library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.1 ✔ stringr 1.5.2
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(tibble)
H0: Both males and females are take vitamins. H1: Males are more likely to take vitamins compared to females.
vitamins <- read.csv("NutritionStudy.csv")
head(vitamins)
## ID Age Smoke Quetelet Vitamin Calories Fat Fiber Alcohol Cholesterol
## 1 1 64 No 21.4838 1 1298.8 57.0 6.3 0.0 170.3
## 2 2 76 No 23.8763 1 1032.5 50.1 15.8 0.0 75.8
## 3 3 38 No 20.0108 2 2372.3 83.6 19.1 14.1 257.9
## 4 4 40 No 25.1406 3 2449.5 97.5 26.5 0.5 332.6
## 5 5 72 No 20.9850 1 1952.1 82.6 16.2 0.0 170.8
## 6 6 40 No 27.5214 3 1366.9 56.0 9.6 1.3 154.6
## BetaDiet RetinolDiet BetaPlasma RetinolPlasma Sex VitaminUse PriorSmoke
## 1 1945 890 200 915 Female Regular 2
## 2 2653 451 124 727 Female Regular 1
## 3 6321 660 328 721 Female Occasional 2
## 4 1061 864 153 615 Female No 2
## 5 2863 1209 92 799 Female Regular 1
## 6 1729 1439 148 654 Female No 2
tail(vitamins)
## ID Age Smoke Quetelet Vitamin Calories Fat Fiber Alcohol Cholesterol
## 310 310 48 No 24.6147 2 2021.1 72.2 16.6 9.0 299.1
## 311 311 46 No 25.8967 3 2263.6 98.2 19.4 2.6 306.5
## 312 312 45 No 23.8270 1 1841.1 84.2 14.1 2.2 257.7
## 313 313 49 No 24.2613 1 1125.6 44.8 11.9 4.0 150.5
## 314 314 31 No 23.4525 1 2729.6 144.4 13.2 2.2 381.8
## 315 315 45 No 26.5081 1 1627.0 77.4 9.9 0.2 195.6
## BetaDiet RetinolDiet BetaPlasma RetinolPlasma Sex VitaminUse PriorSmoke
## 310 1392 1027 144 752 Female Occasional 2
## 311 2572 1261 164 216 Female No 2
## 312 1665 465 80 328 Female Regular 1
## 313 6943 520 300 502 Female Regular 1
## 314 741 644 121 684 Female Regular 2
## 315 1242 554 233 826 Female Regular 1
vitamins_intake <- table(vitamins$Sex, vitamins$VitaminUse)
chisq.test(vitamins_intake)
##
## Pearson's Chi-squared test
##
## data: vitamins_intake
## X-squared = 11.071, df = 2, p-value = 0.003944
The p-value is small (0.003844) which therefore means we can reject the null hypothesis showing that there is a difference between males and females in their vitamin intake.
Fish Gills ANOVA test:
H0: There is no difference in the fish gill rate in the different calcium levels in the water. H1: There is a difference in the fish gill rate in the different calcium levels in the water.
fish_gills <- read.csv("FishGills3.csv")
head(fish_gills)
## Calcium GillRate
## 1 Low 55
## 2 Low 63
## 3 Low 78
## 4 Low 85
## 5 Low 65
## 6 Low 98
tail(fish_gills)
## Calcium GillRate
## 85 High 52
## 86 High 37
## 87 High 57
## 88 High 62
## 89 High 40
## 90 High 42
anova_result <- aov(GillRate ~ Calcium, data = fish_gills)
anova_result
## Call:
## aov(formula = GillRate ~ Calcium, data = fish_gills)
##
## Terms:
## Calcium Residuals
## Sum of Squares 2037.222 19064.333
## Deg. of Freedom 2 87
##
## Residual standard error: 14.80305
## Estimated effects may be unbalanced
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## Calcium 2 2037 1018.6 4.648 0.0121 *
## Residuals 87 19064 219.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The p-value being small (0.0121) means that there is enough evidence to reject the null hypothesis meaning that there is a difference in the fish gill rates in different calcium water levels.