library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.6
## ✔ forcats   1.0.1     ✔ stringr   1.6.0
## ✔ ggplot2   4.0.1     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.2.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
#Now we make a pie chart
Assignment2 <- read_csv("Assignment2.csv")
## Rows: 1000000 Columns: 22
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (7): Country, Disease Name, Disease Category, Age Group, Gender, Treatm...
## dbl (15): Year, Prevalence Rate (%), Incidence Rate (%), Mortality Rate (%),...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
pie_data <- Assignment2 %>%
  group_by(`Disease Category`) %>%
  summarize(avg_prevalence = mean(`Prevalence Rate (%)`, na.rm = TRUE))
#Now for the pie chart
ggplot(pie_data, aes(x = "", y = avg_prevalence, fill = `Disease Category`))+
  geom_col(width = 1) +
  coord_polar(theta = "y") +
  labs(title = "Average Prevalence Rate by Disease Category") +
  theme_minimal() +
  theme(axis.title = element_blank(),
        axis.text = element_blank(),
        axis.ticks = element_blank())