Pre-registration is here:
Demographic information
Raw
Age
Gender
## gender_text
## Man Non-binary/Other Woman
## 187 4 89
Race
## racef
## Traditionally Marginalized Multiracial Asian White
## 165 34 64 19
## racef
## Traditionally Marginalized Multiracial Asian White
## 0.583039 0.120141 0.226148 0.067138
Failed attention check
## filterout
## Exclude Retain
## 35 246
Clean
Age
vignracismclean %>% ungroup() %>% dplyr::summarize(mean_age = mean(age, na.rm = TRUE), sd_age = sd(age, na.rm = TRUE))Gender
## gender_text
## Man Non-binary/Other Woman
## 155 2 72
Race
## racef
## Traditionally Marginalized Multiracial Asian
## 146 29 54
## racef
## Traditionally Marginalized Multiracial Asian
## 0.63478 0.12609 0.23478
Alphas
Need for significance
Status
Rewards
##
## Pearson's product-moment correlation
##
## data: reward1 and reward2
## t = 26.4, df = 228, p-value <0.0000000000000002
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.83257 0.89699
## sample estimates:
## cor
## 0.8684
Means + SDs
Analyses
Main effects
Binary
Reprimanded
##
## Call:
## glm(formula = reprimanded ~ instigation_type_rev, family = "binomial",
## data = vignracismclean)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.361 0.192 -1.88 0.06 .
## instigation_type_revprejudice -1.354 0.320 -4.23 0.000023 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 272.00 on 229 degrees of freedom
## Residual deviance: 252.47 on 228 degrees of freedom
## AIC: 256.5
##
## Number of Fisher Scoring iterations: 4
Jeff uncivil
##
## Call:
## glm(formula = jeffuncivil ~ instigation_type_rev, family = "binomial",
## data = vignracismclean)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.666 0.200 -3.34 0.00084 ***
## instigation_type_revprejudice -1.048 0.325 -3.23 0.00124 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 255.33 on 229 degrees of freedom
## Residual deviance: 244.28 on 228 degrees of freedom
## AIC: 248.3
##
## Number of Fisher Scoring iterations: 4
Paul uncivil
##
## Call:
## glm(formula = pauluncivil ~ instigation_type_rev, family = "binomial",
## data = vignracismclean)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.627 0.198 3.16 0.0016 **
## instigation_type_revprejudice 0.405 0.288 1.41 0.1600
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 282.67 on 229 degrees of freedom
## Residual deviance: 280.69 on 228 degrees of freedom
## AIC: 284.7
##
## Number of Fisher Scoring iterations: 4
Mediation
Midpoint analyses
Tables
Means/SDs/Correlations
Means/SDs
Correlations
Main effects
Midpoints
Controls
Likert
| nfs | nfs | status | status | rewards | rewards | socreward | socreward | |||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df |
| (Intercept) | 4.55 *** | 0.14 | 31.40 | 228.00 | 2.60 *** | 0.62 | 4.20 | 219.00 | 0.91 *** | 0.14 | 6.36 | 228.00 | -0.69 | 0.60 | -1.15 | 219.00 | 0.69 *** | 0.14 | 5.08 | 228.00 | -1.33 * | 0.57 | -2.35 | 219.00 | 0.77 *** | 0.14 | 5.48 | 228.00 | -0.54 | 0.59 | -0.91 | 219.00 |
| age | 0.01 | 0.01 | 0.60 | 219.00 | 0.01 | 0.01 | 0.98 | 219.00 | 0.01 | 0.01 | 0.87 | 219.00 | -0.00 | 0.01 | -0.32 | 219.00 | ||||||||||||||||
| prejudice | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||||||||
| traditional | -1.71 *** | 0.21 | -8.23 | 228.00 | -1.30 *** | 0.22 | -5.93 | 219.00 | -1.26 *** | 0.20 | -6.18 | 228.00 | -0.69 ** | 0.21 | -3.26 | 219.00 | -1.00 *** | 0.20 | -5.09 | 228.00 | -0.43 * | 0.20 | -2.15 | 219.00 | -1.15 *** | 0.20 | -5.73 | 228.00 | -0.62 ** | 0.21 | -2.98 | 219.00 |
| learn1 | 0.06 | 0.06 | 0.99 | 219.00 | -0.04 | 0.06 | -0.63 | 219.00 | 0.05 | 0.06 | 0.81 | 219.00 | 0.02 | 0.06 | 0.40 | 219.00 | ||||||||||||||||
| learn2 | 0.09 | 0.07 | 1.30 | 219.00 | 0.05 | 0.06 | 0.71 | 219.00 | 0.02 | 0.06 | 0.36 | 219.00 | 0.02 | 0.06 | 0.28 | 219.00 | ||||||||||||||||
| learn3 | 0.28 *** | 0.07 | 4.07 | 219.00 | 0.22 ** | 0.07 | 3.26 | 219.00 | 0.28 *** | 0.06 | 4.48 | 219.00 | 0.25 *** | 0.07 | 3.81 | 219.00 | ||||||||||||||||
|
Traditionally Marginalized |
Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||||||||
| Multiracial | 0.02 | 0.30 | 0.06 | 219.00 | 0.05 | 0.29 | 0.17 | 219.00 | -0.23 | 0.27 | -0.82 | 219.00 | -0.27 | 0.29 | -0.94 | 219.00 | ||||||||||||||||
| Asian | -0.00 | 0.24 | -0.00 | 219.00 | 0.08 | 0.23 | 0.34 | 219.00 | -0.04 | 0.22 | -0.18 | 219.00 | 0.18 | 0.23 | 0.79 | 219.00 | ||||||||||||||||
| rudeness1 | -0.13 | 0.08 | -1.66 | 219.00 | -0.26 *** | 0.08 | -3.36 | 219.00 | -0.29 *** | 0.07 | -3.92 | 219.00 | -0.22 ** | 0.08 | -2.96 | 219.00 | ||||||||||||||||
| rudeness2 | 0.25 *** | 0.06 | 4.02 | 219.00 | 0.32 *** | 0.06 | 5.31 | 219.00 | 0.29 *** | 0.06 | 5.11 | 219.00 | 0.30 *** | 0.06 | 5.06 | 219.00 | ||||||||||||||||
| Observations | 230 | 229 | 230 | 229 | 230 | 229 | 230 | 229 | ||||||||||||||||||||||||
| R2 / R2 adjusted | 0.229 / 0.226 | 0.366 / 0.340 | 0.144 / 0.140 | 0.320 / 0.292 | 0.102 / 0.098 | 0.306 / 0.278 | 0.126 / 0.122 | 0.297 / 0.268 | ||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||
Binary
| reprimanded | reprimanded | jeffuncivil | jeffuncivil | pauluncivil | pauluncivil | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df | B | SE | T-value | df |
| (Intercept) | 0.18 *** | 0.05 | -6.70 | Inf | 0.57 | 0.61 | -0.53 | Inf | 0.18 *** | 0.05 | -6.70 | Inf | 2.11 | 2.34 | 0.67 | Inf | 2.81 *** | 0.59 | 4.93 | Inf | 1.03 | 0.98 | 0.03 | Inf |
| age | 0.98 | 0.02 | -1.46 | Inf | 0.98 | 0.02 | -1.06 | Inf | 0.99 | 0.01 | -0.89 | Inf | ||||||||||||
| prejudice | Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||
| traditional | 3.87 *** | 1.24 | 4.23 | Inf | 1.95 | 0.71 | 1.84 | Inf | 2.85 ** | 0.93 | 3.23 | Inf | 1.36 | 0.51 | 0.82 | Inf | 0.67 | 0.19 | -1.41 | Inf | 0.81 | 0.29 | -0.60 | Inf |
| learn1 | 1.08 | 0.12 | 0.74 | Inf | 0.95 | 0.11 | -0.49 | Inf | 1.20 | 0.12 | 1.86 | Inf | ||||||||||||
| learn2 | 1.10 | 0.12 | 0.81 | Inf | 1.08 | 0.12 | 0.64 | Inf | 1.21 | 0.13 | 1.68 | Inf | ||||||||||||
| learn3 | 0.89 | 0.11 | -0.93 | Inf | 0.67 ** | 0.09 | -2.83 | Inf | 0.79 * | 0.09 | -2.19 | Inf | ||||||||||||
|
Traditionally Marginalized |
Reference | Reference | Reference | Reference | Reference | Reference | ||||||||||||||||||
| Multiracial | 0.69 | 0.37 | -0.68 | Inf | 1.12 | 0.59 | 0.21 | Inf | 0.52 | 0.24 | -1.40 | Inf | ||||||||||||
| Asian | 1.14 | 0.45 | 0.34 | Inf | 1.35 | 0.54 | 0.74 | Inf | 0.74 | 0.27 | -0.82 | Inf | ||||||||||||
| rudeness1 | 1.53 ** | 0.20 | 3.17 | Inf | 1.63 *** | 0.23 | 3.41 | Inf | 0.65 *** | 0.08 | -3.39 | Inf | ||||||||||||
| rudeness2 | 0.56 *** | 0.08 | -4.19 | Inf | 0.60 *** | 0.08 | -3.72 | Inf | 1.00 | 0.11 | -0.02 | Inf | ||||||||||||
| Observations | 230 | 229 | 230 | 229 | 230 | 229 | ||||||||||||||||||
| R2 Tjur | 0.083 | 0.212 | 0.047 | 0.189 | 0.009 | 0.133 | ||||||||||||||||||
|
||||||||||||||||||||||||
Social Rewards