305e-02 0.074056011 0.2655343390 0.441703488 0.0286408248
[23,] 5.527864e-02 0.031569510 -0.1177963798 0.052069538 0.0355524948
[24,] -5.058442e-02 0.144384238 -0.0167306384 0.007083318 0.0487500709
[25,] 1.326891e-01 -0.008164330 0.2401008371 -0.055145375 -0.0050704117
[26,] -1.395554e-01 -0.246650944 0.1439621479 0.108558391 -0.0476754902
[27,] -1.988209e-01 -0.224406192 0.1798539703 -0.045740997 0.0510280423
[28,] 3.468163e-02 -0.067346954 -0.1188623560 -0.096585292 0.0202316249
[29,] -9.372823e-02 0.041061192 0.2976198112 0.102713456 -0.0342890937
[30,] 1.678946e-01 -0.020218723 0.1427553694 0.109488022 0.2667397857
[31,] -1.400572e-01 0.046872682 0.1212337923 0.044596556 -0.1652609139
[32,] -3.112909e-01 0.115439965 -0.0102971224 -0.308500355 -0.1462464273
[33,] 5.251139e-02 -0.127799750 0.1403380379 0.018446039 0.0013393575
[34,] 1.437955e-01 0.306569639 -0.0532940101 0.037967850 0.0785532607
[35,] 1.733810e-01 -0.121608147 0.1083426772 -0.187768894 0.0187353141
[36,] -1.069829e-01 0.017721243 -0.0381211213 0.192322185 0.2552292869
[37,] -1.749596e-01 -0.062821657 -0.0554050445 -0.395943640 0.4661337830
[38,] -1.643410e-02 -0.026093861 -0.0382014891 -0.123669734 -0.3506710560
[39,] 1.662838e-02 0.137378902 0.1544249031 -0.143645022 0.1429422933
[40,] 2.662345e-01 0.033918753 -0.2981210368 -0.003290699 0.2069715299
[41,] 3.463592e-02 -0.224569785 0.1465411865 -0.042243514 0.0613451177
[42,] -1.912918e-01 -0.029578700 -0.0008015272 -0.148880125 -0.1163810639
[43,] -1.189418e-01 -0.047136960 0.3315250382 0.117760064 0.1910280250
[44,] -6.044715e-04 -0.164041449 -0.1957815095 0.059947252 -0.2493640767
[45,] 9.928135e-02 0.216873491 0.0575659420 -0.021559979 0.0713826651
[46,] 2.817721e-01 -0.183902428 0.1630100143 -0.058964760 -0.4012489689
[47,] -4.216151e-01 -0.072574812 -0.0895086622 0.213748066 0.0579835419
[48,] 1.340247e-02 -0.233815188 0.0422914733 -0.198980406 -0.0230803083
[49,] -6.966112e-02 -0.013308923 -0.1678293555 0.070063547 0.1112573933
[50,] -1.897951e-01 -0.036813932 -0.3387109392 0.268373989 -0.1257224889
[,26] [,27] [,28] [,29] [,30]
[1,] 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[2,] -0.096740880 -0.0007104307 0.0061121391 0.0381944095 -0.0319026155
[3,] 0.092808571 0.0747916105 -0.0003477267 -0.1058751092 -0.0423531174
[4,] 0.067557831 -0.0452726512 -0.0489808698 -0.0253611289 0.1054312523
[5,] 0.146523114 0.0058949979 0.0005860798 -0.0384302682 -0.0644998635
[6,] -0.163142136 0.0587632712 0.1278751234 -0.0202528127 -0.1198612076
[7,] 0.243375618 -0.0053518791 0.1094891864 -0.0182718055 -0.1673844210
[8,] -0.026909885 -0.0244969511 -0.0882797860 0.0005275365 -0.0981558558
[9,] -0.035353977 -0.0447552374 -0.0068286882 0.0226278791 0.0635911882
[10,] -0.164785818 -0.0426767762 0.0967555788 0.0359519510 0.0069254766
[11,] 0.068730656 -0.0701543398 0.2487741385 -0.0556449413 -0.1131262176
[12,] -0.003455218 0.0301412399 0.1246857008 -0.0407240398 0.1049326722
[13,] 0.131458661 -0.0513275077 0.0689406079 -0.1356459897 -0.0997663062
[14,] 0.127859479 -0.1426987049 0.0749831545 0.0212297579 0.0661901053
[15,] 0.091994449 0.0542057835 0.1439341474 -0.0167648828 -0.0572899040
[16,] 0.033156730 -0.0230416394 0.0760123921 -0.0185884347 0.0749400699
[17,] -0.343670316 0.0667184838 0.0393124408 0.0563878569 -0.0120533902
[18,] -0.089051909 0.1133469362 -0.0972915925 0.0892451124 0.0196725834
[19,] 0.021403638 0.0280488311 -0.1065653139 0.0554417746 0.0003428399
[20,] -0.042453888 0.0372976475 0.0540664227 0.0925312586 0.0647621800
[21,] -0.120398735 -0.0580902620 -0.0717455449 0.0158746764 -0.0634635550
[22,] -0.006996689 -0.0939069857 0.2562480430 -0.0055872290 0.0427032525
[23,] -0.103047284 0.1379440138 -0.0269471319 0.0412334103 -0.0114916827
[24,] -0.019222882 -0.1204552255 0.0246082066 0.0222129900 -0.0096094516
[25,] 0.113463345 0.1496840961 0.3644106273 -0.0084515988 -0.0366654366
[26,] -0.133765798 -0.0748198214 0.0859932479 -0.0365802439 0.0726386308
[27,] 0.035500015 0.2169744412 0.1644017739 -0.1493075245 -0.0499272808
[28,] 0.174583879 0.0913845564 0.0178199163 -0.0395710633 0.0736361744
[29,] 0.009248957 -0.0130811711 -0.0864574502 -0.0802274777 0.0121286879
[30,] -0.124436614 0.3826072180 -0.0523723401 0.2481212451 0.0648392390
[31,] -0.190676233 -0.0438370965 0.0015716752 -0.1066983995 0.0292508221
[32,] -0.053572186 -0.0552644395 0.1570404172 -0.0935856907 -0.1608386469
[33,] -0.032181002 0.0469456342 0.1470485418 0.0033048820 -0.2006228220
[34,] -0.039353937 0.0829464037 -0.0073038577 -0.0944554293 -0.0322414021
[35,] -0.102033865 -0.3961220392 -0.2772898880 -0.0330076520 -0.0101542700
[36,] -0.138213697 -0.1270753432 -0.0564406362 -0.1886235233 -0.6992768572
[37,] -0.342575264 0.0522559222 0.0068584315 -0.0100558212 0.1684771198
[38,] -0.213671594 -0.1646082836 0.4497855247 0.1637685695 0.0029674155
[39,] -0.126710469 0.1020241261 0.1831664190 0.1384459601 0.1699982805
[40,] 0.194047726 -0.0638508665 0.2072773191 0.0235359397 -0.0139241982
[41,] -0.052064345 -0.1459763748 -0.0325288261 -0.1212126559 -0.0342263101
[42,] 0.099322304 0.5551781362 -0.1006195762 0.0306897301 -0.2884503821
[43,] 0.320841080 -0.0856011743 -0.1533122998 -0.2899592692 0.2016818305
[44,] -0.193862748 0.0363575742 -0.0067535490 -0.2660870115 -0.0045813868
[45,] 0.104054958 0.0137763898 0.0821000188 0.0668364054 0.0152095725
[46,] 0.006988148 0.1169020160 -0.2843077499 0.2226563378 -0.0527737490
[47,] 0.248060068 -0.1996260478 0.0238538069 0.6338835305 -0.0825112411
[48,] 0.150511851 -0.0070709359 0.1357064970 -0.0081474929 -0.1092722338
[49,] 0.149777094 0.0895203414 -0.0528642952 -0.0277149706 -0.0048618260
[50,] 0.050378508 0.1597941448 0.1147283431 -0.3167330793 0.2960066735
[,31] [,32] [,33] [,34] [,35]
[1,] 0.000000000 0.000000000 0.000000000 0.000000e+00 0.0000000000
[2,] 0.109841197 -0.043401269 -0.005546833 -8.893595e-02 0.0368026399
[3,] -0.342718885 0.121748013 0.018926336 -1.256100e-01 0.0526564967
[4,] -0.107449779 -0.064351114 -0.145788785 -3.411502e-02 0.1325138988
[5,] -0.188881858 0.068607103 0.012102481 -1.566716e-02 -0.0310385518
[6,] 0.085733108 0.014081434 0.071651970 -1.015599e-01 -0.0345200226
[7,] 0.195175717 0.230891244 0.206607444 5.112999e-02 -0.1582729093
[8,] -0.120157020 -0.036665657 0.038545859 -1.384761e-01 -0.0359299842
[9,] 0.259643687 -0.009479597 -0.001692837 3.088184e-02 -0.0210053020
[10,] -0.286496107 -0.077851550 -0.043317297 -1.018510e-01 0.0001904749
[11,] 0.227497545 0.006900798 0.042756014 -1.177210e-01 -0.1239992068
[12,] 0.012338472 -0.007373821 0.087464203 6.781303e-02 0.1206531886
[13,] -0.262238803 -0.046628160 0.014566500 -8.477879e-02 -0.1662611004
[14,] -0.098419108 -0.190044609 -0.073974487 3.229417e-01 0.1318143745
[15,] 0.050849871 0.030352385 0.026396524 1.617992e-01 -0.0439618456
[16,] -0.040348002 -0.045309663 -0.167263066 -1.960397e-01 0.0185619404
[17,] -0.075104136 -0.039016974 0.034415504 5.828796e-02 -0.1480244135
[18,] 0.126535700 -0.027100263 0.045387026 -6.078803e-02 -0.0860056541
[19,] -0.168567656 0.005324287 -0.065997954 -3.342109e-01 0.0358563821
[20,] 0.217389519 -0.104763690 -0.096382813 -1.586354e-01 0.1115530589
[21,] -0.033370645 0.034260748 0.131518212 2.075892e-01 -0.1496192506
[22,] -0.137671952 0.109014709 0.148762289 3.708178e-05 -0.2073131611
[23,] -0.043457878 -0.033072564 0.009023618 -1.350407e-01 0.0035083035
[24,] -0.011952116 -0.051934676 -0.028172790 1.549458e-02 -0.0272581812
[25,] 0.004826893 -0.373199601 0.058617379 -1.917219e-01 0.0493864456
[26,] -0.083233563 -0.037809067 0.080380177 -1.648854e-01 0.1175964010
[27,] -0.231097787 -0.017841428 -0.121578551 2.288474e-01 -0.0311524211
[28,] -0.068816021 -0.027657320 -0.082734944 1.017285e-01 0.1289108455
[29,] 0.135117826 0.048379619 -0.072353262 7.563485e-02 -0.1518763424
[30,] 0.041111048 0.295874231 -0.210204980 -1.040426e-01 0.3665391025
[31,] 0.060854206 0.030160650 0.113404720 2.534657e-01 -0.0203150940
[32,] 0.292309956 0.075800820 -0.128146556 -7.314391e-02 0.0687065900
[33,] -0.002732745 0.135002915 0.049380558 8.074716e-03 -0.0697639924
[34,] 0.125690652 0.064536849 0.042946456 -1.377265e-01 -0.0170609804
[35,] -0.139542394 -0.012741971 0.477884805 -2.642020e-01 0.1285095618
[36,] -0.068572507 -0.107034000 -0.245332925 -4.826974e-02 0.0961069481
[37,] -0.061544509 0.221543980 -0.005662981 -3.149798e-02 -0.4434541356
[38,] -0.129860949 0.304468403 -0.090399400 -2.753189e-02 0.0696639965
[39,] -0.064493422 -0.512748137 0.084900409 -1.220366e-02 -0.0955704656
[40,] 0.016084539 -0.060001481 -0.043249151 -3.878191e-02 -0.2199539564
[41,] 0.243446436 -0.166357003 0.077598119 3.393795e-02 0.0657537307
[42,] 0.025704631 -0.068893393 0.409811746 -5.866474e-02 -0.0484705335
[43,] 0.081363239 0.083905605 -0.216899419 -1.919429e-01 -0.1717553512
[44,] 0.108344789 -0.245254832 -0.241069467 -1.748188e-01 -0.1650797654
[45,] -0.040649347 0.000418203 -0.081084280 -2.810506e-02 -0.0667547182
[46,] -0.069831626 -0.065148413 -0.276808011 -2.794368e-02 -0.4373809098
[47,] 0.079351521 -0.060173674 0.033761504 -1.575245e-01 -0.1276283403
[48,] -0.061872279 0.206389623 -0.037425673 -1.768981e-01 -0.0157769132
[49,] -0.153406180 -0.063234720 0.081281226 1.811389e-01 -0.0134061457
[50,] 0.046581310 0.085215634 0.184852199 -2.480746e-01 -0.0274754252
[,36] [,37] [,38] [,39] [,40]
[1,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
[2,] -0.024044494 -0.098287560 -0.029684871 0.041104146 0.135907289
[3,] 0.103337708 -0.067309720 0.222455909 -0.024587388 0.076785447
[4,] -0.141996440 -0.170687914 -0.078407031 -0.072418779 0.080424450
[5,] -0.098057000 -0.088232977 -0.031187885 -0.093886113 -0.134500587
[6,] 0.053267491 -0.271989714 0.153300819 -0.011837731 0.047257061
[7,] -0.048825547 -0.052623017 -0.174604077 0.190839214 -0.040844463
[8,] 0.128733161 0.207885333 0.048494547 0.004168492 0.219101083
[9,] -0.026713978 0.083276151 0.054416790 0.182055765 0.008295307
[10,] 0.050723053 0.191238353 0.064131952 -0.088021984 0.240146428
[11,] 0.032312988 -0.045114299 -0.047135125 -0.194041106 0.325882988
[12,] -0.045923233 0.269543602 -0.033753863 -0.042770530 -0.198647058
[13,] 0.013316346 -0.131226278 -0.023968959 -0.193378696 0.108171745
[14,] 0.003205108 -0.233013793 0.246736922 -0.209543652 0.073318943
[15,] -0.167345594 -0.065564418 0.071145479 -0.281248273 -0.021681416
[16,] 0.100223051 0.072614101 -0.190024273 -0.180868555 -0.088184047
[17,] 0.144021166 -0.060432096 0.056205343 0.211337055 -0.089810804
[18,] -0.059722850 -0.348927868 -0.243910917 0.082237277 -0.021725172
[19,] -0.051372839 -0.190350342 0.014116911 0.232681631 -0.116757249
[20,] 0.169317796 -0.039641074 -0.086449982 -0.118041733 -0.096273582
[21,] 0.102898891 -0.166823942 -0.289398645 0.034821974 0.027696678
[22,] 0.037006221 0.117218920 -0.232534943 -0.135837311 -0.034040616
[23,] 0.241912356 -0.050719113 -0.032148550 0.175452204 0.059664150
[24,] -0.032248912 -0.130508363 -0.090901963 0.002930699 0.058798075
[25,] -0.029375508 0.013417660 0.120941090 0.370583790 -0.170075743
[26,] 0.077809546 0.087197967 -0.106394018 -0.288484296 -0.125374057
[27,] 0.044829900 0.023098410 -0.074959373 0.239158412 0.350344233
[28,] -0.131800486 -0.071330136 -0.343745211 0.156334938 0.005015313
[29,] -0.094834788 0.001205954 0.313646590 0.154912641 0.298879555
[30,] -0.268402866 -0.102349718 0.016329637 -0.158278087 0.107746092
[31,] -0.124455251 -0.100121383 0.144739852 -0.112224144 -0.121147765
[32,] 0.145683068 0.303094210 -0.018883583 -0.007255154 0.002768738
[33,] 0.046984983 -0.282222166 0.017749421 -0.033228837 0.112546127
[34,] 0.183362424 -0.056100608 0.176639701 -0.172236194 -0.119632311
[35,] -0.173011502 -0.043379686 0.030174532 0.075541023 0.070582930
[36,] -0.328330351 0.088764108 -0.063728691 0.037366676 -0.173146849
[37,] -0.104145067 0.038185073 -0.001496046 -0.031562564 -0.121163906
[38,] -0.156632839 -0.142889702 0.193074760 0.121709052 -0.215548137
[39,] -0.141892779 -0.083167026 -0.081639459 -0.084657566 -0.044373635
[40,] -0.213923262 0.072781715 0.194544344 -0.013794472 -0.080215323
[41,] -0.197997538 -0.141777975 -0.109062127 -0.086579420 0.024124257
[42,] 0.007169033 0.029156459 0.141902102 -0.195725211 -0.080556466
[43,] 0.108237898 -0.184562463 0.185286042 0.037540885 -0.236071929
[44,] 0.059970015 -0.192976972 0.009174152 -0.110471972 0.080173945
[45,] -0.047131056 0.015433672 -0.163075165 0.043291317 0.082795790
[46,] -0.235851734 0.170246627 -0.040129298 -0.097547571 -0.067290266
[47,] -0.035785642 -0.014316808 0.107742359 -0.021284152 0.123204476
[48,] 0.138476936 -0.126807760 -0.245105856 -0.076037548 -0.025719080
[49,] 0.071509998 -0.039647166 0.006137067 0.016889817 -0.293834901
[50,] -0.456607932 0.116217568 -0.036613892 0.036950686 0.180976698
[,41] [,42] [,43] [,44] [,45]
[1,] 0.0000000000 0.0000000000 0.000000000 0.000000000 0.000000000
[2,] 0.0605266005 -0.0334299722 0.037638285 -0.042686874 -0.026633609
[3,] -0.1098764997 -0.0978734410 0.039864289 0.025747302 0.263293463
[4,] -0.0252740380 -0.0124473842 -0.075369231 -0.162065552 0.063552639
[5,] 0.1887386516 -0.1625028337 -0.073674808 -0.208084221 -0.173142586
[6,] 0.0518485498 -0.0718485559 0.231758628 0.139827489 -0.039808949
[7,] 0.0003121395 -0.0171406619 -0.018260272 0.024721538 -0.001858596
[8,] 0.1727720004 0.1746142294 -0.160567870 -0.099670950 -0.085825771
[9,] -0.0532408685 0.0230111525 -0.062028763 -0.081167670 0.015099294
[10,] 0.0675560884 0.1539286733 0.052047292 -0.020365584 0.100884068
[11,] -0.1232710356 -0.0425388551 0.032908906 -0.012942124 0.209273888
[12,] -0.0394405041 -0.1356558964 -0.035150375 0.276615642 -0.006483269
[13,] 0.0268588308 -0.3292787123 -0.083927053 0.359051520 0.016379264
[14,] 0.1465161077 -0.0319202805 -0.186995676 -0.100588116 0.205288951
[15,] -0.0462927724 0.0213746027 0.285119683 -0.334674904 0.004695126
[16,] 0.2505600047 -0.1989377255 -0.038056667 -0.071956845 -0.360265685
[17,] 0.0435183664 -0.0986436570 0.010289913 -0.011914399 -0.127719303
[18,] -0.0055551994 -0.2991983691 0.120231495 0.027594027 0.243603614
[19,] -0.3187239162 -0.0577092095 -0.158839224 -0.247254191 0.139407928
[20,] 0.0311019096 -0.1702385265 -0.020050526 -0.017999444 0.032145288
[21,] 0.3915761432 0.1056615743 -0.129516308 -0.270596329 0.055630429
[22,] -0.3833258943 0.0121343324 -0.273233625 -0.108211129 0.043291611
[23,] -0.0684654214 0.1167600746 -0.053913757 -0.147424192 0.263234674
[24,] -0.0174838371 0.0680393095 -0.020916525 0.112977153 -0.237957927
[25,] 0.2473626627 -0.0013933299 -0.053124333 -0.094241103 0.124792219
[26,] 0.1402527539 0.0859151260 0.076480512 -0.070008049 0.131206227
[27,] -0.1499407421 -0.1481620078 0.303652100 -0.194700393 -0.269431651
[28,] -0.0667761339 0.3684785673 0.009782634 0.281450344 -0.016490603
[29,] 0.1315418633 -0.0017741235 -0.354353576 0.240820048 0.016680739
[30,] -0.0504719683 0.0552139599 -0.130706913 -0.057584015 -0.108946236
[31,] -0.0352863559 0.3158428627 0.020334401 -0.102524771 0.126970551
[32,] -0.1021420993 -0.0001095018 0.068824917 -0.163334112 0.017898571
[33,] 0.0401032257 0.1770762950 0.155649250 0.030685159 -0.121499428
[34,] -0.0219300708 0.0784570368 0.247580529 0.131864503 0.009201401
[35,] -0.1082575154 0.0336963481 0.142812163 -0.060864503 -0.213611516
[36,] 0.0848797477 0.0472824882 0.026180896 0.037006042 0.108794894
[37,] 0.0833592458 -0.0256339078 -0.091167763 -0.031097731 0.035108129
[38,] 0.0411285862 -0.0034375478 -0.082748124 0.106316646 -0.123362148
[39,] -0.0514275152 0.1715852767 0.092671967 0.116026606 -0.016064801
[40,] -0.1789121791 0.0038996033 -0.102720619 -0.204492342 -0.068587076
[41,] -0.1042951738 -0.1976373156 -0.216446738 -0.049735429 -0.036858519
[42,] 0.0240532284 0.0419682057 -0.263619119 -0.040521095 -0.175264591
[43,] 0.1240762357 0.1670816523 0.105405726 -0.104303049 -0.099468030
[44,] -0.2440787858 0.2268463325 -0.182465601 0.031409805 -0.282640341
[45,] 0.1097893836 0.0335588007 -0.057570024 -0.092520441 -0.094745180
[46,] -0.0083990232 -0.0263794772 0.189612472 0.052908652 0.161986371
[47,] 0.0324833167 0.1265984544 0.104739535 0.034876090 -0.099143221
[48,] 0.0799959424 0.2922435686 -0.117146288 0.140022725 0.150833362
[49,] -0.1918001382 0.0842462137 0.069018779 0.086867434 -0.071819076
[50,] 0.2191644656 0.0476282783 0.135329899 0.009312763 0.103634234
[,46] [,47] [,48] [,49] [,50]
[1,] 0.8128074219 0.0000000000 0.000000000 0.0000000000 0.0000000000
[2,] 0.2225200583 -0.0153945455 0.071856345 -0.0001591609 0.0981321181
[3,] 0.0420314322 0.1635478175 -0.196477447 0.0713682280 -0.1466776848
[4,] -0.0086037597 0.0002863311 -0.125926381 0.0341236782 0.3825898351
[5,] 0.0077390237 -0.1728677102 -0.095194152 0.1644702759 -0.2772911313
[6,] 0.0566496558 -0.0835578458 0.049974514 0.1674681161 -0.1001422134
[7,] 0.0502400468 -0.2050163265 0.152409762 0.3278475135 0.3553057568
[8,] -0.0074809728 0.0940590850 -0.070370604 0.0446223119 0.3097115900
[9,] -0.1598213822 0.0714534958 0.222442974 -0.0879026582 -0.2493912022
[10,] -0.0398271869 -0.3317786017 0.079999473 0.5000792960 -0.0432596328
[11,] 0.1286039858 0.3361487640 0.056586516 -0.1125650162 0.0715060491
[12,] 0.0211111636 0.2997851896 0.127503233 0.3604348973 0.0462710844
[13,] -0.1162610340 0.0525712807 0.170443963 -0.1792511137 0.0493161116
[14,] -0.0094456111 -0.0328542001 0.060044006 -0.0311143179 0.1056497929
[15,] -0.0740251780 -0.0517052237 -0.280140090 0.0609761910 0.0013469433
[16,] 0.0467971099 0.1546203686 -0.062540627 0.0192597406 0.1420136650
[17,] -0.0345312502 0.2683473911 -0.433110951 -0.0193455295 0.0962735570
[18,] -0.0211031914 0.0330222749 -0.024285838 0.1206563506 0.0236465243
[19,] 0.0149347877 0.0911611769 0.102190821 0.1458049426 0.0531377200
[20,] -0.0469688822 -0.3194644515 -0.106895230 -0.1172391625 0.0864624494
[21,] 0.0115489999 0.0348063239 0.079690698 0.0677560558 -0.0781668234
[22,] -0.0464731202 -0.1543150727 -0.088134844 -0.1191827914 0.0685667040
[23,] -0.0895180186 -0.1741747098 0.120552738 -0.1517510524 -0.0347607221
[24,] -0.1178483723 0.0239040239 0.096362171 0.0759655565 -0.0393067413
[25,] -0.0107502387 0.0398755171 0.014713927 -0.0451134428 0.1036826542
[26,] 0.0393166326 -0.0661265758 0.225905092 -0.2453017952 0.1311237522
[27,] -0.0543864143 0.0186253253 0.096002363 -0.0501326455 0.0346942245
[28,] -0.1163068784 -0.0130875880 -0.199737805 -0.0908527639 0.2006954951
[29,] 0.0710193192 -0.2228199552 -0.236124237 -0.0991740233 0.0009478463
[30,] 0.0321095229 0.0575019123 0.051325062 -0.0134053735 0.0144057651
[31,] -0.0209516952 0.2844160374 0.142928488 0.0819719454 0.0764077176
[32,] 0.0551518204 -0.0579171065 -0.230572722 -0.0521877601 -0.0782633085
[33,] 0.0307627751 -0.0560067632 0.017318537 -0.1966953146 0.0761690969
[34,] -0.2127758033 -0.1368821274 0.017690463 0.0556498532 0.1334233289
[35,] 0.0014590122 -0.0023566091 -0.067492034 -0.1552376640 0.0010798366
[36,] -0.0072580407 0.0015870577 0.006225274 -0.0521355571 0.0184640158
[37,] 0.0273462158 -0.0092251085 -0.022632633 -0.0298344966 0.1060913618
[38,] -0.0326818785 -0.1050270066 0.080543028 -0.1216364632 0.0245801847
[39,] 0.0539941362 -0.0092432674 -0.157849668 -0.0055948531 -0.1358458051
[40,] -0.0260525347 0.0542761648 0.014037211 0.0112379371 0.0122255546
[41,] -0.0809302706 -0.1110143654 -0.151479110 0.0996987707 -0.1220957992
[42,] -0.0653198823 0.0380370270 0.032542294 -0.0607965425 0.0163891042
[43,] -0.0189065016 0.0758636023 -0.001858895 -0.0144578684 0.0328494445
[44,] 0.0563229784 -0.0173927767 0.154761833 0.1811307281 -0.0398439950
[45,] 0.0002554121 0.0663085238 0.259826316 -0.1714070220 -0.3229266216
[46,] -0.0082016898 -0.0425371985 0.042808394 -0.0897821892 0.0414007859
[47,] -0.0123699916 0.0645691163 -0.030352000 0.0874466672 0.0103539264
[48,] 0.0052502741 0.1387479735 -0.269113897 0.1086692628 -0.3283622330
[49,] 0.3069925718 -0.2466812660 0.032270603 -0.1106066634 -0.0404484522
[50,] 0.0162152939 -0.0858903518 -0.030315436 -0.0373819581 -0.0721929572
Output ini menampilkan hasil Eigen Values dan Eigen Vectors dari data yang telah dianalisis sebelumnya. Dapat diketahui bahwa :
1. Interpretasi Eigenvalues
Hasil eigenvalues menunjukkan daftar nilai eigen dari matriks B, yaitu matriks hasil transformasi double-centering dari matriks jarak kuadrat. Pada MDS (khususnya Classical MDS), eigenvalues sangat penting karena menentukan jumlah dimensi yang relevan dan proporsi variasi yang dapat dijelaskan oleh masing-masing dimensi.
Pada hasil yang ditampilkan ada 2 eigenvalue besar dan positif, yaitu: λ₁ ≈ 343544.6 λ₂ ≈ 9897.626
Setelah itu, hampir semua eigenvalues lainnya mendekati 0, dengan kisaran 10⁻¹¹ sampai 10⁻¹² (nilai yang secara numerik tidak signifikan).
Makna dari pola ini :
Implikasi untuk MDS: - MDS 2 dimensi tepat untuk memvisualisasikan data. - Dua dimensi pertama mencakup hampir seluruh variabilitas (≈ 100% karena dua nilai pertama sangat dominan).
2. Interpretasi Eigenvectors
Eigenvectors menunjukkan arah atau sumbu baru dalam ruang berdimensi rendah. Dalam konteks MDS kolom eigenvectors mewakili koefisien pembentuk koordinat MDS.
Pada hasil analisis, ditampilkan eigenvectors untuk beberapa kolom:
Kolom berikutnya sebenarnya tidak penting, karena eigenvalues ke-3 dan seterusnya sangat kecil, sehingga dimensinya tidak menambah informasi. Nilai positif atau negatif tidak menjadi masalah; yang penting adalah pola relatif antar objek. Contoh:
Jika misalnya objek 1 dan objek 7 memiliki nilai eigenvector yang mirip pada kolom 1 dan 2 → mereka akan berada berdekatan dalam peta MDS.
> print(cumulative_variance)
[1] 0.9655342 0.9933516 0.9991511 1.0000000 1.0000000 1.0000000 1.0000000
[8] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[36] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[43] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[50] 1.0000000
Output ini menampilkan nilai cumulative variance yang menunjukkan proporsi total keragaman data yang dapat dijelaskan oleh sejumlah dimensi hasil dekomposisi eigen pada analisis MDS. Berdasarkan output, dua dimensi pertama mampu menjelaskan hampir seluruh variasi dalam data. Dimensi pertama menjelaskan sekitar 96,55% dari keseluruhan informasi struktur jarak antar-objek, sementara penambahan dimensi kedua meningkatkan proporsi variasi yang dijelaskan menjadi 99,34%. Ketika dimensi ketiga ditambahkan, total variasi yang terjelaskan mencapai 99,92%, dan mulai dari dimensi keempat hingga dimensi ke-50, nilai kumulatif variasi mencapai 100%, sehingga tidak ada tambahan informasi berarti pada dimensi-dimensi selanjutnya.
Hasil ini menunjukkan bahwa struktur jarak antar objek dalam dataset dapat direpresentasikan dengan sangat baik menggunakan dua dimensi utama, karena kedua dimensi tersebut sudah mencakup hampir seluruh variasi yang relevan. Dimensi ke-3 dan seterusnya hanya menambahkan kontribusi yang sangat kecil (mendekati nol), yang umumnya merupakan noise numerik. Oleh karena itu, representasi data dalam ruang dua dimensi sudah memadai dan optimal untuk tujuan visualisasi maupun interpretasi menggunakan teknik Classical MDS.
> fit
[,1] [,2]
1 -64.802164 11.4480074
2 -92.827450 17.9829427
3 -124.068216 -8.8304030
4 -18.340035 16.7039114
5 -107.422953 -22.5200698
6 -34.975986 -13.7195840
7 60.887282 -12.9325302
8 -66.731025 -1.3537978
9 -165.244370 -6.2746901
10 -40.535177 7.2902396
11 123.536106 -24.2912079
12 51.797002 9.4691910
13 -78.992097 -12.8970605
14 57.550961 -2.8462647
15 115.586790 3.3421305
16 55.789694 -3.1572339
17 62.383181 10.6732715
18 -78.277631 4.2949175
19 89.261044 11.4878272
20 -129.330136 5.0070315
21 21.266283 -19.4501790
22 -85.451527 -5.9045567
23 98.954816 -5.2096006
24 -86.856358 27.4284196
25 -7.986289 -5.2756414
26 62.483635 9.5105021
27 69.096544 0.2111959
28 -83.613578 -15.1021839
29 114.777355 4.7345584
30 10.815725 -23.1373389
31 -114.868163 0.3364531
32 -84.294231 -15.9239655
33 -164.325514 31.0966153
34 127.495597 16.1350394
35 50.086822 -12.2793244
36 19.693723 -3.3701310
37 11.150240 -3.8660682
38 64.689142 -8.9115466
39 -3.063973 -18.3739704
40 -107.281069 23.5361159
41 86.106720 16.5978586
42 -17.506264 6.5065756
43 -31.291122 -12.9849566
44 49.913397 -17.6484577
45 124.714469 27.3135591
46 14.817448 1.7526150
47 25.075839 -9.9679669
48 91.544647 22.9528778
49 118.176328 -5.5075792
50 10.434539 5.9244529
Negara bagian yang memiliki nilai koordinat yang berdekatan merepresentasikan tingkat kriminalitas yang mirip, sedangkan negara bagian yang posisinya jauh menunjukkan tingkat kriminalitas yang sangat berbeda. Misalnya, negara bagian seperti baris ke-9 (-165.24, -6.27) dan baris ke-33 (-164.33, 31.09) terletak jauh di sisi kiri plot, menunjukkan bahwa keduanya memiliki pola kriminalitas yang berbeda dari sebagian besar negara bagian lain. Sebaliknya, negara bagian seperti baris ke-35 (50.08, -12.28) dan baris ke-44 (49.91, -17.64) berada berdekatan, yang menunjukkan pola kriminalitas yang relatif serupa.
Secara umum, koordinat pada Dimensi 1 cenderung memisahkan negara bagian berdasarkan tingkat kriminalitas keseluruhan, terutama variabel UrbanPop, Assault, dan Rape, karena variabel-variabel inilah yang mendominasi struktur jarak dataset USArrests. Sementara itu, Dimensi 2 memberikan variasi tambahan yang lebih kecil namun tetap membantu mempertajam pemisahan kelompok.l
> disparities
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.00000 28.77711 62.63928 46.75846 54.50103 39.02574 128.032212
[2,] 28.77711 0.00000 41.16966 74.49840 43.05256 65.96849 156.792810
[3,] 62.63928 41.16966 0.00000 108.76787 21.55161 89.22628 185.000983
[4,] 46.75846 74.49840 108.76787 0.00000 97.33595 34.67483 84.588926
[5,] 54.50103 43.05256 21.55161 97.33595 0.00000 72.97953 168.583084
[6,] 39.02574 65.96849 89.22628 34.67483 72.97953 0.00000 95.866499
[7,] 128.03221 156.79281 185.00098 84.58893 168.58308 95.86650 0.000000
[8,] 12.94630 32.47973 57.82260 51.65045 45.86768 34.07778 128.142497
[9,] 101.99378 76.37174 41.25539 148.69062 60.06021 130.48095 226.229642
[10,] 24.62059 53.37430 85.07434 24.10895 73.22997 21.73286 103.418932
[11,] 191.69923 220.45474 248.08655 147.68019 230.96585 158.86423 63.670203
[12,] 116.61596 144.87483 176.81473 70.50919 162.40168 89.81799 24.175820
[13,] 28.17865 33.83772 45.25919 67.48993 30.01526 44.02380 139.879384
[14,] 123.18528 151.81410 181.71774 78.36870 166.14286 93.16365 10.623737
[15,] 180.57098 208.92786 239.96394 134.59172 224.50434 151.52641 57.069263
[16,] 121.47308 150.11317 179.94736 76.74426 164.35720 91.37818 11.024601
[17,] 127.18770 155.38266 187.46871 80.94817 173.02000 100.36841 23.653152
[18,] 15.25631 19.97647 47.63456 61.20865 39.60421 46.89941 140.227166
[19,] 154.06321 182.20430 214.29467 107.72743 199.60243 126.76850 37.435601
[20,] 64.84863 38.74042 14.80413 111.60475 35.18048 96.19455 191.061492
[21,] 91.44657 120.07755 145.72198 53.62629 128.72585 56.53346 40.153497
[22,] 26.97235 25.00034 38.72737 70.81734 27.54667 51.07695 146.507472
[23,] 164.60202 193.17953 223.05242 119.32428 207.10248 134.20089 38.843027
[24,] 27.23529 11.17457 51.95599 69.35057 54.01700 66.21730 153.157400
[25,] 59.22604 87.97150 116.13634 24.29611 100.92086 28.27974 69.297884
[26,] 127.30054 155.54201 187.45128 81.14315 172.89941 100.18989 22.499734
[27,] 134.36938 162.89633 193.37625 88.97845 177.97709 105.00075 15.496759
[28,] 32.53893 34.34416 40.93792 72.61035 24.93815 48.65724 144.517148
[29,] 179.70496 208.02710 239.23046 133.65442 223.86557 150.88611 56.712132
[30,] 83.15174 111.50240 135.64058 49.36987 118.24029 46.75013 51.100870
[31,] 51.28422 28.23458 12.98739 97.90594 24.03855 81.11925 176.255616
[32,] 33.60306 34.96419 40.40159 73.58352 24.05091 49.36748 145.212328
[33,] 101.44439 72.69073 56.69935 146.69325 78.18344 136.89336 229.476294
[34,] 192.35487 220.33080 252.79958 145.83674 238.07760 165.19175 72.674557
[35,] 117.31353 146.08317 174.18919 74.31193 157.84233 85.07500 10.820195
[36,] 85.78538 114.52933 143.86560 43.00621 128.55104 55.64071 42.288873
[37,] 77.48089 106.24848 135.30955 35.95553 120.03155 47.16694 50.556643
[38,] 131.08207 159.79609 188.75738 86.89071 172.64925 99.78103 5.533755
[39,] 68.56351 96.84682 121.38001 38.25985 104.44131 32.24965 64.182336
[40,] 44.16537 15.48370 36.46094 89.20306 46.05640 81.33887 172.077181
[41,] 150.99673 178.93953 211.70758 104.44681 197.44353 124.82055 38.833799
[42,] 47.55334 76.19047 107.65999 10.23137 94.48575 26.72618 80.767734
[43,] 41.47240 68.88926 92.87007 32.39073 76.72662 3.75738 92.178419
[44,] 118.34806 147.12086 174.20494 76.41084 157.41175 84.98025 11.944292
[45,] 190.17957 217.74193 251.39453 143.44740 237.42614 164.87802 75.456329
[46,] 80.20775 108.86160 139.28829 36.37252 124.62696 52.14187 48.353729
[47,] 92.39426 121.17111 149.14839 50.95417 133.09202 60.16890 35.933941
[48,] 156.76954 184.43907 217.94285 110.06222 204.09776 131.72828 47.197845
[49,] 183.76240 212.30732 242.26733 138.31149 226.23983 153.37232 57.768198
[50,] 75.43919 103.96367 135.30963 30.72740 121.24141 49.47731 53.861536
[,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 12.94630 101.99378 24.62059 191.69923 116.61596 28.178654 123.185280
[2,] 32.47973 76.37174 53.37430 220.45474 144.87483 33.837724 151.814105
[3,] 57.82260 41.25539 85.07434 248.08655 176.81473 45.259189 181.717735
[4,] 51.65045 148.69062 24.10895 147.68019 70.50919 67.489926 78.368697
[5,] 45.86768 60.06021 73.22997 230.96585 162.40168 30.015261 166.142863
[6,] 34.07778 130.48095 21.73286 158.86423 89.81799 44.023796 93.163646
[7,] 128.14250 226.22964 103.41893 63.67020 24.17582 139.879384 10.623737
[8,] 0.00000 98.63617 27.58518 191.64474 119.02113 16.839857 124.290947
[9,] 98.63617 0.00000 125.44477 289.34194 217.61164 86.506129 222.821708
[10,] 27.58518 125.44477 0.00000 167.08313 92.35789 43.433418 98.608514
[11,] 191.64474 289.34194 167.08313 0.00000 79.28596 202.848465 69.382454
[12,] 119.02113 217.61164 92.35789 79.28596 0.00000 132.687745 13.593325
[13,] 16.83986 86.50613 43.43342 202.84846 132.68775 0.000000 136.912473
[14,] 124.29095 222.82171 98.60851 69.38245 13.59333 136.912473 0.000000
[15,] 182.37828 280.99577 156.17188 28.75401 64.08337 195.255357 58.364833
[16,] 122.53399 221.05605 96.88978 70.96634 13.24267 135.133251 1.788508
[17,] 129.67316 228.25761 102.97394 70.44285 10.65443 143.326654 14.357166
[18,] 12.85426 87.60668 37.86113 203.82824 130.17751 17.206817 136.016186
[19,] 156.51975 255.12451 129.86408 49.54714 37.51839 170.011007 34.799362
[20,] 62.92145 37.64451 88.82431 254.55790 181.18209 53.427283 187.046033
[21,] 89.83877 186.97545 67.33848 102.38434 42.05300 100.472315 39.903231
[22,] 19.26568 79.79370 46.81433 209.79490 138.10688 9.519419 143.035186
[23,] 165.73070 264.20133 140.04893 31.11828 49.38954 178.112888 41.471250
[24,] 35.12044 85.32632 50.50939 216.65620 139.81162 41.085167 147.546705
[25,] 58.87550 157.26126 34.89028 132.88992 61.57477 71.413660 65.582261
[26,] 129.67059 228.27443 103.04273 69.78510 10.68671 143.239247 13.304923
[27,] 135.83659 234.43065 109.86003 59.69953 19.62103 148.667657 11.943558
[28,] 21.77243 82.10670 48.55069 207.35339 137.62187 5.120611 141.695570
[29,] 181.61046 280.23806 155.33356 30.31849 63.15807 194.569973 57.726329
[30,] 80.54825 176.86579 59.68880 112.72629 52.37032 90.389758 50.950073
[31,] 48.16680 50.80816 74.65754 239.67294 166.91520 38.238958 172.448496
[32,] 22.82008 81.52321 49.53538 207.99870 138.44001 6.105307 142.446778
[33,] 102.84801 37.38260 126.05868 293.14181 217.20195 96.006435 224.457767
[34,] 195.01241 293.59646 168.26340 40.61969 75.99152 208.518658 72.474423
[35,] 117.32765 215.41490 92.71092 74.42501 21.81565 129.080397 12.028964
[36,] 86.44827 184.96090 61.16505 105.92890 34.57555 99.144609 37.860862
[37,] 77.92177 176.41105 52.87575 114.22683 42.77836 90.593596 46.411927
[38,] 131.63730 229.94863 106.46434 60.82351 22.45125 143.736505 9.367031
[39,] 65.90281 162.63110 45.41743 126.73829 61.52210 76.125401 62.572197
[40,] 47.57955 65.17997 68.69456 235.72022 159.69881 46.126373 166.930009
[41,] 153.88840 252.38963 126.98347 55.43352 35.04247 167.712760 34.547146
[42,] 49.84840 148.28995 23.04224 144.36569 69.36656 64.474869 75.637707
[43,] 37.29974 134.12122 22.28309 155.23950 86.06872 47.701057 89.418727
[44,] 117.77707 215.45818 93.82368 73.92178 27.18299 128.993032 16.656449
[45,] 193.57994 291.89775 166.45834 51.61822 75.06916 207.637326 73.624397
[46,] 81.60762 180.24066 55.62893 111.79458 37.77609 94.946531 42.980260
[47,] 92.21011 190.35604 67.84284 99.49663 33.04276 104.109149 33.246837
[48,] 160.13121 258.44700 133.00526 57.05661 41.97243 174.264165 42.675127
[49,] 184.95400 283.42174 159.22665 19.53335 68.04791 197.306848 60.683752
[50,] 77.50805 176.10195 50.98801 117.06814 41.51408 91.385845 47.925804
[,15] [,16] [,17] [,18] [,19] [,20] [,21]
[1,] 180.570983 121.473080 127.187704 15.25631 154.06321 64.84863 91.44657
[2,] 208.927855 150.113166 155.382661 19.97647 182.20430 38.74042 120.07755
[3,] 239.963940 179.947361 187.468709 47.63456 214.29467 14.80413 145.72198
[4,] 134.591722 76.744263 80.948170 61.20865 107.72743 111.60475 53.62629
[5,] 224.504340 164.357195 173.020002 39.60421 199.60243 35.18048 128.72585
[6,] 151.526405 91.378181 100.368415 46.89941 126.76850 96.19455 56.53346
[7,] 57.069263 11.024601 23.653152 140.22717 37.43560 191.06149 40.15350
[8,] 182.378281 122.533992 129.673161 12.85426 156.51975 62.92145 89.83877
[9,] 280.995772 221.056048 228.257607 87.60668 255.12451 37.64451 186.97545
[10,] 156.171879 96.889785 102.973944 37.86113 129.86408 88.82431 67.33848
[11,] 28.754009 70.966338 70.442850 203.82824 49.54714 254.55790 102.38434
[12,] 64.083366 13.242666 10.654435 130.17751 37.51839 181.18209 42.05300
[13,] 195.255357 135.133251 143.326654 17.20682 170.01101 53.42728 100.47232
[14,] 58.364833 1.788508 14.357166 136.01619 34.79936 187.04603 39.90323
[15,] 0.000000 60.149267 53.706328 193.86676 27.55716 244.92258 97.03529
[16,] 60.149267 0.000000 15.321780 134.27428 36.53504 185.29977 38.17494
[17,] 53.706328 15.321780 0.000000 140.80535 26.89020 191.79703 50.97079
[18,] 193.866762 134.274280 140.805353 0.00000 167.69301 51.05747 102.33680
[19,] 27.557163 36.535039 26.890204 167.69301 0.00000 218.68723 74.70240
[20,] 244.922584 185.299775 191.797033 51.05747 218.68723 0.00000 152.56945
[21,] 97.035290 38.174939 50.970791 102.33680 74.70240 152.56945 0.00000
[22,] 201.250853 141.267938 148.761302 12.46973 175.57613 45.21499 107.57404
[23,] 18.701729 43.213886 39.871670 177.48712 19.30734 228.51345 78.98292
[24,] 203.870982 145.888239 150.177145 24.67293 176.83733 48.02854 117.84782
[25,] 123.873208 63.811156 72.154210 70.93989 98.68160 121.77874 32.50585
[26,] 53.460208 14.327609 1.167101 140.85786 26.85032 191.86663 50.37451
[27,] 46.595554 13.726565 12.430779 147.43074 23.10345 198.48463 51.71367
[28,] 200.052442 139.914096 148.254604 20.11765 174.90759 49.94381 104.96995
[29,] 1.610603 59.513229 52.729667 193.05549 26.39486 244.10764 96.58790
[30,] 108.065435 49.212422 61.663278 93.22100 85.74713 142.94393 11.08194
[31,] 230.474552 170.693614 177.552495 36.80403 204.43357 15.19747 137.56489
[32,] 200.807382 140.664478 149.069366 21.09509 175.70669 49.66225 105.61939
[33,] 281.284926 222.764520 227.626768 90.12530 254.34356 43.65023 192.35200
[34,] 17.477935 74.255830 65.341087 206.11358 38.51594 257.06670 112.03113
[35,] 67.337030 10.758034 26.038857 129.43005 45.82027 180.24778 29.69924
[36,] 96.127700 36.096599 44.940037 98.27074 71.13629 149.25913 16.15676
[37,] 104.685009 44.645082 53.256048 89.79948 79.60553 140.76032 18.57953
[38,] 52.351916 10.597749 19.720105 143.57545 31.93607 194.51788 44.68341
[39,] 120.621691 60.789005 71.603576 78.55554 97.03420 128.41268 24.35405
[40,] 223.780873 165.241062 170.151139 34.80550 196.91105 28.80084 135.54425
[41,] 32.323193 36.185436 24.452138 164.84410 6.00518 215.74843 74.18722
[42,] 133.130668 73.930283 79.998030 60.81160 106.88345 111.83393 46.65901
[43,] 147.782592 87.633627 96.615665 50.06322 123.01115 99.67628 52.95356
[44,] 68.946351 15.637341 30.945369 130.05557 48.96080 180.66963 28.70372
[45,] 25.650418 75.359763 64.514252 204.29305 38.82524 255.02204 113.52698
[46,] 100.781877 41.265380 48.395010 93.12979 75.07745 144.18432 22.16181
[47,] 91.484375 31.459927 42.636820 104.33298 67.67637 155.13045 10.21886
[48,] 31.025893 44.273633 31.641426 170.84416 11.69026 221.60262 82.07964
[49,] 9.220796 62.430891 58.092127 196.69837 33.54009 247.72970 97.90788
[50,] 105.183954 46.255455 52.165243 88.72714 79.02259 139.76769 27.58983
[,22] [,23] [,24] [,25] [,26] [,27] [,28]
[1,] 26.972350 164.60202 27.23529 59.22604 127.300544 134.36938 32.538930
[2,] 25.000337 193.17953 11.17457 87.97150 155.542006 162.89633 34.344156
[3,] 38.727371 223.05242 51.95599 116.13634 187.451279 193.37625 40.937916
[4,] 70.817336 119.32428 69.35057 24.29611 81.143151 88.97845 72.610351
[5,] 27.546667 207.10248 54.01700 100.92086 172.899411 177.97709 24.938151
[6,] 51.076950 134.20089 66.21730 28.27974 100.189893 105.00075 48.657240
[7,] 146.507472 38.84303 153.15740 69.29788 22.499734 15.49676 144.517148
[8,] 19.265684 165.73070 35.12044 58.87550 129.670589 135.83659 21.772430
[9,] 79.793702 264.20133 85.32632 157.26126 228.274433 234.43065 82.106704
[10,] 46.814326 140.04893 50.50939 34.89028 103.042735 109.86003 48.550688
[11,] 209.794899 31.11828 216.65620 132.88992 69.785097 59.69953 207.353394
[12,] 138.106882 49.38954 139.81162 61.57477 10.686713 19.62103 137.621865
[13,] 9.519419 178.11289 41.08517 71.41366 143.239247 148.66766 5.120611
[14,] 143.035186 41.47125 147.54670 65.58226 13.304923 11.94356 141.695570
[15,] 201.250853 18.70173 203.87098 123.87321 53.460208 46.59555 200.052442
[16,] 141.267938 43.21389 145.88824 63.81116 14.327609 13.72656 139.914096
[17,] 148.761302 39.87167 150.17714 72.15421 1.167101 12.43078 148.254604
[18,] 12.469725 177.48712 24.67293 70.93989 140.857859 147.43074 20.117651
[19,] 175.576130 19.30734 176.83733 98.68160 26.850316 23.10345 174.907587
[20,] 45.214987 228.51345 48.02854 121.77874 191.866631 198.48463 49.943810
[21,] 107.574043 78.98292 117.84782 32.50585 50.374510 51.71367 104.969950
[22,] 0.000000 184.40765 33.36257 77.46779 148.736129 154.66903 9.379467
[23,] 184.407652 0.00000 188.65586 106.94112 39.329739 30.34636 182.836215
[24,] 33.362567 188.65586 0.00000 85.38175 150.411054 158.31009 42.654049
[25,] 77.467791 106.94112 85.38175 0.00000 72.004446 77.27787 76.263018
[26,] 148.736129 39.32974 150.41105 72.00445 0.000000 11.41086 148.155932
[27,] 154.669030 30.34636 158.31009 77.27787 11.410857 0.00000 153.475996
[28,] 9.379467 182.83622 42.65405 76.26302 148.155932 153.47600 0.000000
[29,] 200.511335 18.68794 202.90679 123.17109 52.511358 45.90422 199.380186
[30,] 97.797508 89.94389 109.98514 25.93368 61.118364 62.78382 94.770550
[31,] 30.071393 213.89489 38.96968 107.02911 177.588917 183.96475 34.859727
[32,] 10.086024 183.56201 43.42803 77.04732 148.965278 154.23707 1.067058
[33,] 87.121712 265.77184 77.55595 160.51447 227.834042 235.45651 92.998633
[34,] 214.084612 35.63944 214.64925 137.16325 65.348601 60.53113 213.407703
[35,] 135.688178 49.37673 142.58380 58.49391 25.069454 22.74605 133.730197
[36,] 105.175790 79.28243 110.91199 27.74552 44.686545 49.53246 103.971340
[37,] 96.623272 87.81485 102.88167 19.18837 53.047621 58.08957 95.427624
[38,] 150.170777 34.46507 155.84169 72.76632 18.553602 10.13162 148.431873
[39,] 83.325838 102.86464 95.49357 13.99269 71.232245 74.51543 80.616026
[40,] 36.650813 208.22958 20.79228 103.39038 170.343102 177.91322 45.310797
[41,] 173.027717 25.31084 173.30184 96.60199 24.663348 23.61925 172.655357
[42,] 69.069493 117.04893 72.43728 15.14763 80.046284 86.83132 69.549374
[43,] 54.621255 130.47782 68.70762 24.54687 96.435215 101.25128 52.365276
[44,] 135.873404 50.59433 144.00657 59.20693 29.926911 26.20993 133.551252
[45,] 212.774973 41.48874 211.57086 136.64387 64.727317 61.86996 212.602142
[46,] 100.560925 84.42493 104.86567 23.86225 48.293376 54.30098 99.863663
[47,] 110.602034 74.03206 118.01401 33.39345 42.175277 45.18227 108.810614
[48,] 179.333201 29.12105 178.45713 103.45654 32.019367 31.95468 179.244502
[49,] 203.628241 19.22382 207.66122 126.16283 57.682049 49.41184 202.017877
[50,] 96.612955 89.21775 99.63904 21.55850 52.172484 58.93956 96.369953
[,29] [,30] [,31] [,32] [,33] [,34] [,35]
[1,] 179.704963 83.15174 51.28422 33.603059 101.44439 192.35487 117.313534
[2,] 208.027101 111.50240 28.23458 34.964185 72.69073 220.33080 146.083175
[3,] 239.230464 135.64058 12.98739 40.401591 56.69935 252.79958 174.189185
[4,] 133.654423 49.36987 97.90594 73.583519 146.69325 145.83674 74.311929
[5,] 223.865566 118.24029 24.03855 24.050913 78.18344 238.07760 157.842333
[6,] 150.886111 46.75013 81.11925 49.367485 136.89336 165.19175 85.075000
[7,] 56.712132 51.10087 176.25562 145.212328 229.47629 72.67456 10.820195
[8,] 181.610462 80.54825 48.16680 22.820078 102.84801 195.01241 117.327646
[9,] 280.238059 176.86579 50.80816 81.523209 37.38260 293.59646 215.414897
[10,] 155.333557 59.68880 74.65754 49.535383 126.05868 168.26340 92.710918
[11,] 30.318490 112.72629 239.67294 207.998701 293.14181 40.61969 74.425014
[12,] 63.158068 52.37032 166.91520 138.440009 217.20195 75.99152 21.815651
[13,] 194.569973 90.38976 38.23896 6.105307 96.00644 208.51866 129.080397
[14,] 57.726329 50.95007 172.44850 142.446778 224.45777 72.47442 12.028964
[15,] 1.610603 108.06544 230.47455 200.807382 281.28493 17.47793 67.337030
[16,] 59.513229 49.21242 170.69361 140.664478 222.76452 74.25583 10.758034
[17,] 52.729667 61.66328 177.55250 149.069366 227.62677 65.34109 26.038857
[18,] 193.055486 93.22100 36.80403 21.095087 90.12530 206.11358 129.430052
[19,] 26.394862 85.74713 204.43357 175.706687 254.34356 38.51594 45.820271
[20,] 244.107642 142.94393 15.19747 49.662253 43.65023 257.06670 180.247781
[21,] 96.587898 11.08194 137.56489 105.619393 192.35200 112.03113 29.699236
[22,] 200.511335 97.79751 30.07139 10.086024 87.12171 214.08461 135.688178
[23,] 18.687938 89.94389 213.89489 183.562007 265.77184 35.63944 49.376734
[24,] 202.906790 109.98514 38.96968 43.428030 77.55595 214.64925 142.583797
[25,] 123.171085 25.93368 107.02911 77.047315 160.51447 137.16325 58.493912
[26,] 52.511358 61.11836 177.58892 148.965278 227.83404 65.34860 25.069454
[27,] 45.904218 62.78382 183.96475 154.237068 235.45651 60.53113 22.746047
[28,] 199.380186 94.77055 34.85973 1.067058 92.99863 213.40770 133.730197
[29,] 0.000000 107.63300 229.68763 200.140627 280.34509 17.07995 66.890487
[30,] 107.633002 0.00000 127.85718 95.383103 183.34605 123.11179 40.744515
[31,] 229.687629 127.85718 0.00000 34.628984 58.24274 242.87813 165.436709
[32,] 200.140627 95.38310 34.62898 0.000000 92.82210 214.20250 134.430468
[33,] 280.345090 183.34605 58.24274 92.822096 0.00000 292.20440 218.755850
[34,] 17.079949 123.11179 242.87813 214.202499 292.20440 0.00000 82.459047
[35,] 66.890487 40.74452 165.43671 134.430468 218.75585 82.45905 0.000000
[36,] 95.428418 21.66936 134.61293 104.742986 187.21922 109.55225 31.671978
[37,] 103.983411 19.27417 126.08846 96.203117 178.92493 118.05205 39.835164
[38,] 51.913825 55.72000 179.79530 149.148313 232.48304 67.61643 14.985649
[39,] 120.085730 14.67432 113.35897 81.267197 168.67906 135.04323 53.499081
[40,] 222.852960 126.98529 24.40878 45.667196 57.54329 234.89329 161.392065
[41,] 31.028103 85.13295 201.63169 173.476664 250.85159 41.39146 46.166273
[42,] 132.295487 40.99874 97.55721 70.453968 148.86424 145.32119 70.155080
[43,] 147.139325 43.31348 84.63204 53.084530 140.14755 161.43480 81.381003
[44,] 68.617289 39.48108 165.76013 134.218707 219.71435 84.61869 5.371933
[45,] 24.668959 124.57214 241.09666 213.434112 289.06474 11.51929 84.480070
[46,] 100.004374 25.20959 129.69334 100.675649 181.53036 113.59234 37.958188
[47,] 90.898439 19.41090 140.32286 109.532123 193.80189 105.69377 25.117556
[48,] 29.523988 92.95949 207.64814 180.085313 255.99973 36.59172 54.406427
[49,] 10.791404 108.79847 233.11775 202.738324 284.86340 23.56378 68.425415
[50,] 104.349599 29.06429 125.42724 97.215705 176.56363 117.50552 43.631193
[,36] [,37] [,38] [,39] [,40] [,41] [,42]
[1,] 85.785384 77.480891 131.082072 68.56351 44.16537 150.996729 47.55334
[2,] 114.529333 106.248479 159.796090 96.84682 15.48370 178.939531 76.19047
[3,] 143.865596 135.309554 188.757376 121.38001 36.46094 211.707582 107.65999
[4,] 43.006208 35.955533 86.890713 38.25985 89.20306 104.446809 10.23137
[5,] 128.551038 120.031553 172.649255 104.44131 46.05640 197.443528 94.48575
[6,] 55.640707 47.166942 99.781035 32.24965 81.33887 124.820547 26.72618
[7,] 42.288873 50.556643 5.533755 64.18234 172.07718 38.833799 80.76773
[8,] 86.448266 77.921775 131.637305 65.90281 47.57955 153.888396 49.84840
[9,] 184.960901 176.411054 229.948631 162.63110 65.17997 252.389628 148.28995
[10,] 61.165054 52.875755 106.464337 45.41743 68.69456 126.983470 23.04224
[11,] 105.928900 114.226832 60.823508 126.73829 235.72022 55.433516 144.36569
[12,] 34.575551 42.778364 22.451253 61.52210 159.69881 35.042469 69.36656
[13,] 99.144609 90.593596 143.736505 76.12540 46.12637 167.712760 64.47487
[14,] 37.860862 46.411927 9.367031 62.57220 166.93001 34.547146 75.63771
[15,] 96.127700 104.685009 52.351916 120.62169 223.78087 32.323193 133.13067
[16,] 36.096599 44.645082 10.597749 60.78901 165.24106 36.185436 73.93028
[17,] 44.940037 53.256048 19.720105 71.60358 170.15114 24.452138 79.99803
[18,] 98.270744 89.799475 143.575447 78.55554 34.80550 164.844100 60.81160
[19,] 71.136286 79.605527 31.936074 97.03420 196.91105 6.005180 106.88345
[20,] 149.259128 140.760320 194.517883 128.41268 28.80084 215.748432 111.83393
[21,] 16.156760 18.579527 44.683414 24.35405 135.54425 74.187218 46.65901
[22,] 105.175790 96.623272 150.170777 83.32584 36.65081 173.027717 69.06949
[23,] 79.282435 87.814854 34.465066 102.86464 208.22958 25.310844 117.04893
[24,] 110.911994 102.881670 155.841688 95.49357 20.79228 173.301839 72.43728
[25,] 27.745522 19.188372 72.766325 13.99269 103.39038 96.601989 15.14763
[26,] 44.686545 53.047621 18.553602 71.23224 170.34310 24.663348 80.04628
[27,] 49.532461 58.089572 10.131615 74.51543 177.91322 23.619246 86.83132
[28,] 103.971340 95.427624 148.431873 80.61603 45.31080 172.655357 69.54937
[29,] 95.428418 103.983411 51.913825 120.08573 222.85296 31.028103 132.29549
[30,] 21.669364 19.274174 55.719998 14.67432 126.98529 85.132954 40.99874
[31,] 134.612926 126.088457 179.795303 113.35897 24.40878 201.631686 97.55721
[32,] 104.742986 96.203117 149.148313 81.26720 45.66720 173.476664 70.45397
[33,] 187.219220 178.924927 232.483044 168.67906 57.54329 250.851586 148.86424
[34,] 109.552251 118.052050 67.616434 135.04323 234.89329 41.391464 145.32119
[35,] 31.671978 39.835164 14.985649 53.49908 161.39207 46.166273 70.15508
[36,] 0.000000 8.557865 45.335362 27.25854 129.79424 69.349887 38.48881
[37,] 8.557865 0.000000 53.776118 20.31066 121.56009 77.699719 30.47601
[38,] 45.335362 53.776118 0.000000 68.41069 175.00458 33.308293 83.62896
[39,] 27.258538 20.310664 68.410686 0.00000 112.32835 95.783304 28.76841
[40,] 129.794236 121.560086 175.004583 112.32835 0.00000 193.512212 91.37571
[41,] 69.349887 77.699719 33.308293 95.78330 193.51221 0.000000 104.10324
[42,] 38.488808 30.476006 83.628962 28.76841 91.37571 104.103240 0.00000
[43,] 51.883516 43.409944 96.066663 28.73697 84.31050 121.067734 23.87346
[44,] 33.423036 41.140450 17.165554 52.98234 162.50006 49.827370 71.61617
[45,] 109.411361 117.766733 70.109188 135.70070 232.02629 40.067250 143.73471
[46,] 7.072523 6.709547 50.999119 26.92257 124.02648 72.818552 32.67143
[47,] 8.514612 15.203798 39.627387 29.36852 136.53159 66.562088 45.65792
[48,] 76.520952 84.749729 41.672049 103.24098 198.82657 8.364049 110.28410
[49,] 98.505798 107.038676 53.595392 121.92110 227.32042 38.950098 136.21346
[50,] 13.119519 9.816646 56.246500 27.79610 119.02577 76.421205 27.94687
[,43] [,44] [,45] [,46] [,47] [,48]
[1,] 41.47240 118.348064 190.17957 80.207750 92.394260 156.769535
[2,] 68.88926 147.120856 217.74193 108.861599 121.171114 184.439070
[3,] 92.87007 174.204937 251.39453 139.288291 149.148393 217.942845
[4,] 32.39073 76.410839 143.44740 36.372517 50.954168 110.062223
[5,] 76.72662 157.411752 237.42614 124.626959 133.092018 204.097758
[6,] 3.75738 84.980253 164.87802 52.141874 60.168898 131.728281
[7,] 92.17842 11.944292 75.45633 48.353729 35.933941 47.197845
[8,] 37.29974 117.777066 193.57994 81.607618 92.210109 160.131205
[9,] 134.12122 215.458181 291.89775 180.240662 190.356041 258.446997
[10,] 22.28309 93.823681 166.45834 55.628934 67.842841 133.005256
[11,] 155.23950 73.921778 51.61822 111.794576 99.496630 57.056613
[12,] 86.06872 27.182988 75.06916 37.776090 33.042755 41.972432
[13,] 47.70106 128.993032 207.63733 94.946531 104.109149 174.264165
[14,] 89.41873 16.656449 73.62440 42.980260 33.246837 42.675127
[15,] 147.78259 68.946351 25.65042 100.781877 91.484375 31.025893
[16,] 87.63363 15.637341 75.35976 41.265380 31.459927 44.273633
[17,] 96.61566 30.945369 64.51425 48.395010 42.636820 31.641426
[18,] 50.06322 130.055571 204.29305 93.129786 104.332975 170.844156
[19,] 123.01115 48.960805 38.82524 75.077449 67.676375 11.690262
[20,] 99.67628 180.669630 255.02204 144.184316 155.130447 221.602624
[21,] 52.95356 28.703717 113.52698 22.161813 10.218858 82.079643
[22,] 54.62126 135.873404 212.77497 100.560925 110.602034 179.333201
[23,] 130.47782 50.594326 41.48874 84.424931 74.032055 29.121054
[24,] 68.70762 144.006565 211.57086 104.865675 118.014009 178.457135
[25,] 24.54687 59.206927 136.64387 23.862246 33.393446 103.456544
[26,] 96.43522 29.926911 64.72732 48.293376 42.175277 32.019367
[27,] 101.25128 26.209929 61.86996 54.300978 45.182274 31.954677
[28,] 52.36528 133.551252 212.60214 99.863663 108.810614 179.244502
[29,] 147.13933 68.617289 24.66896 100.004374 90.898439 29.523988
[30,] 43.31348 39.481081 124.57214 25.209593 19.410904 92.959491
[31,] 84.63204 165.760126 241.09666 129.693343 140.322859 207.648141
[32,] 53.08453 134.218707 213.43411 100.675649 109.532123 180.085313
[33,] 140.14755 219.714345 289.06474 181.530359 193.801890 255.999727
[34,] 161.43480 84.618688 11.51929 113.592338 105.693773 36.591716
[35,] 81.38100 5.371933 84.48007 37.958188 25.117556 54.406427
[36,] 51.88352 33.423036 109.41136 7.072523 8.514612 76.520952
[37,] 43.40994 41.140450 117.76673 6.709547 15.203798 84.749729
[38,] 96.06666 17.165554 70.10919 50.999119 39.627387 41.672049
[39,] 28.73697 52.982338 135.70070 26.922568 29.368519 103.240977
[40,] 84.31050 162.500059 232.02629 124.026484 136.531588 198.826571
[41,] 121.06773 49.827370 40.06725 72.818552 66.562088 8.364049
[42,] 23.87346 71.616174 143.73471 32.671433 45.657924 110.284097
[43,] 0.00000 81.338319 161.12639 48.406572 56.447644 127.984976
[44,] 81.33832 0.000000 87.27418 40.101462 25.997966 58.151779
[45,] 161.12639 87.274185 0.00000 112.830479 106.385003 33.455233
[46,] 48.40657 40.101462 112.83048 0.000000 15.575835 79.602225
[47,] 56.44764 25.997966 106.38500 15.575835 0.000000 74.174689
[48,] 127.98498 58.151779 33.45523 79.602225 74.174689 0.000000
[49,] 149.65437 69.334181 33.46602 103.613553 93.207275 38.977481
[50,] 45.81044 45.981109 116.26434 6.050960 21.608717 82.878325
[,49] [,50]
[1,] 183.762402 75.439188
[2,] 212.307322 103.963675
[3,] 242.267332 135.309634
[4,] 138.311488 30.727396
[5,] 226.239829 121.241410
[6,] 153.372319 49.477308
[7,] 57.768198 53.861536
[8,] 184.954003 77.508047
[9,] 283.421736 176.101955
[10,] 159.226649 50.988012
[11,] 19.533354 117.068145
[12,] 68.047913 41.514076
[13,] 197.306848 91.385845
[14,] 60.683752 47.925804
[15,] 9.220796 105.183954
[16,] 62.430891 46.255455
[17,] 58.092127 52.165243
[18,] 196.698366 88.727136
[19,] 33.540087 79.022585
[20,] 247.729704 139.767686
[21,] 97.907880 27.589828
[22,] 203.628241 96.612955
[23,] 19.223822 89.217747
[24,] 207.661220 99.639045
[25,] 126.162830 21.558502
[26,] 57.682049 52.172484
[27,] 49.411836 58.939563
[28,] 202.017877 96.369953
[29,] 10.791404 104.349599
[30,] 108.798472 29.064292
[31,] 233.117754 125.427241
[32,] 202.738324 97.215705
[33,] 284.863402 176.563626
[34,] 23.563780 117.505520
[35,] 68.425415 43.631193
[36,] 98.505798 13.119519
[37,] 107.038676 9.816646
[38,] 53.595392 56.246500
[39,] 121.921099 27.796100
[40,] 227.320421 119.025775
[41,] 38.950098 76.421205
[42,] 136.213456 27.946867
[43,] 149.654367 45.810442
[44,] 69.334181 45.981109
[45,] 33.466019 116.264338
[46,] 103.613553 6.050960
[47,] 93.207275 21.608717
[48,] 38.977481 82.878325
[49,] 0.000000 108.346594
[50,] 108.346594 0.000000
Matriks disparities di atas menunjukkan besarnya ketidaksamaan atau jarak antar 30 objek yang dianalisis dalam prosedur Multidimensional Scaling (MDS). Setiap nilai pada matriks merepresentasikan tingkat perbedaan antara pasangan objek: semakin besar angkanya, semakin jauh atau semakin tidak mirip kedua objek tersebut; sebaliknya, nilai yang kecil menunjukkan objek yang relatif mirip atau dekat satu sama lain. Nilai diagonal bernilai nol karena setiap objek dibandingkan dengan dirinya sendiri sehingga tidak ada perbedaan. Pola pada matriks memperlihatkan bahwa beberapa objek memiliki tingkat kemiripan yang tinggi misalnya objek 1 dengan objek 8 atau objek 3 dengan objek 5 yang memiliki nilai ketidaksamaan rendah sedangkan pasangan lain memiliki jarak yang sangat besar seperti objek 7 dengan sebagian besar objek lainnya, mengindikasikan bahwa objek tersebut memiliki karakteristik yang paling berbeda. Secara keseluruhan, matriks ini menjadi dasar untuk memetakan posisi objek dalam ruang berdimensi rendah sehingga hubungan kemiripan dapat divisualisasikan dalam bentuk konfigurasi MDS.
> stress <- sqrt(sum((dist_matrix - disparities)^2) / sum(dist_matrix^2))
> cat("Nilai Stress:", stress, "\n")
Nilai Stress: 0.01590128
Nilai stress yang diperoleh dari analisis MDS adalah 0.0159, yang menunjukkan tingkat ketepatan pemetaan yang sangat baik. Stress mengukur seberapa jauh konfigurasi titik hasil MDS mampu merepresentasikan struktur jarak asli dalam data; semakin kecil nilainya, semakin akurat pemetaan yang dihasilkan. Berdasarkan standar umum seperti Kruskal’s Stress Index, nilai stress di bawah 0.05 dikategorikan sebagai “excellent fit”, artinya hampir seluruh informasi dissimilarity dalam data dapat direpresentasikan dengan sangat baik dalam ruang dua dimensi. Dengan demikian, nilai stress sebesar 0.0159 mengindikasikan bahwa konfigurasi MDS yang digunakan sudah sangat optimal, distorsi jarak sangat minimal, dan visualisasi dua dimensi yang diperoleh dapat diandalkan untuk interpretasi kemiripan dan pengelompokan antar objek.
> Data <- read_excel("D:/MATERI KULIAH/SMT 5/data_anmul.xlsx")
> plot(fit, type="n",
+ xlab="Dimensi 1", ylab="Dimensi 2",
+ main="Pemetaan Amerika Serikat dengan Indikator Kriminalitas")
>
> points(fit, pch=19, cex=0.8)
>
> text(fit,
+ labels = Data[[1]],
+ cex = 0.55,
+ pos = 3,
+ offset = 0.6)
Plot ini menampilkan pemetaan 50 negara bagian Amerika Serikat
berdasarkan kemiripan pola kriminalitas mereka. Setiap titik mewakili
satu negara bagian. Negara bagian yang berdekatan memiliki karakteristik
tingkat kriminalitas yang mirip, sedangkan negara bagian yang berjauhan
memiliki tingkat kriminalitas yang berbeda secara signifikan.
Interpretasi dilakukan berdasarkan kelompok (cluster) alami, arah
dimensi, serta posisi ekstrem dari negara bagian.
1. Interpretasi Dimensi
Nilai Dimensi 1 negatif besar (kiri) → negara bagian dengan pola kriminalitas lebih rendah atau berbeda dari sebagian besar negara bagian lain. Contoh: California, Florida, Arizona, New York, Illinois berada di area kiri; ini menunjukkan karakteristik kriminalitas yang berbeda dari negara bagian di bagian tengah/kanan.
Nilai Dimensi 1 positif besar (kanan) → negara bagian dengan pola kriminalitas yang lebih tinggi pada indikator tertentu, atau karakteristik kriminalitas yang kontras dengan bagian kiri. Contoh: Vermont, West Virginia, South Dakota, North Dakota berada di kanan.
Kesimpulan Dimensi 1: Sumbu X berfungsi sebagai pemisah utama tipe kriminalitas: negara bagian kiri dan kanan memiliki pola kriminalitas yang sangat berbeda.
Nilai Dimensi 2 tinggi (atas) → negara bagian dengan karakteristik kriminalitas tertentu yang dominan (misalnya kriminalitas kekerasan lebih tinggi). Contoh: Mississippi, South Carolina, Alaska berada di bagian atas.
Nilai Dimensi 2 rendah (bawah) → negara bagian dengan pola kriminalitas yang berbeda (misalnya kriminalitas properti lebih menonjol atau tingkat kekerasan lebih rendah). Contoh: Massachusetts, New Jersey, Rhode Island berada di bawah.
Kesimpulan Dimensi 2: Sumbu Y menggambarkan perbedaan tipe kejahatan yang lebih spesifik (misal kekerasan vs properti).
2. Analisis Kelompok (Clustering Alami)
Kelompok 1 — Barat & Selatan dengan kriminalitas khas (kiri-atas dan kiri-tengah) : California, Arizona, Florida, New Mexico, South Carolina, Mississippi. Negara-negara ini memiliki karakteristik kriminalitas yang cenderung lebih kompleks, banyak yang mencakup populasi besar, keberagaman wilayah, urbanisasi tinggi
Kelompok 2 — Negara-negara Timur Laut & Mid-Atlantic (bawah-tengah) : Massachusetts, New Jersey, Rhode Island, Connecticut. Negara-negara ini memiliki kriminalitas yang relatif rendah, karakteristik sosial-ekonomi relatif mirip
Kelompok 3 — Midwest & Great Plains (kanan-tengah dan kanan-atas) : Iowa, North Dakota, South Dakota, Nebraska. Negara-negara ini cenderung memiliki kriminalitas rendah, homogenitas demografis, dan wilayah rural yang dominan
Kelompok 4 — Selatan & Tenggara dengan pola menengah (tengah) : Georgia, Tennessee, Alabama, Kentucky. Negara-negara ini cenderung memiliki pola kriminalitas yang mirip, biasanya terkait indikator seperti kekerasan antarpribadi, dan faktor sosial ekonomi menengah
3. Negara Bagian Ekstrem (Paling Menonjol)
Paling Kiri (Dimensi 1 sangat negatif) yaitu California, Florida, Arizona : pola kriminalitas yang sangat berbeda dibanding negara bagian lain.
Paling Kanan yaitu Vermont, North Dakota, South Dakota : karakteristik kriminalitas yang sangat kontras dengan negara bagian di sisi kiri.
Paling Atas (Dimensi 2 positif tinggi) yaitu Mississippi, South Carolina, Alaska : kemungkinan memiliki tingkat kriminalitas kekerasan yang lebih tinggi.
Paling Bawah yaitu Massachusetts, New Jersey, Rhode Island : pola kriminalitas lebih rendah/lebih homogen dalam kelompoknya.
Berdasarkan analisis jarak dan pemetaan menggunakan Multidimensional Scaling (MDS), diperoleh gambaran yang jelas mengenai kemiripan pola kriminalitas antar negara bagian di Amerika Serikat. MDS berhasil mereduksi data berdimensi tinggi menjadi dua dimensi yang tetap mempertahankan struktur kedekatan antar wilayah. Hasil pemetaan menunjukkan adanya pengelompokan alami, di mana negara-negara bagian yang memiliki karakteristik kriminalitas serupa cenderung berdekatan dalam ruang MDS. Beberapa kelompok utama yang terlihat antara lain kelompok negara bagian Barat dan Selatan dengan karakteristik kriminalitas yang lebih kompleks, kelompok negara bagian Timur Laut dengan tingkat kriminalitas yang relatif rendah dan homogen, serta kelompok negara bagian Midwest dan Great Plains yang menunjukkan pola kriminalitas yang paling berbeda dari negara bagian di pesisir.
Nilai stress yang diperoleh sebesar 0.0159, yang termasuk kategori sangat baik, menunjukkan bahwa model MDS yang digunakan mampu merepresentasikan hubungan antar negara bagian dengan distorsi yang sangat kecil. Hal ini menegaskan bahwa konfigurasi dua dimensi sudah cukup untuk menggambarkan pola kemiripan kriminalitas secara akurat. Melalui interpretasi dimensi, diketahui bahwa Dimensi 1 memisahkan negara bagian berdasarkan tingkat kriminalitas keseluruhan, sedangkan Dimensi 2 membedakan negara bagian berdasarkan jenis kriminalitas yang lebih dominan. Secara keseluruhan, hasil analisis menunjukkan bahwa MDS merupakan metode yang efektif untuk memahami struktur hubungan antar wilayah berbasis indikator kriminalitas dan dapat menjadi dasar yang kuat untuk analisis lanjutan maupun pengambilan kebijakan terkait keamanan dan kriminalitas.
U.S. Department of Commerce. (1975). Statistical Abstract of the United States 1975. U.S. Government Printing Office.
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/USArrests.html
Maindonald, J., & Braun, J. (2010). Data Analysis and Graphics Using R (3rd ed.). Cambridge University Press.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage Learning.
Anisa, R., & Ispriyanti, D. (2015). Penerapan analisis Multidimensional Scaling (MDS) untuk mengelompokkan kecamatan di Kabupaten Magelang. Media Statistika, 8(2), 119–130.
Federal Bureau of Investigation. (1975). Uniform Crime Reports for the United States. U.S. Government Printing Office.
Osgood, D. W. (2000). Poisson-based regression analysis of aggregate crime rates. Journal of Quantitative Criminology, 16(1), 21–43. https://doi.org/10.1023/A:1007521427059