25_12.01-2Cond-Racism

Pre-registration is here:

Demographic information

Raw

Age

Gender

## gender_text
##              Man Non-binary/Other            Woman 
##              187                4               89

Race

## racef
## Traditionally Marginalized                Multiracial                      Asian                      White 
##                        165                         34                         64                         19
## racef
## Traditionally Marginalized                Multiracial                      Asian                      White 
##                   0.583039                   0.120141                   0.226148                   0.067138

Failed attention check

## filterout
## Exclude  Retain 
##      35     246

Clean

Age

vignracismclean %>% ungroup() %>% dplyr::summarize(mean_age = mean(age, na.rm = TRUE), sd_age = sd(age, na.rm = TRUE))

Gender

## gender_text
##              Man Non-binary/Other            Woman 
##              155                2               72

Race

## racef
## Traditionally Marginalized                Multiracial                      Asian 
##                        146                         29                         54
## racef
## Traditionally Marginalized                Multiracial                      Asian 
##                    0.63478                    0.12609                    0.23478

Alphas

Need for significance

Status

Rewards

## 
##  Pearson's product-moment correlation
## 
## data:  reward1 and reward2
## t = 26.4, df = 228, p-value <0.0000000000000002
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.83257 0.89699
## sample estimates:
##    cor 
## 0.8684

Social Rewards

Means + SDs

Analyses

Main effects

Binary

Reprimanded

## 
## Call:
## glm(formula = reprimanded ~ instigation_type_rev, family = "binomial", 
##     data = vignracismclean)
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     -0.361      0.192   -1.88     0.06 .  
## instigation_type_revprejudice   -1.354      0.320   -4.23 0.000023 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 272.00  on 229  degrees of freedom
## Residual deviance: 252.47  on 228  degrees of freedom
## AIC: 256.5
## 
## Number of Fisher Scoring iterations: 4

Jeff uncivil

## 
## Call:
## glm(formula = jeffuncivil ~ instigation_type_rev, family = "binomial", 
##     data = vignracismclean)
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     -0.666      0.200   -3.34  0.00084 ***
## instigation_type_revprejudice   -1.048      0.325   -3.23  0.00124 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 255.33  on 229  degrees of freedom
## Residual deviance: 244.28  on 228  degrees of freedom
## AIC: 248.3
## 
## Number of Fisher Scoring iterations: 4

Paul uncivil

## 
## Call:
## glm(formula = pauluncivil ~ instigation_type_rev, family = "binomial", 
##     data = vignracismclean)
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                      0.627      0.198    3.16   0.0016 **
## instigation_type_revprejudice    0.405      0.288    1.41   0.1600   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 282.67  on 229  degrees of freedom
## Residual deviance: 280.69  on 228  degrees of freedom
## AIC: 284.7
## 
## Number of Fisher Scoring iterations: 4

Mediation

Midpoint analyses

Tables

Means/SDs/Correlations

Means/SDs

Correlations

Main effects

Midpoints

Controls

Likert

  nfs nfs status status rewards rewards socreward socreward
Predictors B SE T-value df B SE T-value df B SE T-value df B SE T-value df B SE T-value df B SE T-value df B SE T-value df B SE T-value df
(Intercept) 4.55 *** 0.14 31.40 228.00 2.60 *** 0.62 4.20 219.00 0.91 *** 0.14 6.36 228.00 -0.69 0.60 -1.15 219.00 0.69 *** 0.14 5.08 228.00 -1.33 * 0.57 -2.35 219.00 0.77 *** 0.14 5.48 228.00 -0.54 0.59 -0.91 219.00
age 0.01 0.01 0.60 219.00 0.01 0.01 0.98 219.00 0.01 0.01 0.87 219.00 -0.00 0.01 -0.32 219.00
prejudice Reference Reference Reference Reference Reference Reference Reference Reference
traditional -1.71 *** 0.21 -8.23 228.00 -1.30 *** 0.22 -5.93 219.00 -1.26 *** 0.20 -6.18 228.00 -0.69 ** 0.21 -3.26 219.00 -1.00 *** 0.20 -5.09 228.00 -0.43 * 0.20 -2.15 219.00 -1.15 *** 0.20 -5.73 228.00 -0.62 ** 0.21 -2.98 219.00
learn1 0.06 0.06 0.99 219.00 -0.04 0.06 -0.63 219.00 0.05 0.06 0.81 219.00 0.02 0.06 0.40 219.00
learn2 0.09 0.07 1.30 219.00 0.05 0.06 0.71 219.00 0.02 0.06 0.36 219.00 0.02 0.06 0.28 219.00
learn3 0.28 *** 0.07 4.07 219.00 0.22 ** 0.07 3.26 219.00 0.28 *** 0.06 4.48 219.00 0.25 *** 0.07 3.81 219.00
Traditionally
Marginalized
Reference Reference Reference Reference Reference Reference Reference Reference
Multiracial 0.02 0.30 0.06 219.00 0.05 0.29 0.17 219.00 -0.23 0.27 -0.82 219.00 -0.27 0.29 -0.94 219.00
Asian -0.00 0.24 -0.00 219.00 0.08 0.23 0.34 219.00 -0.04 0.22 -0.18 219.00 0.18 0.23 0.79 219.00
rudeness1 -0.13 0.08 -1.66 219.00 -0.26 *** 0.08 -3.36 219.00 -0.29 *** 0.07 -3.92 219.00 -0.22 ** 0.08 -2.96 219.00
rudeness2 0.25 *** 0.06 4.02 219.00 0.32 *** 0.06 5.31 219.00 0.29 *** 0.06 5.11 219.00 0.30 *** 0.06 5.06 219.00
Observations 230 229 230 229 230 229 230 229
R2 / R2 adjusted 0.229 / 0.226 0.366 / 0.340 0.144 / 0.140 0.320 / 0.292 0.102 / 0.098 0.306 / 0.278 0.126 / 0.122 0.297 / 0.268
  • p<0.05   ** p<0.01   *** p<0.001

Binary

  reprimanded reprimanded jeffuncivil jeffuncivil pauluncivil pauluncivil
Predictors B SE T-value df B SE T-value df B SE T-value df B SE T-value df B SE T-value df B SE T-value df
(Intercept) 0.18 *** 0.05 -6.70 Inf 0.57 0.61 -0.53 Inf 0.18 *** 0.05 -6.70 Inf 2.11 2.34 0.67 Inf 2.81 *** 0.59 4.93 Inf 1.03 0.98 0.03 Inf
age 0.98 0.02 -1.46 Inf 0.98 0.02 -1.06 Inf 0.99 0.01 -0.89 Inf
prejudice Reference Reference Reference Reference Reference Reference
traditional 3.87 *** 1.24 4.23 Inf 1.95 0.71 1.84 Inf 2.85 ** 0.93 3.23 Inf 1.36 0.51 0.82 Inf 0.67 0.19 -1.41 Inf 0.81 0.29 -0.60 Inf
learn1 1.08 0.12 0.74 Inf 0.95 0.11 -0.49 Inf 1.20 0.12 1.86 Inf
learn2 1.10 0.12 0.81 Inf 1.08 0.12 0.64 Inf 1.21 0.13 1.68 Inf
learn3 0.89 0.11 -0.93 Inf 0.67 ** 0.09 -2.83 Inf 0.79 * 0.09 -2.19 Inf
Traditionally
Marginalized
Reference Reference Reference Reference Reference Reference
Multiracial 0.69 0.37 -0.68 Inf 1.12 0.59 0.21 Inf 0.52 0.24 -1.40 Inf
Asian 1.14 0.45 0.34 Inf 1.35 0.54 0.74 Inf 0.74 0.27 -0.82 Inf
rudeness1 1.53 ** 0.20 3.17 Inf 1.63 *** 0.23 3.41 Inf 0.65 *** 0.08 -3.39 Inf
rudeness2 0.56 *** 0.08 -4.19 Inf 0.60 *** 0.08 -3.72 Inf 1.00 0.11 -0.02 Inf
Observations 230 229 230 229 230 229
R2 Tjur 0.083 0.212 0.047 0.189 0.009 0.133
  • p<0.05   ** p<0.01   *** p<0.001