library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(knitr)
1. Carregamento e Preparação dos Dados
vendas <- read_excel("Vendas2024(1).xlsx", sheet = 1)
vendas <- vendas %>%
mutate(
vendedor = as.factor(vendedor),
dias = as.Date(dias),
venda_diaria = as.numeric(venda_diaria)
)
vendas <- vendas %>% filter(!is.na(venda_diaria))
str(vendas)
## tibble [113,202 × 5] (S3: tbl_df/tbl/data.frame)
## $ vendedor : Factor w/ 12 levels "101101","101102",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ dias : Date[1:113202], format: "2018-01-01" "2018-01-01" ...
## $ venda_diaria: num [1:113202] 372 139 354 241 123 ...
## $ ano : num [1:113202] 2018 2018 2018 2018 2018 ...
## $ mes : num [1:113202] 1 1 1 1 1 1 1 1 1 1 ...
head(vendas)
## # A tibble: 6 × 5
## vendedor dias venda_diaria ano mes
## <fct> <date> <dbl> <dbl> <dbl>
## 1 101101 2018-01-01 372. 2018 1
## 2 101101 2018-01-01 139. 2018 1
## 3 101101 2018-01-01 354. 2018 1
## 4 101101 2018-01-01 241. 2018 1
## 5 101101 2018-01-01 123. 2018 1
## 6 101101 2018-01-01 165. 2018 1
2. Análise Estatística
2.1 Estatísticas por vendedor
estat_vendedor <- vendas %>%
group_by(vendedor) %>%
summarise(
total_vendas = sum(venda_diaria),
media_diaria = mean(venda_diaria),
mediana = median(venda_diaria),
desvio_padrao = sd(venda_diaria),
n_registros = n()
) %>%
arrange(desc(total_vendas))
kable(estat_vendedor, caption = "Estatísticas por Vendedor")
Estatísticas por Vendedor
| 101102 |
4031176 |
276.0323 |
268.370 |
160.7581 |
14604 |
| 101101 |
3489519 |
253.9309 |
249.280 |
146.2669 |
13742 |
| 101103 |
3433923 |
268.7161 |
264.700 |
155.3434 |
12779 |
| 101105 |
2694622 |
258.6258 |
250.790 |
150.1411 |
10419 |
| 101104 |
2491491 |
237.4432 |
232.130 |
137.8471 |
10493 |
| 101108 |
2473665 |
271.4734 |
265.235 |
157.0374 |
9112 |
| 101106 |
2458056 |
245.8794 |
240.990 |
143.1502 |
9997 |
| 102111 |
2441308 |
244.6691 |
240.990 |
140.9007 |
9978 |
| 101107 |
2201441 |
250.2775 |
243.280 |
146.5876 |
8796 |
| 102112 |
1338667 |
289.5042 |
282.730 |
166.8494 |
4624 |
| 101109 |
1296194 |
304.0569 |
297.620 |
173.8729 |
4263 |
| 101110 |
1125154 |
256.0078 |
252.310 |
145.7166 |
4395 |
2. Análise Estatística
2.1 Estatísticas por vendedor
estat_vendedor <- vendas %>%
group_by(vendedor) %>%
summarise(
total_vendas = sum(venda_diaria),
media_diaria = mean(venda_diaria),
mediana = median(venda_diaria),
desvio_padrao = sd(venda_diaria),
n_registros = n()
) %>%
arrange(desc(total_vendas))
kable(estat_vendedor, caption = "Estatísticas por Vendedor")
Estatísticas por Vendedor
| 101102 |
4031176 |
276.0323 |
268.370 |
160.7581 |
14604 |
| 101101 |
3489519 |
253.9309 |
249.280 |
146.2669 |
13742 |
| 101103 |
3433923 |
268.7161 |
264.700 |
155.3434 |
12779 |
| 101105 |
2694622 |
258.6258 |
250.790 |
150.1411 |
10419 |
| 101104 |
2491491 |
237.4432 |
232.130 |
137.8471 |
10493 |
| 101108 |
2473665 |
271.4734 |
265.235 |
157.0374 |
9112 |
| 101106 |
2458056 |
245.8794 |
240.990 |
143.1502 |
9997 |
| 102111 |
2441308 |
244.6691 |
240.990 |
140.9007 |
9978 |
| 101107 |
2201441 |
250.2775 |
243.280 |
146.5876 |
8796 |
| 102112 |
1338667 |
289.5042 |
282.730 |
166.8494 |
4624 |
| 101109 |
1296194 |
304.0569 |
297.620 |
173.8729 |
4263 |
| 101110 |
1125154 |
256.0078 |
252.310 |
145.7166 |
4395 |
2.2 Venda mensal total
venda_mensal_total <- vendas %>%
group_by(mes) %>%
summarise(total_mensal = sum(venda_diaria))
kable(venda_mensal_total, caption = "Venda Mensal Total da Empresa")
Venda Mensal Total da Empresa
| 1 |
2386425 |
| 2 |
1997638 |
| 3 |
2465693 |
| 4 |
2164830 |
| 5 |
2661291 |
| 6 |
2439277 |
| 7 |
2057659 |
| 8 |
2091707 |
| 9 |
2109516 |
| 10 |
2511229 |
| 11 |
3013742 |
| 12 |
3576212 |
2.3 Venda mensal por vendedor
venda_mensal_vendedor <- vendas %>%
group_by(vendedor, mes) %>%
summarise(total_mensal = sum(venda_diaria))
## `summarise()` has grouped output by 'vendedor'. You can override using the
## `.groups` argument.
kable(venda_mensal_vendedor, caption = "Venda Mensal por Vendedor")
Venda Mensal por Vendedor
| 101101 |
1 |
304996.55 |
| 101101 |
2 |
280841.29 |
| 101101 |
3 |
271108.23 |
| 101101 |
4 |
312580.18 |
| 101101 |
5 |
332379.50 |
| 101101 |
6 |
273624.83 |
| 101101 |
7 |
244295.36 |
| 101101 |
8 |
241060.96 |
| 101101 |
9 |
235423.53 |
| 101101 |
10 |
272452.76 |
| 101101 |
11 |
353683.41 |
| 101101 |
12 |
367072.11 |
| 101102 |
1 |
358325.87 |
| 101102 |
2 |
258428.16 |
| 101102 |
3 |
350061.41 |
| 101102 |
4 |
316714.02 |
| 101102 |
5 |
303263.64 |
| 101102 |
6 |
351696.00 |
| 101102 |
7 |
290731.31 |
| 101102 |
8 |
293787.95 |
| 101102 |
9 |
313033.75 |
| 101102 |
10 |
328450.46 |
| 101102 |
11 |
354579.10 |
| 101102 |
12 |
512104.04 |
| 101103 |
1 |
256950.60 |
| 101103 |
2 |
227085.20 |
| 101103 |
3 |
261548.28 |
| 101103 |
4 |
264556.80 |
| 101103 |
5 |
290407.44 |
| 101103 |
6 |
253482.21 |
| 101103 |
7 |
219043.61 |
| 101103 |
8 |
289967.85 |
| 101103 |
9 |
281298.37 |
| 101103 |
10 |
296370.12 |
| 101103 |
11 |
376967.19 |
| 101103 |
12 |
416245.38 |
| 101104 |
1 |
222662.16 |
| 101104 |
2 |
155017.30 |
| 101104 |
3 |
217127.72 |
| 101104 |
4 |
154917.52 |
| 101104 |
5 |
229778.76 |
| 101104 |
6 |
210482.34 |
| 101104 |
7 |
153517.12 |
| 101104 |
8 |
144273.45 |
| 101104 |
9 |
154356.88 |
| 101104 |
10 |
230839.02 |
| 101104 |
11 |
292080.27 |
| 101104 |
12 |
326438.93 |
| 101105 |
1 |
243601.59 |
| 101105 |
2 |
181129.39 |
| 101105 |
3 |
230925.68 |
| 101105 |
4 |
217487.04 |
| 101105 |
5 |
210134.02 |
| 101105 |
6 |
211313.24 |
| 101105 |
7 |
198280.47 |
| 101105 |
8 |
178660.18 |
| 101105 |
9 |
182837.38 |
| 101105 |
10 |
219010.56 |
| 101105 |
11 |
281821.85 |
| 101105 |
12 |
339420.87 |
| 101106 |
1 |
190747.81 |
| 101106 |
2 |
186249.53 |
| 101106 |
3 |
211870.26 |
| 101106 |
4 |
187609.33 |
| 101106 |
5 |
248299.20 |
| 101106 |
6 |
178133.89 |
| 101106 |
7 |
138348.33 |
| 101106 |
8 |
163860.42 |
| 101106 |
9 |
178171.05 |
| 101106 |
10 |
203824.08 |
| 101106 |
11 |
270247.30 |
| 101106 |
12 |
300695.05 |
| 101107 |
1 |
131991.95 |
| 101107 |
2 |
148701.20 |
| 101107 |
3 |
205178.07 |
| 101107 |
4 |
186903.56 |
| 101107 |
5 |
216176.32 |
| 101107 |
6 |
193094.22 |
| 101107 |
7 |
159875.93 |
| 101107 |
8 |
174730.10 |
| 101107 |
9 |
154164.84 |
| 101107 |
10 |
190023.95 |
| 101107 |
11 |
190755.82 |
| 101107 |
12 |
249844.79 |
| 101108 |
1 |
144378.98 |
| 101108 |
2 |
147176.34 |
| 101108 |
3 |
225444.00 |
| 101108 |
4 |
203459.68 |
| 101108 |
5 |
256836.88 |
| 101108 |
6 |
212237.53 |
| 101108 |
7 |
191760.85 |
| 101108 |
8 |
169119.74 |
| 101108 |
9 |
194768.33 |
| 101108 |
10 |
193896.73 |
| 101108 |
11 |
240693.66 |
| 101108 |
12 |
293892.62 |
| 101109 |
1 |
130292.65 |
| 101109 |
2 |
89180.06 |
| 101109 |
3 |
86114.55 |
| 101109 |
4 |
56328.50 |
| 101109 |
5 |
96427.52 |
| 101109 |
6 |
133369.88 |
| 101109 |
7 |
94089.19 |
| 101109 |
8 |
101625.88 |
| 101109 |
9 |
80056.90 |
| 101109 |
10 |
131671.38 |
| 101109 |
11 |
145915.46 |
| 101109 |
12 |
151122.44 |
| 101110 |
1 |
102221.04 |
| 101110 |
2 |
71676.60 |
| 101110 |
3 |
78463.27 |
| 101110 |
4 |
49210.58 |
| 101110 |
5 |
103094.09 |
| 101110 |
6 |
111804.99 |
| 101110 |
7 |
97608.66 |
| 101110 |
8 |
95514.34 |
| 101110 |
9 |
81701.94 |
| 101110 |
10 |
103513.47 |
| 101110 |
11 |
120435.98 |
| 101110 |
12 |
109909.32 |
| 102111 |
1 |
214266.61 |
| 102111 |
2 |
160480.82 |
| 102111 |
3 |
205464.53 |
| 102111 |
4 |
154996.70 |
| 102111 |
5 |
237483.46 |
| 102111 |
6 |
195677.70 |
| 102111 |
7 |
166520.44 |
| 102111 |
8 |
128257.65 |
| 102111 |
9 |
163233.04 |
| 102111 |
10 |
224139.70 |
| 102111 |
11 |
262223.83 |
| 102111 |
12 |
328563.49 |
| 102112 |
1 |
85988.78 |
| 102112 |
2 |
91672.44 |
| 102112 |
3 |
122386.60 |
| 102112 |
4 |
60065.69 |
| 102112 |
5 |
137010.19 |
| 102112 |
6 |
114360.31 |
| 102112 |
7 |
103587.34 |
| 102112 |
8 |
110848.82 |
| 102112 |
9 |
90469.73 |
| 102112 |
10 |
117036.86 |
| 102112 |
11 |
124337.65 |
| 102112 |
12 |
180902.99 |